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Abstract
Vaccines have proven to be extremely effective in
preventing the spread of COVID-19 and potentially
ending the pandemic. Lack of access caused many
people not getting vaccinated early, so states such
as Virginia deployed mobile vaccination sites in or-
der to distribute vaccines across the state. Here we
study the problem of deciding where these facilities
should be placed and moved over time in order to
minimize the distance each person needs to travel in
order to be vaccinated. Traditional facility location
models for this problem fail to incorporate the fact
that our facilities are mobile (i.e., they can move
over time). To this end, we instead model vac-
cine distribution as the Dynamic k-Supplier prob-
lem and give the first approximation algorithms for
this problem. We then run extensive simulations
on real world datasets to show the efficacy of our
methods. In particular, we find that natural base-
lines for Dynamic k-Supplier cannot take advan-
tage of the mobility of the facilities, and perform
worse than non-mobile k-Supplier algorithms.

1 Introduction
Vaccines have played a vital role in reducing the negative
health effects of COVID-19 and continue to be the best strat-
egy to end the pandemic. Despite the effectiveness of vac-
cines, it remains difficult to vaccinate all eligible individu-
als in the population. There are three primary reasons: (i)
lack of accessibility of vaccines; (ii) hesitancy due to per-
ceived harm or mistrust; and (iii) strategic behavior or mis-
information—see [Yan, 2021]. This paper focuses on ad-
dressing elements of the accessibility problem, which will
be important in tackling future epidemics and remains a
challenge in several low- and middle-income countries; see
[Acharya et al., 2021; Bayati et al., 2022; Kim et al., 2021;
Wouters et al., 2021] and [Wel, ]. In the U.S., states such
as Virginia have funded mobile vaccination sites to dis-
tribute vaccines throughout the state [Mehrab et al., 2022;
Shukla et al., 2022a]. Here, we study how these mobile
vaccination sites should be dynamically deployed through a
county to reduce the amount people need to travel for vac-
cines. Our methods take into account issues of equitable

access by placing these mobile vaccine distribution sites
strategically. Specifically, lower income groups, elders and
other groups have often found it hard to get vaccines due to
the time it might take to reach a facility and waiting in the
queue to get the vaccine. In an important article [Lu et al.,
2022], the authors point out this issue in Boston. Quoting
them: However, the state has not set up mass vaccination
sites in some of the communities most disproportionately im-
pacted by COVID-19 in Boston, like East Boston, Chelsea,
or Hyde Park. In Chelsea — a city just outside of Boston
— only 7% of Latino residents have received vaccines, even
though Latino people are 68% of the population. Many in-
dividuals in these neighborhoods cannot easily travel to the
mass vaccination sites due to disability, work schedules, or
lack of transportation. We formulate this as a Dynamic Pri-
ority k-Supplier problem wherein individuals can value each
facility not just by distance but access to modes of transporta-
tion. This allows us to capture individual-level accessibility
constraints and this leads to more equitable solutions. These
extensions have not been considered in prior work.

The problem of deploying vaccine distribution sites is a fa-
cility location problem, and is classically formulated as the k-
supplier problem and its variants, e.g., [Brubach et al., 2021;
Li et al., 2022]. In this problem, our goal is to choose k fa-
cility locations in order to minimize the maximum distance
between a client and their closest facility. However, the k-
supplier problem fails to model a key component of our vac-
cine distribution application: our facilities can move over
time since they are mobile. We can use this to our advan-
tage to significantly reduce the distance agents need to travel
in order to get vaccinated. Our contributions are:

• We formulate the problem of placing mobile vaccine dis-
tribution sites as the Dynamic k-Supplier problem that
incorporates mobility considerations into the problem by
developing a multi-timestep version of k-supplier. We
also extend the problem formulation to incorporate prac-
tical considerations such as outliers and fairness. Since
[Deng et al., 2022] showed that it is NP-Hard to ob-
tain any non-trivial approximation algorithm for the Dy-
namic k-Supplier problem, we turn to bicriteria approx-
imation algorithms.

• We design two bicriteria approximation algorithms. The
first algorithm is based on the Set Cover problem, and

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

64



obtains the optimal service cost but violates the budget
k by a logarithmic factor. This algorithm gives rise to a
simple heuristic, which performs extremely well in prac-
tice (see Section 6). Unfortunately, the algorithm must
violate the number of facilities used by a logarithmic
factor, which is theoretically unsatisfying. Our second
algorithm is based on a network-flow approach, and ob-
tains a constant approximation to the service cost but vi-
olates the movement constraint by a constant factor and
requires a (realistic) density assumption on the candidate
facility locations. In the Appendix, we detail how both
of our algorithms can be extended to consider outliers
and our cover-based algorithm can incorporate equality
considerations discussed in the introduction.

• We evaluate our algorithms for populations of a city and
a county in Virginia. Our primary goal was to under-
stand how much the mobility aspect of the facility lo-
cation model can improve the accessibility of vaccines.
We find that neither our flow-based algorithm nor a natu-
ral heuristic exploits the additional flexibility introduced
by having mobile facilities. In particular, the objec-
tive values of both of these algorithms are comparable
to that of a standard k-supplier algorithm where facili-
ties don’t move. In contrast, our cover-based algorithm
performs significantly better than all baselines. In par-
ticular, this illustrates the challenges in improving ac-
cessibility using the mobile facilities. We additionally
explore the tradeoffs between the number of facilities,
the movement constraint, and the proportion of the pop-
ulation served. Furthermore, we investigate a priority-
based and a limited capacity variant, modelling differ-
ent aspect of equity and fairness in allocation. All these
results help inform policymakers concerning decisions
about vaccine distribution.

Even though our results are stated in the context of vac-
cine distribution, they also have broad applications elsewhere,
e.g., delivering other healthcare resources (such as cancer
screening units and blood banks), and library outreach pro-
grams [Raghavan et al., 2019]. More generally, Dynamic
k-Supplier was introduced in the context of clustering dy-
namic points without moving the cluster centers too much,
e.g., [Deng et al., 2022]; our results apply there as well.

2 Preliminaries
We now formalize the Dynamic k-Supplier problem. Let [T ]
denote the set {1, 2, . . . , T}. We assume that our distances
are in a metric space X , characterized by a distance function
d : X × X 7→ R≥0. We assume a time discretization into T
time steps and that for each time step t ∈ [T ], we are given a
set of locations F t ⊆ X where we can place our k available
mobile facilities. At each time t, we are also given a set of
clients: our goal is to serve a set of clients C ⊆ X over the
course of the T time steps. Of course, each client only needs
to be vaccinated once so we don’t need to serve each client
at every time step. Instead, we assume each client/person
chooses a time step t ∈ [T ] when they wish to be vaccinated.
Let Ct ⊆ C be the given set of clients who wish to be vac-
cinated at time step t ∈ [T ]; we will only need to serve Ct

k-Supplier OPT

Dynamic k-Supplier OPT
Agents/Clients
Timestep1 2 3

MM

Figure 1: The example illustrates an instance of our vaccination
problem where the optimal solutions of Dynamic k-Supplier and k-
Supplier differ significantly. The different time steps are represented
by different colors (red, green, and blue) and each colored circle rep-
resents a client. Given a single facility, the black “x” is the optimal
k-Supplier solution and has large service cost. In contrast, allowing
movement of M significantly reduces the service cost by travelling
to the red, green, and blue “x” locations.

at time step t ∈ [T ] with our mobile facilities. However, our
facilities cannot move arbitrarily far between two consecutive
time steps. We take as input a movement constraint M and
require that no facility move more than distance M between
consecutive time steps. Given these constraints, our goal is to
find k locations St ⊆ F t for each t so that we minimize the
maximum service distance. Formally:

Problem 2.1. Given a metric space X , for each time
step t ≤ T , we are provided a set of clients Ct, a set
of potential facility locations F t, and an upper bound of
movement M . For each time step t, find a sequence of
k facilities St = (s1,t, s2,t, . . . , sk,t) each lying in F t,
such that d(si,t, si,t+1) ≤ M for 1 ≤ i ≤ k and
1 ≤ t ≤ T − 1 to minimize the maximum service dis-
tance R := maxt∈[T ] maxj∈Ct d(j, St), where d(j, St) =
mini∈St

d(j, i). See Figure 1 for an example.

To make our problem formulation more concrete, we illus-
trate an example of how it can be used in practice for deploy-
ing vaccine distribution sites. We assume that the government
has a website on which people can register to be vaccinated at
a specific hour (e.g., 2–3PM). For each day, let us discretize
the time (8AM–8PM) into T = 12 hours; each mobile facil-
ity can use the first 50 minutes in the hour to vaccinate clients
and the final 10 minutes to move to the next location. Now,
let each person in the county choose a day and time to get
vaccinated via the website/mobile app and let them input (ap-
proximately) where they’ll be at that time; we can use this
information to construct the client sets Ct for each time step
t ∈ [T ]. After obtaining the set of candidate facility locations
F (for example, from the government), we can combine the
facility and client locations and define the underlying met-
ric to be the travel times between two locations (for example,
given by Google maps). Now that we have all the compo-
nents, we can apply one of our algorithms for the Dynamic
k-Supplier problem for each day and obtain a near-optimal
schedule for how each facility should move to minimize the
maximum time any person needs to travel for their vaccine.

There are also many practical considerations for vaccine
distribution that should also be modeled. For instance, some
potentially-adversarially inserted clients may ask to be served
at a location very far from everyone else. Since our goal is to
maximize accessibility, we can regard these points as outliers
and ignore them when choosing facility locations. Another
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practical consideration is that different people travel at dif-
ferent speeds (e.g., some people can drive but others need to
bike or use public transit) so assuming the same metric for
everyone leads to unfairness. A way to counteract this is to
use a weighted objective; by increasing the weight of a client,
we can increase their priority and reduce their service dis-
tance. We call these two variants Dynamic Robust k-Supplier
and Dynamic Priority k-Supplier, respectively, and defer the
formal definitions and their algorithms to the Appendix.

3 Related Work
Due to its broad applications in a number of domains, there
has been much work on various facility location-type prob-
lems over the years. Facility-location-type optimization prob-
lems have also been studied in diverse contexts in the agents
community: see [Kiekintveld et al., 2009; Fang et al., 2015;
Chen et al., 2022; Wada et al., 2018; Moujahed et al., 2006]
and the references therein. The problem considered in our
paper is a generalization of the k-center problem for which
there exists simple 2-approximation algorithms [Hochbaum
and Shmoys, 1985; Gonzalez, 1985] that are best-possible
unless P=NP [Hochbaum and Shmoys, 1986]. Many general-
izations of k-center have been studied: e.g., fair and stochas-
tic versions [Kleindessner et al., 2019; Brubach et al., 2020;
Chakrabarti et al., 2022; Jia et al., 2022; Anthony et al., 2010;
Huang and Li, 2017], but the work most closely related to
ours is that of [Deng et al., 2022] which introduced two dy-
namic clustering problems including the Dynamic k-Supplier
problem that we study. They give a 3-approximation algo-
rithm when T = 2 and show that the problem is NP-Hard to
approximate to any factor when T ≥ 3. Unfortunately, they
were unable to give any algorithms when T ≥ 3: our work is
the first set of positive results in this more interesting regime
where we give two bi-criteria approximation algorithms for
the problem.

More broadly, there has been much recent and concurrent
work on using facility location problems for improved vac-
cine distribution due to the pandemic. For example, [Bert-
simas et al., 2022; Bravo et al., 2022; Shukla et al., 2022b;
Rader et al., 2021; Roy et al., 2021; Raghavan et al., 2019;
Shukla et al., 2022a; Ou et al., 2022; Nair et al., 2022] used
various facility location models to study how different poli-
cies/interventions will effect the pandemic via extensive large
scale simulations. On the more theoretical side, [Li et al.,
2022] introduce a facility location problem which explicitly
models the mobility of the clients by representing them as the
set of points in the metric space they travel to during a day
and develop two approximation algorithms for it. Our model
is more realistic for vaccine distribution since we don’t need
to know each client’s entire daily travel information; as a re-
sult, it can be more easily implemented. Most closely related
is the work of [Mehrab et al., 2022] which studied our current
problem from a practical perspective. They give data-driven
heuristics for the problem using real-time mobility data of the
clients in order to decide the placement of the mobile vacci-
nation sites. Overall, our work is largely complementary to
the current literature, tackling a new theoretical problem mo-
tivated by vaccine distribution.

4 Algorithm via Set Cover
In this section, we give our bicriteria algorithm that violates
the budget constraint by a factor of Hn =

∑n
i=1

1
i ≤ lnn+1,

where n is the number of clients.
As in most k-supplier algorithms, we can assume (without

loss of generality, via bisection search) that we know the opti-
mal radius R∗ and we want to choose k facilities at each time
step to “cover” every client using the balls of radius R∗. In-
stead of fixing our budget k and trying to minimize the radius
R, we consider the reverse problem where we fix the radius
at R∗ and minimize the number of facilities we need to place
in order to cover every client. The primary observation is
that this problem can be formulated as a Set Cover problem.
The universe is the set of clients and each possible path a fa-
cility can take throughout the T time steps represents a set,
where the set covers the clients which are within radius R∗ of
the locations in the path. We know by definition of R∗ that
the k paths/sets suffice to cover everyone. Since there exists
a greedy Hn-approximation algorithm for Set Cover (where
Hn =

∑n
i=1

1
i ≤ lnn+ 1 is the nth harmonic number), this

is an algorithm that outputs at most k ·Hn facilities such that
each client needs to travel at most R∗.

We will now formalize the above intuition; we first define
the Set Cover instance for a given radius R. Let a path p be
represented by a sequence of T facilities (p1 . . . pT ), where
each pt ∈ F t; we say a path p is feasible if d(pt, pt+1) ≤M
for each t ∈ [T − 1]. For each facility i ∈ Ft, let BtR(i) =
{j ∈ Ct : d(i, j) ≤ R} denote the ball of clients within ra-
dius R of i; then the set of clients a path p covers is exactly
BR(p) =

⋃
t∈[T ] BtR(pt). Given these definitions, our set sys-

tem SR will have a set BR(p) ⊆ C for each feasible path p
and the goal is to choose the fewest sets/paths to cover the
entire universe U := C. Now that the Set Cover instance has
been formalized, we give our algorithm in Algorithm 1.

Algorithm 1 COVER

1: Binary Search R on {d(i, j) : i ∈ F t, j ∈ Ct, t ∈ [T ]}:
2: Use R to create the Set Cover instance (U ,SR).
3: Let U0 ← U , SOLR = ∅, and i← 0.
4: while Ui ̸= ∅ and i < k ·Hn do
5: Add set Si = argmaxS∈SR

|Si ∩ Ui| to SOLR.
6: Ui+1 ← Ui − Si, i← i+ 1
7: end while
8: if Ui ̸= ∅, increase R else, decrease R.
9: Output SOLR for minimum R such that SOLR covers C.

Efficient implementation. Note that it isn’t immediately obvi-
ous that Algorithm 1 runs in polynomial-time since the num-
ber of possible paths (and thus the number of sets) can be
exponential in m. In particular, the naive implementation of
the greedy approximation algorithm has exponential run-time
since it’s not obvious how to choose the set Si ∈ SR which
covers the most additional elements (see line 5). We show
that due to the structure of the set system, the greedy algo-
rithm can still be implemented in polynomial time using a
dynamic programming approach.

As mentioned above, we have a set system induced by
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paths and our goal is to choose the path which covers the
most elements. Since there are exponentially many paths, our
set system of paths is not explicitly given to us. Instead, we
are given the facility locations F t at each timestep and the
movement constraint which implicitly defines the set system.
We also have, for each facility location i, the corresponding
set of clients which are within radius R of the location at time
t, denoted BtR(i). Using this setup, we can now explain our
dynamic programming approach.

Let A[t, i] be the dynamic programming “matrix” indexed
by a timestep t ∈ [T ] and a facility location i ∈ F t which
will store the maximum number of clients/elements a partial
path p[: t] which uses location i ∈ F t can cover. Note that it
is easy to change the algorithm so that it also stores the par-
tial path which maximizes the coverage, but we omit this for
cleaner presentation. To calculate A[t, i], let Bt

M (i) denote
the set of facilities in timestep t − 1 which can reach i (i.e.,
Bt

M (i) = {j ∈ F t−1 : d(i, j) ≤M}). Since we only need to
consider locations in Bt

M (i) for facility location i ∈ F t, we
can calculate

A[t, i] = |Bt
R(i)|+maxj∈Bt

M (i) A[t− 1, j] (1)

with A[1, i] = |B1
R(i)| as the base case. If we use this dy-

namic programming algorithm to implement line 5 of Algo-
rithm 1, we have the following:
Theorem 4.1. Algorithm 1 is a polynomial-time approxi-
mation algorithm which obtains the optimal service cost R∗

while using at most k ·Hn facilities.
Remark 4.2. In practice, it is not realistic to violate the bud-
get constraint k by a factor of Hn. Fortunately, the budget
violation comes from the rare worst case scenario when run-
ning the greedy set cover algorithm (see line 5 of Algorithm
1). In practice, researchers have observed that greedy set
cover often obtains near-optimal solutions (see [Lan et al.,
2007]). Thus, we can change line 5 of Algorithm 1 to instead
require i < k. The resulting algorithm no longer violates the
budget k but still serves as a high quality heuristic for the
problem. We will use this heuristic in our experiments.

5 Algorithm via Network Flow
We now provide another algorithm for Dynamic k-Supplier
which obtains a constant approximation to the service cost
but violates the movement constraint by a constant factor; in
contrast to Algorithm 1, the number of facilities k is not vio-
lated. The technique generalizes the one used in [Deng et al.,
2022] by leveraging a density assumption on the candidate fa-
cility location to provide a constant bicriteria approximation
for the Dynamic k-Supplier Problem when T ≥ 3.

The outline of our algorithm is as follows. We binary
search for the optimal radius R. Assuming we have guessed
R correctly, we solve a system of linear constraints and ob-
tain an optimal fractional solution to the problem. It remains
to round the fractional solution into an integral one. To do
this, we use known filtering techniques to aggregate the frac-
tional facilities into balls of radius R and reduce our problem
to rounding a fractional network flow while preserving some
constraints. By rounding the fractional flow to an integral
one, we obtain an integral approximate solution.

5.1 Linear Constraints
Assuming we know the optimal radius R, we construct an
integer program as follows. For each timestep t ∈ [T ] and
facility i ∈ Ft, let yi,t ∈ {0, 1} represent whether facility i is
in the solution at time t. In addition, for each timestep t ∈ [T ]
and each pair i ∈ F t and j ∈ Ct, let xt

i,j ∈ {0, 1} represent
whether j is served by i or not at time t. Let Btj ⊆ F t be
the set of facilities at time t that is within distance R from
client j ∈ Ct. Finally, for each t ∈ [T − 1] and pairs i1 ∈ F t

and i2 ∈ F t+1, let zti1,i2 ∈ {0, 1} represent if facility i1 will
move to i2 from time t to t + 1. For simplicity of notation,
let Et ⊆ F t × F t+1 denote the set of possible facility move-
ments at each timestep t ∈ [T − 1] (i.e., let Et contain all
pairs (i1, i2) ∈ F t × F t+1 such that d(i1, i2) > M ). Then,
consider the following constraints.∑

i∈Ft yti = k t ∈ [T ] (2)∑
i∈Bt

j
xt
i,j = 1 t ∈ [T ], j ∈ Ct (3)

xt
i,j ≤ yti t ∈ [T ], i ∈ F t, j ∈ Ct (4)∑
i2
zti1,i2 = yti1 i1 ∈ F t, t ∈ [T − 1] (5)∑

i1
zti1,i2 = yt+1

i2
i2 ∈ F t+1, t ∈ [T − 1] (6)

zti1,i2 = 0 (i1, i2) ∈ E t, t ∈ [T − 1] (7)

The first constraint ensures only k facilities are chosen at
each timestep. Constraint 3 forces every client is serviced by
some facility within distance R. Constraint 4 relates the x
and y variables ensuring that client j can be serviced by fa-
cility i only if facility i is built. Constraint 5 and 6 forces the
k facilities between consecutive timesteps to form a match-
ing, representing movement. Meanwhile, the last constraint
ensures that no facility can move to another one that is farther
than distance M . Observe that if R is guessed correctly, then
the polytope formed by the above constraints is non-empty.

5.2 Filtering
From the previous observation, let us assume that we have
correctly guessed R and have a feasible fractional solution to
Constraints 2 - 7. For each timestep t, we use the following
filtering technique to aggregate facilities and clients into balls
of radius R. Formally, for each timestep t, we partition a
subset of the facilities with non-zero y values into at most k
sets F t

1 , F
t
2 , ...F

t
kt

such that they satisfy:∑
i∈F t

l
yti ≥ 1 ∀1 ≤ l ≤ kt (8)

diam(F t
l ) ≤ 2R ∀1 ≤ l ≤ kt (9)

Here, diam(S) is the diameter of a set, defined as
max{d(i1, i2) : i1, i2 ∈ S}. We also partition the clients
into disjoint sets Ct

l for t ≤ T and 1 ≤ l ≤ kt such that:

d(i, j) ≤ 3R ∀i ∈ F t
l , j ∈ Ct

l , 1 ≤ l ≤ kt, t ≤ T (10)

These constraints ensure that every client is close to some ball
of facilities after filtering. We obtain these partitions using a
standard subroutine, which we detail in the Appendix.
Lemma 5.1. For each timestep t ∈ [T ], we can produce sets
F t
l and Ct

l satisfying Constraints 8 - 10.
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Figure 2: The construction of graph G′. Each timestep, represented
by the boxes, contains layers of vertices where flow is required to
go from left to right. Each set F t

i , is represented by an oval. Any
facility hat does not belong to any sets F t

i is found at the bottom of
the boxes. Note that edges between timesteps connects all and only
those facilities that are within distance M of each other.

5.3 Flow Rounding
Given these filtered facilities F t

l , we have a good approxima-
tion if we place at least one facility in each set F t

l by Con-
straint 10. We can accomplish this by working with an auxil-
iary graph G′, defined as follows (see Figure 2 for an illustra-
tion). For each timestep t ∈ [T ] and each facility i ∈ F t

l ,
create a second copy of the facility called i′ ∈ F t′

l . Let
q = ⌈R/M⌉. Add an edge ii′ for each i ∈ F t

l if and only
if t is not a multiple of q. For each t that is a multiple of q, for
each set F t

l , create a vertex vtl and connect it to all facilities in
that set, including its copies. Thus far, for each timestep, we
should have a collection of matchings (when t is not a multi-
ple of q) or disjoint stars where the leafs are facilities and its
copies, and the centers indicate which set they belong to. We
then direct the edges from the original facilities to its copy
(either directly or via the centers), creating two/three layers
for each timestep. We connect the layers by adding an edge
from i′1 ∈ F t′

l1
to i2 ∈ F t+1

l2
if d(i1, i2) ≤ M . For every fa-

cility i ∈ F t that is not in any set F t
l , we add a vertex i and a

copy i′ along with an edge ii′. We similarly connect i to any
copies of facilities i′1 in time t− 1 if they are within distance
M . Lastly, we connect a source node to all facilities in the
first layer and a sink to all facilities in the last layer.

Given the auxiliary graph G′, we can produce an integral
k-flow through G′ such that every vertex corresponding to a
set of facilities F t

l has at least one unit of flow through it by
rounding the fractional solution for Constraints 2 – 7 (see Ap-
pendix for more details). Since the k-flow is integral, this is
equivalent to having k-paths where each path goes through
each layer of G′ by visiting three nodes it1, v

t
l , i

t′

2 . Naively,
we would like to use these k-paths as our solution but it1 may
not be the same center as it2, so we need to be more careful
when choosing locations for a particular time t. Our process,
along with the entire network flow rounding algorithm, is de-
scribed in Algorithm 2 and its guarantees are given in Lemma
5.2. For technical reasons, we require a density assumption
on the set of facility locations (see Appendix for precise defi-
nition). In practice, we observe that this assumption is easily
satisfied and only affects the approximation by a small con-
stant factor. Additional details of the practical implications of

Algorithm 2 Network-Flow Algorithm

Require: An instance of Dynamic k-Supplier Problem
Ensure: A (9, 3)-approximate solution using k facilities.

1: Binary search through pairwise distances for the mini-
mum R giving a feasible solution to Constraints 2 – 7

2: Apply the filtering algorithm (Lemma 5.1) on the feasible
solution to obtain sets F t

l and Ct
l , t ∈ [T ].

3: Construct auxiliary graph G′ as described previously, and
obtain an integral k-flow solution to G′ with at least one
unit of flow going through each ball F t

l .
4: For each flow-path P , when t is a multiple of q, let it be

the first vertex the path visits at time t
5: For each aq (a ∈ N), find shortest route iaq to i(a+1)q

and subdivide the route into q equal segments, forming
q − 1 intermediate locations, paq+1, paq+2, ..., paq+q−1

6: Let it ∈ F t be the closest facility location to the inter-
mediate location pt for aq < t < (a+ 1)q

7: return the facility locations it1, i
t

the assumption can be found in the Appendix.

Theorem 5.2. For the Dynamic k-Supplier Problem, Algo-
rithm 2 provides a (9, 3)-approximate solution, meaning the
radius is at most 9 ·OPT but requires up to 3 ·M movement.

6 Experiments

Activity Residential Measured
Total Clients Locations Locations Diameter (km)

Charlottesville City 33156 5660 10038 8.12
Albemarle County 74253 9619 32981 61.62

Table 1: Network Information

Experimental Setup: We run experiments on synthetic
mobility data for a city and county in Virginia. The dataset
was constructed from the 2019 U.S. population pipeline (see
[Chen et al., 2022; Machi et al., 2021] for details) and tracks
the week-long activity of residents. Each resident has a record
containing a sequence of activities, where each activity is de-
scribed by duration, type, and location in the municipality.
An overview of each municipality is given in Table 1. We set
all non-residential locations within each municipality as po-
tential facility locations. Motivated by the vaccination sched-
ule and organization for COVID-19, we spread the vaccina-
tion process over a month, with a randomly selected subset of
clients to be vaccinated on each day. Since the dataset con-
tains weekly mobility patterns, we extract a day of the week
and examine the hours of 6am-8pm for a total of T = 14
hour-long timesteps. For each individual in the selected day,
we randomly select a visited location and the corresponding
hour of the visit for them to be vaccinated. This random sam-
pling and selection process mimics how individuals sign up
for vaccination timeslots during the early stages of vaccine
administration and allows individuals to indicate locations
from which they would like to be serviced. This forms the de-
mand input of our problem. We conduct all our experiments
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on 10 randomly generated instances of the demand input and
show the 95% confidence interval for each result.

Baselines: We compare the performance of Algorithm 1
(COVER) and Algorithm 2 (FLOW) with that of two baselines:

• Static k-supplier (STATIC) assumes the facilities can-
not move and thus attempts to cover all clients across all
timesteps in one shot. The solution is obtained by run-
ning the standard k-supplier algorithm. Our goal is to
evaluate how much improvement we obtain by allowing
movement in our new model for vaccine distribution.

• Iterative k-supplier (ITERATIVE) first chooses a set of
locations for the first timestep via a standard k-supplier
algorithm. For each subsequent timestep, the algorithm
chooses k new facility locations by solving a k-supplier
problem for the new timestep, with the additional con-
straint that each facility can move at most M units away.
We compare with this baseline since it is the natural
greedy heuristic one would use when tackling the Dy-
namic k-Supplier Problem.

The formal definitions of the baseline heuristics and the
details of our parameter settings are given in the Appendix.
There, we also explore a heuristic for capacitated Dynamic
k-Supplier, where each facility can only serve L people.

6.1 Budget and Objective Tradeoff
Depending on the severity of a disease and the demand for
vaccines, policymakers may wish to adjust the number of vac-
cination sites to deploy. While an increase in the number of
vaccination sites decreases the objective coverage radius, the
resulting decrease may not be worth the incurred economic
and labor cost. Therefore, it is important to explore the trade-
off between the objective and the budget. This experiment
varies the budget k from 3− 10 in Charlottesville and 6− 20
for Albermarle, measuring the coverage radius for each of the
solutions. As we see in Figure 3, both ITERATIVE and FLOW
perform similarly to the static k-supplier algorithm, illustrat-
ing that it is not trivial to make good use of the facilities’
mobility. The weak performance of these algorithms empha-
sizes the significance of our COVER algorithm. Additionally,
COVER obtains the smallest 95% confidence interval, demon-
strating robustness across different population instances.

Figure 3: Budget Sensitivity

From the tradeoff curve, we can also provide advice to
policymakers for the question: how many vaccination sites

should be deployed to most effectively use the economic re-
sources. There appears to be three segments to the tradeoff
curve for Charlottesville City: (1) a steep drop in objective
between budget values of 3−5, (2) a moderate slope between
5 − 9, and (3) a smaller change between 9 − 10. We see the
same pattern in Albemarle County for the intervals 6 − 10,
10 − 16, and 16 − 20. As the budget increases beyond each
of these intervals, the marginal decrease in the objective is di-
minished. Therefore, policymakers may benefit from setting
the budget to be equal to the endpoints of these intervals to
maximize budget and investment efficiency. For this reason,
we will be deploying 5 facilities for Charlottesville and 10
facilities for Albemarle in our remaining experiments.

6.2 Percentile Coverage
When considering public health policy and targeting herd im-
munity, policymakers may wish to prioritize vaccine accessi-
bility for the majority of the population at the expense of a
few outliers. Since our objective is defined as the maximum
distance a client needs to travel to reach its nearest vaccina-
tion site, it does not provide insight on how vaccine accessi-
bility varies for our clients. In this experiment, we evaluate
the quality of the vaccination site placements based on the
objective values for percentiles 80− 100 of the clients.

Figure 4: Percentile Coverage

In Figure 4, we observe that COVER generally results in
a lower objective than the other algorithms, with the perfor-
mance gap widening as the percentile increases. The steep in-
crease in objective as percentile increases for FLOW, STATIC,
and ITERATIVE indicates that the vaccination site placement
is inaccessible for a small group of individuals, a signal of
unfairness. In contrast, COVER has a near-linear relationship
between objective and percentile, with no sharp increase near-
ing full coverage. Therefore, COVER not only outperforms
the other algorithms at different levels of percentile coverage,
but also chooses fairer vaccination site placements that results
in few outliers. By utilizing COVER, policymakers can ensure
high vaccine accessibility without compromising on fairness.

6.3 Inequality and Priority
Thus far, we assume that the population is homogeneous in
behavior where they share similar values/utilities on the time
and distance spent on travelling for vaccination. However,
in reality, this assumption is far from the truth. For many
different external reasons, such as limited mobility due to
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age, restrictive access to fast public transportation due to lo-
cation, increased urgency for vaccination due to pre-existing
conditions, and etc., policymakers may wish to assign dif-
ferent priorities to different clients to better represent their
utility of getting a vaccine, resulting in a more fair planning.
This is achieved by assigning different weights, wj , to differ-
ent clients. Then, the objective is to minimize maxj{wjRj}
where Rj is the distance of client j to its closest facility. Note
that higher wj corresponds to higher priority since it forces
Rj to be small in order to keep wjRj small.

In this experiment, we use the household-income data asso-
ciated with each client in the synthetic population and divide
them into three groups: low, medium, and high income, ac-
cording to tax-bracket divisions from [IRS, 2022]. A weight
of 3, 2, 1 are given to the three groups respectively capturing
the idea that due to limited time and/or access to fast trans-
portation, a low-income individual may only wish to travel
one-third of the distance to get their vaccination compared to
a person with high income. Note that these weights can be
easily adjusted to reflect real-life scenarios. We use an exten-
sion of COVER, detailed in the Appendix, for the Dynamic
Priority k-Supplier problem. This experiment compares the
distribution of Rj of different income groups between the un-
weighted and weighted priorities.

Figure 5: Priority Weighted Cover

Figure 5 illustrates that in both municipalities, using
weighted priorities reduces the maximum radius needed to
cover the low-income class, achieving the goal of benefiting
the intended high-priority group. Even though some mem-
bers of the other groups has to travel further in the weighted
case, there is a decrease in the average coverage radius of
each group. This implies that using weighted priorities has
an additional benefit of reducing the overall average distance
travelled by the population, helping the society as a whole.
Thus, policy-makers can take advantage of the weighted pri-
orities to provide targeted aid to those who need it the most.

6.4 Movement Sensitivity
In previous experiments, we set the movement constraint to
M = 5km as a rough approximation of the distance that a
mobile vaccination unit can travel in 10 minutes. However,
policymakers can allocate more time for traveling between
locations if this greatly decreases the amount people need to
travel. Thus here, we explore: to what extent does the move-
ment constraint influence the performance of the algorithms?

Figure 6: Movement Sensitivity: we run COVER and ITERATIVE on
Albemarle for a range of budgets and movement constraints

In Figure 6, we see that even though ITERATIVE utilizes
the mobility of vaccination sites, due to its short-sighted iter-
ative design, the algorithm produces volatile objective values
that do not exhibit strong trends with respect to the movement
constraint. On the other hand, we see that there is a general
decrease in objective as facilities are permitted to travel far-
ther for COVER. However, both low and high values of budget
exhibit relatively weaker movement sensitivity. This is some-
what reasonable since when only a few vaccination facilities
are deployed, the restrictive budget cannot be alleviated by a
relaxation of the movement constraint. Meanwhile, when a
large number of vaccination facilities are deployed, there is
a sufficient number of mobile units such that the movement
constraint does not pose a significant limitation on the overall
objective. Nonetheless, it is clear that the objective is more
sensitive to the number of facilities deployed than the move-
ment constraint. Just by introducing the multi-timestep for-
mulation, we make significant coverage improvements even
with restrictive movement constraints.

7 Conclusion
In our work, we use Dynamic k-Supplier to formulate the
problem of deploying mobile vaccine distribution sites. We
give the first positive results for this problem via two bicri-
teria approximation algorithms. Through our experiments,
we can see that our COVER algorithm substantially improves
upon the standard k-supplier formulation of facility location
in two primary ways: (i) it chooses more effective vaccina-
tion site placements with regards to budget and (ii) the dis-
tance different clients need to travel do not differ significantly,
so the solutions are more fair (on an individual level). Both
properties are essential for policymakers to consider due to
the tradeoff between public health and the cost of vaccination
site deployment. An additional advantage of our model is
that our formulation is much more implementable than pre-
vious facility location models for vaccine distribution (e.g.,
[Li et al., 2022]). In particular, [Li et al., 2022] requires the
location data of each client over the course of an entire day.
In contrast, our algorithms only require the location where
the client wishes to be served, which is the minimal amount
needed to formulate a facility location problem. Due to the
improved performance, fairness, and implementability, our
dynamic formulation of facility location for mobile vaccina-
tion site deployment can greatly benefit public health.
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