
Anticipatory Fictitious Play

Alex Cloud , Albert Wang and Wesley Kerr
Riot Games

kacloud@gmail.com, {alwang, wkerr}@riotgames.com

Abstract
Fictitious play is an algorithm for computing Nash
equilibria of matrix games. Recently, machine
learning variants of fictitious play have been suc-
cessfully applied to complicated real-world games.
This paper presents a simple modification of fic-
titious play which is a strict improvement over the
original: it has the same theoretical worst-case con-
vergence rate, is equally applicable in a machine
learning context, and enjoys superior empirical per-
formance. We conduct an extensive comparison of
our algorithm with fictitious play, proving an op-
timal O(t−1) convergence rate for certain classes
of games, demonstrating superior performance nu-
merically across a variety of games, and concluding
with experiments that extend these algorithms to
the setting of deep multiagent reinforcement learn-
ing.

1 Introduction
Matrix games (also known as normal-form games) are an ab-
stract model for interactions between multiple decision mak-
ers (or players). Fictitious play (FP) [Brown, 1951] is a sim-
ple algorithm for two-player matrix games. In FP, each player
starts by playing an arbitrary strategy, then proceeds itera-
tively by playing the best strategy against the average of what
the other has played so far. In some cases, such as two-player
zero-sum games, the average strategies are guaranteed to con-
verge to a pair of strategies such that neither player has an
incentive to deviate from those strategies, i.e. a Nash equilib-
rium.

Although linear programming can be used to efficiently
compute Nash equilibria of matrix games [Adler, 2013;
Shoham and Leyton-Brown, 2008], fictitious play remains a
topic of interest for at least two reasons. First, it serves as
a model for how humans might arrive at Nash equilibria in
real-world interactions [Luce and Raiffa, 1989; Brown, 1951;
Conlisk, 1993a]. Second, FP is extensible to real-world
games which are too large and complicated to be represented
as linear programs in practice. Our work is primarily moti-
vated by this second reason.

The initial step towards extending FP to real-world games
was by [Kuhn, 1953], which established the equivalence of

normal-form games (represented by matrices) and extensive-
form games (represented by trees with additional structure).
Loosely speaking, this means that results which apply for
matrix games may also apply to much more complicated
decision-making problems, such as ones that that incorporate
temporal elements or varying amounts of hidden information.

Leveraging this equivalence, [Heinrich et al., 2015] pro-
posed an extension of FP to the extensive-form setting, full-
width extensive-form fictitious play (XFP), and proved that
it converges to a Nash equilibrium in two-player, zero-sum
games. [Heinrich et al., 2015] also proposed Fictitious Self
Play (FSP), a machine learning approximation to XFP. In con-
trast to XFP, which is intractable for real-world games whose
states cannot be enumerated in practice, FSP relies only on
basic operations which can be approximated in a machine
learning setting, like averaging (via supervised learning) and
computing best responses (via reinforcement learning). In
this way, FSP provides a version of fictitious play suitable for
arbitrarily complex two-player, zero-sum games. Not long
after the introduction of FSP, [Lanctot et al., 2017] presented
Policy Space Response Oracles (PSRO), a general frame-
work for fictitious-play-like reinforcement learning (RL) al-
gorithms in two-player, zero-sum games. These ideas were
employed as part of the groundbreaking AlphaStar system
that defeated professional players at StarCraft II [Vinyals et
al., 2019].

We introduce anticipatory fictitious play (AFP), a simple
variant of fictitious play which is also amenable to reinforce-
ment learning. In contrast to FP, where players iteratively
update to exploit an estimate of the opponent’s strategy, play-
ers in AFP update proactively to respond to the strategy that
the opponent would use to exploit them.

We prove that AFP is guaranteed to converge to a Nash
equilibrium in two-player, zero-sum games and establish an
optimal convergence rate for two (narrow) classes of games
that are of particular interest in learning for real world games
[Balduzzi et al., 2019], a class of “cyclic” games and a class
of “transitive” games. Numerical comparisons suggest that in
AFP eventually outperforms FP on virtually any game, and
that its improvement over FP improves as games get larger.
Finally, we propose a reinforcement learning version of AFP
that is implementable as a one-line modification of an RL im-
plementation of FP, such as FSP. These algorithms are com-
pared on two stochastic games.
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1.1 Related Work
Aside from the literature on fictitious play and its extension
to reinforcement learning, there has been substantial work on
“opponent-aware” learning algorithms. These algorithms in-
corporate information about opponent updates and are quite
similar to anticipatory fictitious play.

In the context of evolutionary game theory, [Conlisk,
1993a] proposed an “extrapolation process,” whereby two
players in a repeated game each forecast their opponents’
strategies and respond to those forecasts. Unlike AFP, where
opponent responses are explicitly calculated, the forecasts are
made by linear extrapolation based on the change in the oppo-
nent’s strategy over the last two timesteps. [Conlisk, 1993b]
proposed two types of “defensive adaptation,” which are quite
similar in spirit to AFP but differ in some important details;
most importantly, while they consider the opponent’s empiri-
cal payoffs at each step, they do not respond directly to what
the opponent is likely to play given those payoffs.

[Shamma and Arslan, 2005] proposed derivative action
fictitious play, a variant of fictitious play in the continous
time setting in which a best response to a forecasted strat-
egy is played, like in [Conlisk, 1993a]. The algorithm uses
a derivative-based forecast that is analogous to the discrete-
time anticipated response of AFP. However, their conver-
gence results rely on a fixed, positive entropy bonus that in-
centivizes players to play more randomly, and they do not
consider the discrete-time case.

[Zhang and Lesser, 2010] proposed Infinitesimal Gradient
Ascent with Policy Prediction, in which two policy gradient
learning algorithms continuously train against a forecast of
the other’s policy. Their algorithm represents the core idea
of AFP, albeit implemented in a different setting. However,
their proof of convergence is limited to 2x2 games. [Foerster
et al., 2018] and [Letcher et al., 2018] take this idea further,
modifying the objective of a reinforcement learning agent so
that it accounts for how changes in the agent will change the
anticipated learning of the other agents. This line of research
is oriented more towards equilibrium finding in general-sum
games (e.g. social dilemmas), and less on efficient estimation
of equilibria in strictly competitive two-player environments.

2 Preliminaries
A (finite) two-player, zero-sum game (2p0s game) is rep-
resented by a matrix A ∈ Rm×n, so that when player 1
plays i and player 2 plays j, the players observe payoffs
(Ai,j ,−Ai,j) respectively. Let ∆k ⊂ Rk be the set of prob-
ability vectors representing distributions over {1, . . . , k} ele-
ments. Then a strategy for player 1 is an element x ∈ ∆m

and similarly, a strategy for player 2 is an element y ∈ ∆n.
A Nash equilibrium in a 2p0s game A is a pair of strategies

(x∗, y∗) such that each strategy is optimal against the other,
i.e.,

x∗ ∈ argmax
x∈∆m

x⊺Ay∗ and y∗ ∈ argmin
y∈∆n

(x∗)⊺Ay.

The Nash equilibrium represents a pair of strategies that are
“stable” in the sense that no player can earn a higher payoff
by changing their strategy. At least one Nash equilibrium is
guaranteed to exist in any finite game [Nash Jr, 1950].

Nash equilibria in 2p0s games enjoy a nice property not
shared by Nash equilibria in general: in 2p0s games, if
(x1, y1) and (x2, y2) are Nash equilibria, then (x2, y1) is a
Nash equilibrium. Consequently, in a 2p0s game, it is natu-
ral to define a Nash strategy to be one that occurs as part of
some Nash equilibrium. Note that the aforementioned prop-
erty does not hold in general, so typically it is only valid to
describe collections of strategies (one per player) as equilib-
ria.

A solution to a 2p0s game A is a pair of strategies (x∗, y∗)
such that

min
y∈∆n

(x∗)⊺Ay = max
x∈∆m

x⊺Ay∗.

We say v∗ = (x∗)⊺Ay∗, which is unique, the value of the
game. In 2p0s games, Nash equilibria are equivalent to so-
lutions [Shoham and Leyton-Brown, 2008], which is why we
use the same notation. Finally, the exploitability of a strat-
egy is the difference between the value of the game and the
worst-case payoff of that strategy. So the exploitability of
x ∈ ∆m is v∗ −minx⊺A, and the exploitability of y ∈ ∆n

is maxAy − v∗.

2.1 Fictitious Play
Let e1, e2, . . . denote the standard basis vectors in Rm or Rn.
Let BRk

A be the best response operator for player k, so that

(∀y ∈ ∆n) BR1
A(y) = {ei ∈ Rm : i ∈ argmaxAy};

(∀x ∈ ∆m) BR2
A(x) = {ej ∈ Rn : j ∈ argminx⊺A}.

Fictitious play is given by the following process. Let x1 =
x1 = ei and y1 = y1 = ej be initial strategies for some i, j.
For each t ∈ N, let

xt+1 ∈ BR1
A(yt); yt+1 ∈ BR2

A(xt);

xt+1 =
1

t+ 1

t+1∑
k=1

xk; yt+1 =
1

t+ 1

t+1∑
k=1

yk.

In other words, at each timestep t, each player calculates the
strategy that is the best response to their opponent’s average
strategy so far. [Robinson, 1951] proved that the pair of aver-
age strategies (xt, yt) converges to a solution of the game by
showing that the exploitability of both strategies converge to
zero.

Theorem 1. (Robinson, 1951) If {(xt, yt)}t∈N is a FP pro-
cess for a 2p0s game with payoff matrix A ∈ Rm×n, then

lim
t→∞

minx⊺
tA = lim

t→∞
maxAyt = v∗,

where v∗ is the value of the game. Furthermore, a bound on
the rate of convergence is given by

maxAyt −minx⊺
tA = O(t−1/(m+n−2))

where a = maxi,j Ai,j .1

1Robinson did not explicitly state the rate, but it follows directly
from her proof, as noted in [Daskalakis and Pan, 2014] and expli-
cated in the supplementary material, Section B.1.
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3 Anticipatory Fictitious Play
Although FP converges to a Nash equilibrium in 2p0s games,
it may take an indirect path. For example, in Rock Paper
Scissors (RPS) with best response tiebreaking towards the
minimum strategy index, the sequence of average strategies
{x1, x2, . . . } orbits the Nash equilibrium, slowly spiraling in
with decreasing radius, as shown on the left in Figure 1. This
tiebreaking scheme is not special; under random tiebreaking,
the path traced by FP is qualitatively the same, resulting in
slow convergence with high probability, as shown in Figure
2.

Figure 1: A visualization of the first 50 steps of FP
(xFP

1 , xFP
2 , . . . , xFP

50) and first 25 steps of AFP (xAFP
1 , xAFP

2 , . . . , xAFP
25 )

on Rock Paper Scissors. This corresponds to an equal amount of
computation per algorithm (50 best responses). Ties between best
response strategies were broken according to the ordering ‘Rock,’
‘Paper,’ ‘Scissors.’ The Nash equilibrium is marked by a star. The
shading indicates the exploitability of the strategy at that point, with
darker colors representing greater exploitability.

As illustrated by the RPS example, FP may spend many
steps playing the same strategy while moving away from
equilibrium, thus slowing its rate of convergence. Motivated
by this observation, we propose anticipatory fictitious play
(AFP), a version of fictitious play that “anticipates” the best
response an adversary might play against the current strategy,
and then plays the best response to an average of that and the
adversary’s current average strategy. (Simply responding di-
rectly to the opponent’s response does not work; see the sup-
plementary material, Section A.) Alternatively, one can think
of AFP as a version of FP that “forgets” every other best re-
sponse it calculates.

AFP is given by the following process. For some i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}, let x1 = x1 = ei and
y1 = y1 = ej be initial strategies for each player. For each
t ∈ N, define

x′
t+1 ∈ BR1

A(yt); y′t+1 ∈ BR2
A(xt);

x′
t+1 = t

t+1xt +
1

t+1x
′
t+1; y′t+1 = t

t+1yt +
1

t+1y
′
t+1;

xt+1 ∈ BR1
A(y

′
t+1); yt+1 ∈ BR2

A(x
′
t+1);

xt+1 =
1

t+ 1

t+1∑
k=1

xk; yt+1 =
1

t+ 1

t+1∑
k=1

yk. (1)

Here, x′
t+1 and y′t+1 are the best response to the opponent’s

average strategy. They are the strategies that FP would have

Figure 2: Comparison of FP and AFP performance (minx⊺
tA) on

RPS with random tiebreaking. The highlighted region depicts the
10th and 90th percentiles across 10,000 runs. All variation is due to
randomly sampled tiebreaking. The value of the game is v∗ = 0.

played at the current timestep. In AFP, each player “antic-
ipates” this attack and defends against it by calculating the
opponent’s average strategy that include this attack (x′

t and
y′t), and then playing the best response to the anticipated av-
erage strategy of the opponent.

In Figure 1, we see the effect of anticipation geometrically:
AFP “cuts corners,” limiting the extent to which it overshoots
its target. In contrast, FP aggressively overshoots, spending
increasingly many steps playing strategies that take it fur-
ther from its goal. The effect on algorithm performance is
pronounced, with AFP hovering near equilibrium while FP
slowly winds its way there.

Of course, RPS is a very specific example. The rest of
the paper is dedicated to understanding AFP’s performance in
greater generality. We begin by proving that AFP converges
to a Nash equilibrium.

Proposition 1. If {(xt, yt)} is an AFP process for a 2p0s
game with payoff matrix A ∈ Rm×n, the conclusion of The-
orem 1 holds for this process. Namely, AFP converges to a
Nash equilibrium, and it converges no slower than the rate
that bounds FP.

Proof. (Idea) Generalize the original proof of Theorem 1. We
work with accumulating payoff vectors U(t) = tA⊺xt and
V (t) = tAyt. In the original proof, a player 1 strategy index
i ∈ {1, . . . ,m} is called eligible at time t if i ∈ argmaxV (t)
(similarly for player 2). We replace eligibility with the notion
of E-eligibility, satisfied by an index i ∈ argmax[V (t)+E],
for any E ∈ Rm with ∥E∥∞ < maxi,j |Ai,j |. Essentially,
an index is E-eligible if it corresponds to a best response to
a perturbation of the opponent’s history yt. Treating the in-
between strategies in AFP, x′

t and y′t, as perturbations of xt

and yt, it follows that AFP satisfies the conditions for the
generalized result. A complete proof is given in the supple-
mentary material, Section B.
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4 Application to Normal-Form Games
Proposition 1 establishes that AFP converges and that AFP’s
worst-case convergence rate satisfies the same bound as FP’s,
where the worst-case is with respect to games and tiebreak-
ing rules. The next proposition shows that for two classes of
games of interest, AFP not only outperforms FP, but attains
an optimal rate. In both classes, our proofs will reveal that
AFP succeeds where FP fails because AFP avoids playing re-
peated strategies. The results hold for general applications of
FP and AFP rather than relying on specific tiebreaking rules.

The classes of games that we analyze are intended to serve
as abstract models of two fundamental aspects of real-world
games: transitivity (akin to “skillfullness:” some ways of act-
ing are strictly better than others) and nontransitivity (most
notably, in the form of strategy cycles like Rock < Paper <
Scissors < Rock). Learning algorithms for real-world games
must reliably improve along the transitive dimension while
accounting for the existence of strategy cycles; see [Balduzzi
et al., 2019] for further discussion.

For each integer n ≥ 3, define payoff matrices Cn and Tn

by

Cn
i,j =


1 if i = j + 1 mod n;

−1 if i = j − 1 mod n;

0 otherwise;
and

Tn
i,j =


(n− i+ 2)/n if i = j + 1;

−(n− i+ 2)/n if i = j − 1;

0 otherwise,

for i, j ∈ {1, . . . , n}. The game given by Cn is a purely
cyclic game: each strategy beats the one before it and loses
to the one after it; C3 is Rock Paper Scissors. For each Cn, a
Nash strategy is [n−1, . . . , n−1]⊺. The game given by Tn

could be considered “transitive:” each strategy is in some
sense better than the last, and [0, . . . , 0, 1]⊺ is a Nash strat-
egy. The payoffs are chosen so that each strategy i is the
unique best response to i− 1, so that an algorithm that learns
by playing best responses will progress one strategy at a time
rather than skipping to directly to strategy n.2

The following proposition establishes a convergence rate
of O(t−1) for AFP applied to Cn and Tn. This rate is op-
timal within the class of time-averaging algorithms, because
the rate at which an average changes is t−1. Note: we say a
random variable Yt = Ωp(g(t)) if, for any ϵ > 0, there exists
c > 0 such that P [Yt < cg(t)] < ϵ for all t.
Proposition 2. FP and AFP applied symmetrically to Cn

and Tn obtain the rates given in Table 1. In particular, if
{xt, xt}t∈N is an FP or AFP process for a 2p0s game with
payoff matrix G ∈ {Cn, Tn} with tiebreaking as indicated,
then maxGxt = R(t). Tiebreaking refers to the choice of
xt+1 ∈ argmaxBR1

G(xt) when there are multiple maximiz-
ers. The “random” tiebreaking chooses between tied strate-
gies independently and uniformly at random. For entries
marked with “arbitrary” tiebreaking, the convergence rate
holds no matter how tiebreaks are chosen.

2Note that the definition of transitivity in [Balduzzi et al., 2019]
is much stronger. Using it here would result in a game with a single
dominant strategy, with nothing interesting to learn.

Algorithm Game G Tiebreaking Rate R(t) Caveats

FP Cn random Ωp(t
−1/2)

AFP Cn arbitrary O(t−1) n = 3, 4
FP Tn arbitrary Ω(t−1/2) t < t∗(n)

AFP Tn arbitrary O(t−1)

Table 1: Convergence rates for FP and AFP on Cn and Tn.

Proof. Full proofs of all cases are provided in the supplemen-
tary material, Section C.

The proofs of Proposition 2 establish a theme: FP can be
slow because it spends increasingly large amounts of time
progressing between strategies (playing xt = xt+1 = · · · =
xt+k with k increasing as t increases), whereas AFP avoids
this. (Return to Figure 1 for a visual example.)

Some further comments on the results: we only obtain the
O(t−1) rate for AFP applied to Cn in the n = 3, 4 case. We
conjecture that: (i) for a specific tiebreaking rule, AFP has
the same worst-case rate as FP but with a better constant, (ii)
under random tiebreaking, AFP is Op(t

−1) for all n. This is
reflected in numerical simulations for large n, as shown in the
supplementary material, Section D.

Our results are noteworthy for their lack of dependence on
tiebreaking: worst-case analyses of FP typically rely on spe-
cific tiebreaking rules; see [Daskalakis and Pan, 2014], for
example. As for the “t < t∗(n)” caveat for FP applied to
Tn, this is an unremarkable consequence of analyzing a game
with a pure strategy equilibrium (all probability assigned to a
single strategy). We write t∗(n) to indicate the first index
at which FP plays en. Both FP and AFP will play en for-
ever some finite number of steps after they play it for the first
time, thus attaining a t−1 rate as the average strategy “catches
up” to en. Our result shows that until this point, FP is slow,
whereas AFP is always fast. As before, AFP’s superior per-
formance is reflected in numerical simulations, as shown in
the supplementary material, Section D.

4.1 Numerical Results
In order to compare FP and AFP more generally, we sample
large numbers of random payoff matrices and compute ag-
gregate statistics across them. Matrix entries are sampled as
independent, identically distributed, standard Gaussian vari-
ables (note that the shift- and scale-invariance of matrix game
equilibria implies that the choice of mean and variance is in-
consequential). Since FP and AFP are so similar, and AFP
computes two best responses per timestep, it is natural to
wonder: is AFP’s superior performance just an artifact of us-
ing more computation per timestep? So, in order to make a
fair comparison, we compare the algorithms by the number of
best responses calculated instead of the number of timesteps
(algorithm iterations). Using the worst-case payoff as the
measure of performance, we compare FP and AFP based on
the number of responses computed and based on matrix size
in Figures 3 and 4.

The result is that AFP is clearly better on both counts. Al-
though FP is better for a substantial proportion of 30 × 30
games at very early timesteps t, AFP quickly outpaces FP,
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Figure 3: For 1,000 randomly sampled (30,30) matrices A, the pro-
portion of the time that min (xAFP

r/2)
⊺A ≥ min (xFP

r )⊺A for r =

2, 4 . . . , 200. A 95% Agresti-Coull confidence interval [Agresti and
Coull, 1998] for the true proportion is highlighted. Note that after
only about six best responses, AFP is better half the time, and by
130, AFP is better than FP essentially 100% of the time.

Figure 4: Average performance of FP vs. AFP at the 100th best
response (timestep 100 for FP, timestep 50 for AFP) as matrix size
is varied. All matrices are square. Highlighted regions show the
10th and 90th percentiles.

eventually across each of 1,000 matrices sampled. In terms
of matrix size, FP and AFP appear to have equivalent average
performance for small matrices, but quickly grow separated
as matrix size grows, with AFP likely to be much better.

5 Application to Reinforcement Learning
We apply reinforcement learning (RL) [Sutton and Barto,
2018] versions of FP and AFP in the context of a (two-player,
zero-sum, symmetric) stochastic game [Shapley, 1953], de-
fined by the tuple (S,O,X ,A,P,R, p0), where S is the set
of possible states of the environment, O is the set of possible
observations received by an agent, X : S → O × O gives
the observations for each player based on the current state, A
is the set of available actions, P : S × A × A → ∆(S) de-
fines the transition dynamics for the environment given each
player’s action, R : S → R × R defines the reward for both

Normal-form game Extensive-form game

Strategy Policy
Payoff Ai,j Expected return Eπi,πj (

∑
t rt)

Best response Approximate best response by RL
Strategy mixture

∑
αixi,∑

αi = 1, αi ≥ 0
At start of episode, sample policy
πi with probability αi. Play entire
episode with πi.

Table 2: The normal-form game analogies used to extend FP and
AFP to reinforcement learning.

players such thatR(st) = (rt,−rt) are the rewards observed
by each player at time t, and p0 ∈ ∆(S) is the initial dis-
tribution of states, such that s0 ∼ p0. Let H be the set of
possible sequences of observations. Then a policy is a map
π : H → ∆(A). An episode is played by iteratively transi-
tioning by the environment according to the actions sampled
from each players’ policies at each state. Players 1 and 2 earn
returns (

∑
t rt,−

∑
t rt). The reinforcement learning algo-

rithms we consider take sequences of observations, actions,
and rewards from both players and use them to incrementally
update policies toward earning greater expected returns. For
background on reinforcement learning, see [Sutton and Barto,
2018]. For details on machine learning approximations to
FP, see [Heinrich et al., 2015]. Table 2 gives a high-level
overview of the relationship.

We use two environments, our own TinyFighter, and Run-
ning With Scissors, from [Vezhnevets et al., 2020].

5.1 Environments
TinyFighter is a minimal version of an arcade-style fighting
game shown in Figure 5a. It features two players with four
possible actions: Move Left, Move Right, Kick, and Do
Nothing. Players are represented by a rectangular body and
when kicking, extend a rectangular leg towards the opponent.

Kicking consists of three phases: Startup, Active, and Re-
covery. Each phase of a kick lasts for a certain number of
frames, and if the Active phase of the kick intersects with any
part of the opponent (body or leg), a hit is registered. When
a hit occurs, the players are pushed back, the opponent takes
damage, and the opponent is stunned (unable to take actions)
for a period of time. In the Startup and Recovery phases, the
leg is extended, and like the body, can be hit by the opponent
if the opponent has a kick in the active phase that intersects
the player. The game is over when a player’s health is reduced
to zero or when time runs out.

Player observations are vectors in R13 and contain infor-
mation about player and opponent state: position, health, an
‘attacking’ indicator, a ‘stunned’ indicator, and how many
frames a player has been in the current action. The observa-
tion also includes the distance between players, time remain-
ing, and the direction of the opponent (left or right of self).
The game is partially observable, so information about the
opponent’s state is hidden from the player for some number
of frames (we use four, and the game runs at 15 frames per
second). This means a strong player must guess about the dis-
tribution of actions the opponent may have taken recently and
to respond to that distribution; playing deterministically will
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(a) TinyFighter, where players
dance back and forth, attempt-
ing to land kicks on each other
in order to reduce the other’s
health from 100 to zero.

(b) Running With Scissors,
a 2D gridworld where play-
ers collect items before tag-
ging each other to earn re-
ward based on the proportion
of items in their inventory.

Figure 5: Screenshots of multiagent RL environments.

allow the opponent to exploit the player and so a stochastic
strategy is required to play well.

Running With Scissors (RWS) is a spatiotemporal envi-
ronment with partial observability with potential for nontran-
sitive relationships between policies. As shown in Figure 5b,
RWS is a 2D gridworld with a few types of entities: two
agents; three types of items: rock, paper, and scissors, which
can be picked up by the agents to add to their inventories; and
impassable walls. In addition to moving around and picking
up items, agents in RWS have a “tag” action, which projects
a cone in front of them for a single frame. If the cone hits
the other agent, the episode ends and each agent receives re-
wards based on the payoff matrix C3 according to the ratios
of each item in their inventory. Agents can only see their own
inventory and a 5 × 5 grid in front of them and can remem-
ber the last four frames they’ve seen, so in order to perform
well they must infer what items the opponent has picked up.
[Vezhnevets et al., 2020] and [Liu et al., 2022] (Appendix
B.1.) feature further discussion of the environment.

5.2 Adapting FP and AFP to Reinforcement
Learning

Neural Population Learning (NeuPL) [Liu et al., 2022] is a
framework for multiagent reinforcement learning wherein a
collection of policies is learned and represented by a single
neural network and all policies train continuously. For our
experiments, we implement FP and AFP within NeuPL, as
shown in Algorithm 1. For reference, we also include a sim-
ple RL version of FP and AFP in the style of PSRO in the
supplementary material, Section F.

In NeuPL-FP/AFP, the opponent sampler O determines the
distributions of opponents that each agent faces and is the
only difference between the FP and AFP implementations.
We have, for each t > 1,

OFP(t) = Uniform({1, 2, 3, . . . , t− 1}), and

OAFP(t) = Uniform({k < t : k odd} ∪ {t− 1}).
These distributions are depicted in Figure 6. Just as each
step of FP involves computing a best response to an aver-
age against all prior strategies, sampling from OFP(t) corre-
sponds to training agent t uniformly against the prior policies;
just as AFP can be thought of “forgetting” every other index,
OAFP(t) trains learner index t uniformly against every odd

Algorithm 1 NeuPL-FP/AFP

1: O ∈ {OFP,OAFP} ▷ Input: FP or AFP opponent
sampler.

2: {Πθ(t) : H → ∆(A)}nt=1 ▷ Input: neural population
net.

3: for batch b = 1, 2, 3, . . . , do
4: B ← {}
5: while per-batch compute budget remains do
6: Tlearner ∼ Uniform({1, . . . , n})
7: Topponent ∼ O(Tlearner)
8: Dlearner ← PLAYEP(Πθ(Tlearner),Πθ(Topponent))
9: B ← B ∪Dlearner

10: end while
11: Πθ ← REINFORCEMENTLEARNINGUPDATE(B)
12: end for

Figure 6: A visual depiction of the distributions of opponents
(“meta-strategies” in PSRO or NeuPL) each learner faces in a popu-
lation learning implementation of FP or AFP. The (i, j) entry is the
probability that, given that agent i is training, it will face agent j in a
particular episode. Dark blue indicates probability 1, white indicates
probability 0.

indexed policy plus the most recent policy. The neural pop-
ulation net Πθ(t) : H → ∆(A) defines a different policy for
each agent index t, and can equivalently be represented as
Πθ(a|s, t).

5.3 Experimental Setup
For the neural population net, we use an actor-critic [Sutton
and Barto, 2018] architecture similar to that used for RWS in
[Liu et al., 2022]: first, a module is used to process environ-
ment observations into a dense representation that is shared
between an actor head and a critic head. The actor takes this
vector, concatenates it with a vector representing the distri-
bution of opponents faced by the currently training agent t
(e.g., [0.5, 0.5, 0, . . . , 0] for agent t = 3 in FP or AFP), then
processes it with a dense MLP with ReLu activations, with
action masking applied prior to a final Softmax layer. The
critic is similar, except an additional input is used: the in-
dex of the opponent sampled at the beginning of this episode,
matching the original implementation.3 For the exact archi-
tectures used, see the supplementary material, Section E. We

3Note that the actor (policy network) does not observe which
opponent it faces, only the distribution over agents it faces; this is
important because otherwise our agent would not learn a best re-
sponse to an average policy as intended in FP and AFP. The reason
for including this information for the critic (value network) is that it
may reduce the variance of the value function estimator.
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use a neural population size of n = 11. Based on matrix
game simulations and preliminary RL experiments, we deter-
mined that AFP performs slightly better in a short time hori-
zon when initialized with two steps of FP, so we do this, as
shown in the final panel of Figure 6. See the supplementary
material, Section D for a figure comparing performance in the
matrix setting.

We implemented NeuPL within a basic self-play reinforce-
ment learning loop by wrapping the base environment (Tiny-
Fighter or RWS) within a lightweight environment that han-
dles NeuPL logic, such as opponent sampling. For reinforce-
ment learning, we use the Asynchronous Proximal Policy Op-
timization (APPO) algorithm [Schulman et al., 2017], a dis-
tributed actor-critic RL algorithm, as implemented in RLLib
[Moritz et al., 2018] with a single GPU learner. Hyperparam-
eter settings are given in the supplementary material, Section
E. We train the entire neural population net (agents 1-11) for
12,500 steps, where a step is roughly 450 minibatch updates
of stochastic gradient descent. This corresponds to about five
days of training. For each of the two environments, we repeat
this procedure independently 10 times for FP and 10 times
for AFP.

5.4 Results
To evaluate exploitability, we made use of the fact that each
FP and AFP neural population are made up of agents trained
to “exploit” the ones that came before them. Specifically,
each agent is trained to approximate a best response to the
average policy returned by the algorithm at the previous
timestep. So, to estimate the exploitability of NeuPL-FP or
NeuPL-AFP at step t ∈ {1, . . . , n−1}, we simply use the av-
erage return earned by agent t+1 against agents {1, . . . , t} to
obtain the within-population exploitability at t. This is a con-
venient metric, but insufficient on its own. In order for it to be
meaningful, the agents in the population must have learned
approximate best responses that are close to actual best re-
sponses; if they have not, it could be that within-population
exploitability is low, not because the average policy approx-
imates a Nash policy but because nothing had been learned
at all. To account for this, we also evaluate the populations
learned using relative population performance [Balduzzi et
al., 2019], which measures the strength of one population of
agents against the other. The purpose of using relative popu-
lation performance is simply to verify that one algorithm did
not produce generally more competent agents than the other.

We paired each of the 10 replicates of FP and AFP and
computed the relative population performance for each. On
TinyFighter, the average was -0.73, with a Z-test-based 90%
confidence interval width of 1.37. On RWS, the average was
4.60, with a Z-test-based 90% confidence interval width of
3.50. We conclude that the agents learned by FP and AFP
are not statistically significantly different in terms of perfor-
mance for TinyFighter, but the agents learned by FP have a
slight, statistically significant advantage in RWS. However,
these differences are small relative to the total obtainable re-
ward in either environment (20 for TinyFighter, roughly 60
for RWS), so we conclude it is reasonable to use within-
population exploitability to compare FP and AFP, as shown
in Figure 7. For consistency with the matrix game simula-

(a) TinyFighter (b) Running With Scissors

Figure 7: Estimated worst-case payoffs for FP and AFP on two
stochastic games. Highlighting indicates a pointwise 90% confi-
dence region.

tion results, we plot worst case payoff, which is simply the
negative of exploitability in this case.

We find that AFP has a significantly better worst-case pay-
off of -7.4 versus 10.6 for FP at the final timestep in Tiny-
Fighter. This corresponds to a noteworthy 16% reduction in
exploitability relative to the total possible reward of 20 that
can be earned in TinyFighter. In RWS, the algorithms have
essentially identical performance. The fact that AFP’s advan-
tage varies widely by environment is not surprising. The ma-
trix game simulations in Figure 3 showed that until over 100
steps of each algorithm, there is some proportion of games
for which FP performs better. Correspondingly, we would ex-
pect that there is a nontrivial proportion of stochastic games
where NeuPL-FP outperforms NeuPL-AFP for small popu-
lation sizes. Although we expect NeuPL will not be able to
support over 100 policies (the original paper used population
size 8), it would be possible to do so within the PSRO frame-
work. This remains a topic for further investigation.

6 Conclusion
We proposed a variant of fictitious play for faster estima-
tion of Nash equilibria in two-player, zero-sum games and
extended it to the reinforcement learning setting. AFP is
intuitive, easy to implement, and supported by theory and
numerical simulations which suggest that it is virtually al-
ways preferable to fictitious play. It is a natural choice for a
first implementation of a multiagent RL algorithm for com-
petitive games, as it requires access only to a standard RL
algorithm and no special tuning, configuration, or auxiliary
computation. Consequently, we shed new light on two mo-
tivating problems for fictitious play: primarily, large-scale
multiagent reinforcement learning for complicated real-world
games; also, modeling strategic decision making in humans.
Further work is needed to understand the conditions under
which AFP outperforms FP in the RL setting.
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