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Abstract
The behaviour of multi-agent learning in competi-
tive settings is often considered under the restrictive
assumption of a zero-sum game. Only under this
strict requirement is the behaviour of learning well
understood; beyond this, learning dynamics can of-
ten display non-convergent behaviours which pre-
vent fixed-point analysis. Nonetheless, many rele-
vant competitive games do not satisfy the zero-sum
assumption. Motivated by this, we study a smooth
variant of Q-Learning, a popular reinforcement
learning dynamics which balances the agents’ ten-
dency to maximise their payoffs with their propen-
sity to explore the state space. We examine this dy-
namic in games which are ‘close’ to network zero-
sum games and find that Q-Learning converges to a
neighbourhood around a unique equilibrium. The
size of the neighbourhood is determined by the
‘distance’ to the zero-sum game, as well as the ex-
ploration rates of the agents. We complement these
results by providing a method whereby, given an
arbitrary network game, the ‘nearest’ network zero-
sum game can be found efficiently. As our exper-
iments show, these guarantees are independent of
whether the dynamics ultimately reach an equilib-
rium, or remain non-convergent.

1 Introduction
The convergence of multi-agent learning in competitive set-
tings has long been studied under the context of zero-sum
games. The ability to make strong predictions in zero-
sum games follows from its enforcement of strict compe-
tition between agents. Indeed many positive results have
been achieved which show the convergence, in time aver-
age, of no regret learning algorithms to a Nash Equilib-
rium (NE) [Nisan et al., 2007; Hadikhanloo et al., 2022;
Bailey and Piliouras, 2019a]. Yet time average convergence
does not always imply convergence of the last-iterate. Un-
der this context, zero-sum games, and their network variants,
have received much attention, showing cyclic behaviour for
some algorithms [Mertikopoulos et al., ; Hofbauer, 1996] and
asymptotic convergence for others [Leonardos et al., 2021;
Ewerhart and Valkanova, 2020; Hofbauer and Sorin, 2005].

Yet in multi-agent settings the satisfaction of strict com-
petition cannot be taken for granted. The reason for this is
simple: not all competitive games are zero-sum. Another
contributor is noise; in practice payoffs measured by agents
may be subject to perturbations so that the underlying game
no longer satisfies the zero-sum condition. It is natural, then,
to ask whether the convergence structure holds as we move
away from the requirement of strict competition.

Unfortunately, the general answer to this question is no.
Learning algorithms are known to display complex, even
chaotic behaviour when even slightly perturbed away from
the safe haven of zero sum games [Sato et al., 2002; Galla
and Farmer, 2013; Galla, 2011; Cheung and Tao, 2021]. In
fact, this problem becomes even more prevalent as the num-
ber of players is increased [Sanders et al., 2018]. The intro-
duction of chaos makes the exact prediction of long-term be-
haviours impossible in a wide class of games and we are led
to a fundamental dichotomy between the need, and ability to
understand multi-agent learning in competitive games.

Main Contribution. To make progress in understanding
general competitive games, we consider the natural start-
ing point of near network zero-sum games. The concept of
‘close’ games has been introduced in the context of potential
games [Candogan et al., 2013], which model strictly coop-
erative settings. Following its introduction, a number of re-
sults on the approximate convergence of learning algorithms
have been determined in near-potential games [Anagnostides
et al., 2022; Cheng and Ji, 2022] Motivated by the success
of the cooperative setting, we re-purpose the distance notion
for network zero-sum games (NZSG) which form the natural
extension of the zero-sum game to multi agent settings [Cai
et al., 2016].

In this setting, we study the (smooth) Q-Learning dynamics
which models the popular Q-Learning algorithm with Boltz-
mann exploration [Sutton and Barto, 2018; Schwartz, 2014].
This learning model captures the behaviour of agents who at-
tempt to maximise their payoffs whilst balancing a tendency
to explore the space of their possible strategies.

Our first contribution is to show that, in near network
zero-sum games, Q-Learning converges to a neighbourhood
around the unique equilibrium of the underlying NZSG. The
size of this set goes to zero as the distance from the NZSG
goes to zero and/or as the exploration rate of each agent in-
creases. Given, then, the distance from the NZSG this size of
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the neighbourhood can be adjusted by manipulating the ex-
ploration rates of the agents. To assist in this process, we also
provide upper bounds on the distance between network games
based on the differences in payoff matrices and the network
structure. Finally, in a similar light to [Candogan et al., 2013;
Cheng and Ji, 2022] which consider potential games, we
present a quadratic optimisation formulation for determining
the closest NZSG to a given network game. Taken together,
these results give a picture of the approximate behaviour of
Q-Learning in competitive games which do not exactly sat-
isfy the zero-sum condition.

Related Work. Studies on learning in competitive games
often occur within the context of zero-sum games [Aumann,
1989] or its network variants [Cai et al., 2016]. Indeed, due to
the desirable structure of these games and the increasing in-
terest of competitive systems [Abernethy et al., 2021], many
positive results have been obtained concerning various learn-
ing dynamics, including Follow the Regularised Leader [Bai-
ley and Piliouras, 2019b; Anagnostides et al., 2022], Ficti-
tious Play [Ewerhart and Valkanova, 2020], and Q-Learning
[Leonardos et al., 2021].

By contrast, non-convergent behaviour, including cycles
and chaos, appears to be increasingly prevalent as the NZSG
condition is lifted [Galla, 2011; Sato et al., 2002; Sato and
Crutchfield, 2003; Mukhopadhyay and Chakraborty, 2020]
and as the number of agents increases [Sanders et al., 2018].
This presents a strong barrier when attempting to engineer
competitive multi-agent systems, where the network zero-
sum assumption need not hold [Ewerhart and Valkanova,
2020; Roberson, 2006]. Outside of this class, results on con-
vergence often make restrictive assumptions, such as the exis-
tence of a potential function [Leonardos and Piliouras, 2022;
Monderer and Shapley, 1996; Harris, 1998] which enforces
strict cooperation amongst agents, or that the game has only
two players and two actions [Kianercy and Galstyan, 2012;
Metrick and Polak, 1994]. Of course, these do not cover the
vast majority of games encountered in practice. In fact, the
strongest result regarding learning outside of NZSG is a nega-
tive one: consider [Vlatakis-Gkaragkounis et al., 2020] which
shows that the popular Follow the Regularised Leader dy-
namic cannot converge to a fully mixed Nash Equilibrium, re-
gardless of the game structure. With all these taken together,
it becomes clear that a complete picture of learning in games
cannot be found by considering only convergence to a fixed
point, but must include the eventuality of non-convergence.

To make progress on this, we apply the concept of ‘near-
ness’ in games. This was first introduced in the context of
potential games [Candogan et al., 2013; Cheng and Ji, 2022]
to extend the analysis of cooperative games to those which
do not satisfy the potential assumption. With this, various
learning algorithms including fictitious play [Candogan et al.,
2013; Aydın et al., 2022] and Follow the Regularised Leader
[Anagnostides et al., 2022], can be understood in terms of
approximate convergence, i.e., convergence to a neighbour-
hood of an equilibrium. On the other hand, whilst [Cheung
and Tao, 2021] shows that games which deviate from the net-
work zero-sum setting can display chaos, little is known about
how deviations from the strictly competitive setting affect the

approximate convergence of learning. To our knowledge, the
present work is the first to study, both theoretically and exper-
imentally, near network zero-sum games with an aim to un-
derstand approximate convergence, even in the face of chaos.

2 Preliminaries
We study a game Γ = (N , (Sk, uk)k∈N ), where N denotes
a finite set of agents indexed by k = 1, . . . , N . Each agent
k ∈ N has a finite set Sk of actions, which are indexed by
i = 1, . . . , nk. Agents can play a mixed strategy xk which
is a discrete probability distribution over their set of actions.
The set of all such mixed strategies is the unit simplex in Rnk .
More formally, the simplex associated to agent k is ∆k =
{xk ∈ Rnk |

∑
i∈Sk

xki = 1 and xki ≥ 0 for all i ∈ Sk}.
We denote ∆ = ×k∈N∆k as the joint simplex over all agents,
x = (xk)k∈N as the joint mixed strategy of all agents and,
for any k, x−k = (xl)l∈N\{k} ∈ ∆−k as the joint strategy of
all agents other than k.

Also associated to each agent k is a payoff function uk :
∆k × ∆−k → R. Then, for any x ∈ ∆, we define the re-
ward to agent k when they play action i ∈ Sk as rki(x) :=
∂uki(x)/∂xki. With this, we can write rk(x) = (rki(x))k∈N
as the concatenation of all rewards to agent k. In this nota-
tion, uk(x) = ⟨xk, rk(x)⟩ where ⟨x,y⟩ = x⊤y is the inner
product in Rn.

Network Zero-Sum Games. A polymatrix or network
game also contains a graph (N , E) in which N still denotes
the set of agents and E consists of pairs (k, l) ∈ N of agents,
who are meant to be connected [Cai et al., 2016]. Each edge
has associated a pair (Akl, Alk) of matrices, which define the
payoff to k against l and vice versa. The payoffs are then
given by

uk(xk,x−k) =
∑

(k,l)∈E

⟨xk, A
klxl⟩

We represent a network game as a tuple Γ =
(N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E). Γ is a network zero-sum
game (NZSG) if, for all x ∈ ∆,∑

k

uk(xk,x−k) = 0

A seminal result in the study of NZSG is that of [Cai et al.,
2016] which shows that any NZSG is payoff equivalent to a
pairwise constant sum game, where all the constants add to
zero. More formally, this is stated in the following proposi-
tion

Proposition 1 ([Cai et al., 2016], [Leonardos et al., 2021]).
Let Z = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) be a NZSG. For
all (k, l) ∈ E there exist (Âkl, Âlk) and a constant ckl ∈ R
such that

[Âkl]ij + [Âlk]ji = ckl, ∀i ∈ Sk, j ∈ Sl,

with ∑
(k,l)∈E

ckl = 0,
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and payoffs to agent k in Z is equivalent to their payoffs in
Ẑ = (N , E , (Sk)k∈N , (Âkl, Âlk)(k,l)∈E). In particular, for
all k ∈ N and all xk ∈ ∆k∑

(k,l)∈E

x⊤
k Â

klxl =
∑

(k,l)∈E

x⊤
k A

klxl

Maximum Pairwise Difference. To define ‘nearness’ in
the context of games, we require a notion of distance on the
space of all games. We apply the widely used metric de-
fined in [Candogan et al., 2013], known as Maximum Pair-
wise Difference. Formally, let Γ1 = (N , (Sk, Ak)k∈N ) and
Γ2 = (N , (Sk, Bk)k∈N ) be two games which share the same
set of agents N and actionsets (Sk)k∈N but differ in payoff
functions. Then, the Maximum Pairwise Difference between
Γ1 and Γ2 is

d(Γ1,Γ2) =max |Ak(yk,x−k)−Ak(xk,x−k) (MPD)
− (Bk(yk,x−k)−Bk(xk,x−k))|

where the maximum is taken over all agents k, all x−k ∈
∆−k and all xk,yk ∈ ∆k. In words, (MPD) captures the
similarity between two games in terms of the capacity for
any agent to improve their payoff by deviating from xk to
yk whilst their opponents maintain their strategy x−k.

Q-Learning Dynamics. Q-Learning [Sutton and Barto,
2018; Schwartz, 2014] is the prototypical model for deter-
mining optimal policies in the face of uncertainty. In this
model, each agent k ∈ N maintains a history of the past per-
formance of each of their actions. This history is updated via
the Q-update

Qki(τ + 1) = (1− αk)Qki(τ) + αkrki(x−k(τ))

where τ denotes the current time step. Qki(τ) denotes the Q-
value maintained by agent k about the performance of action
i ∈ Sk. In effect, Qki gives a discounted history of the re-
wards received when i is played, with 1− αk as the discount
factor.

Given these Q-values, each agent updates their mixed
strategies according to the Boltzmann distribution, given by

xki(τ) =
exp(Qki(τ)/Tk)∑
j exp(Qkj(τ)/Tk)

in which Tk ∈ [0,∞) is the exploration rate of agent k: low
values of Tk allow the agent to play the action(s) with the
highest Q-value with a large probability, thereby exploiting
their high performance. By contrast, higher values of Tk en-
force that agents play each of their strategies with or the same
probability, regardless of their Q-value.

It was shown in [Tuyls et al., 2006] that a continuous time
approximation of the Q-learning algorithm can be written as

ẋki

xki
= rki (x−k)−⟨xk, rk(x)⟩+Tk

∑
j∈Sk

xkj ln
xkj

xki
(QLD)

which we call the Q-learning dynamics. The fixed points of
this dynamic coincide with the Quantal Response Equilibria
(QRE) of the game:

Definition 1 (QRE). A joint mixed strategy p ∈ ∆ is a Quan-
tal Response Equilibrium of the game Γ = (N , (Sk, uk)k∈N )
if, for all agents k ∈ N , i ∈ Sk,

pki =
exp(rki(p−k)/Tk)∑

j∈Sk
exp(rkj(p−k)/Tk)

(1)

The QRE is a well-studied equilibrium concept for games
of bounded rationality [McKelvey and Palfrey, 1995]. This
is seen in the fact that, in the limit Tk → 0 for all k, (1)
corresponds exactly to the Nash Equilibrium; whereas in the
limit Tk → ∞ for all k, the QRE is the uniform distribution,
i.e., each agent plays each action with the same probability,
regardless of its past performance.
Game Perturbations. In [Leonardos and Piliouras, 2022]
it is shown that, for any (Tk)k∈N , the Q-learning dynamics
in a game Γ is equivalent to the well-studied replicator dy-
namics (RD) in a perturbed game ΓH . More formally, the
authors show the following.
Lemma 1 ([Leonardos and Piliouras, 2022]). Consider a
game Γ = (N , (Sk, uk)k∈N ) and, for each agent k let
Tk > 0. Then (QLD) can be written as

ẋki

xki
= rHki(x)− ⟨xk, r

H
k (x)⟩,

where rHki = rki(x−k)−Tk(lnxki+1). In particular, (QLD)
recovers the replicator dynamics in the pertubed game ΓH =
(N , (Sk, u

H
k )k∈N ) where

uH
k (x) = ⟨xk, rk(x−k)⟩ − Tk⟨xk, lnxk⟩

The perturbed game ΓH has the same players and action
sets as Γ but has modified utilities. The same perturbation
maps the QRE of the game Γ to Nash Equilibria of ΓH [Melo,
2021; Gemp et al., 2022]

3 Near Network Zero-Sum Games
Our main results concern the competitive setting. We first
show that, in near-NZSG (QLD) converges to a set around
the QRE of the NZSG. This determines approximate con-
vergence behaviour when the game is perturbed away from
the NZSG assumption. We follow this with a scheme to de-
termine, for any network game (not necessarily zero sum),
the nearest NZSG. Using these results together provides a
method to determine approximate convergence behaviour for
arbitrary competitive network games.

3.1 Approximate Convergence
To define the convergence of the Q-Learning dynamic we
need a measure of distance. To this end, we use the Kullback-
Leibler (KL) divergence.
Definition 2. The Kullback-Leibler Divergence between a set
of joint strategies x,y ∈ ∆ is given by

DKL(y||x) =
∑
k

DKL(yk||xk) =
∑
k

∑
i

yki ln
yki
xki

(2)

The key point which we will use in our main theorem is
that DKL(y||x) is zero if and only if x = y and is positive
everywhere else.
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Theorem 1. Let Z = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) be
a network zero-sum game which, for some T1, . . . , TN > 0,
has unique QRE p ∈ ∆. Let G = (N , (Sk, uk)k∈N ) be
a game such that d(Z,G) < δ for some δ > 0. Then, for
any trajectory of mixed strategies x(t) generated by running
(QLD) on G,

lim
t→∞

DKL(p||x(t)) ≤
Nδ

Tmin

where Tmin = mink Tk.
Theorem 1 provides a method whereby the behaviour of

Q-Learning dynamics can be understood even if the game is
slightly perturbed away from a NZSG. It is important to note
that the approximate behaviour is also governed by choice
of exploration rate; in particular, the region to which (QLD)
converges decreases in size as Tmin increases. This can be
explained as follows: as the exploration rate increases, each
agent places less importance on the rewards that each action
produces when updating their mixed distribution. Therefore,
perturbations away from the NZSG condition are not felt as
strongly as they would be if the exploration rate were low.

We now provide the idea required to prove Theorem 1,
leaving the details to the Supplementary Material. To do so,
we adapt the proof technique of [Leonardos et al., 2021], in
which it was shown that Q-Learning converges to a unique
QRE in any NZSG. We extend this to consider games which
do not fall into this rather restrictive class through the follow-
ing Lemma.
Lemma 2. Let Z and G be games in the setting of Theorem 1.
Then, if agents playing in game G update their mixed strate-
gies according to (QLD), DKL(p||x(t)) is strictly decreasing
whenever x(t) satisfies

Nδ

Tmin
< DKL(p||x(t)) +DKL(x(t)||p) (3)

Proof Sketch of Theorem 1. From Lemma 2 it follows that
when (3) is satisfied, the distance (as measured by KL-
Divergence) is decreasing. Therefore, the trajectory con-
verges to the region where DKL(p||x(t))+DKL(x(t)||p) ≤
Nδ
Tmin

. Let us denote this region as S and let DS :=

supx∈S DKL(p||x). Then, if x(t) leaves S, by Lemma 2,
DKL(p||x(t)) cannot increase past DS . It follows, then,
that lim supt→∞ DKL(p||x(t)) ≤ DS . Finally, we note
that DS = supx∈S DKL(p||x) ≤ supx∈S DKL(p||x) +
DKL(x||p) ≤ Nδ

Tmin
.

Remark. It is important to note that Theorem 1 makes no
statement on whether Q-Learning in a near NZSG will itself
converge to a QRE. In fact such counter-examples are demon-
strated in Figure 5, and complex behaviour is known to be
prevalent in multi-agent learning (e.g. [Sanders et al., 2018;
Cheung and Tao, 2021]). Nonetheless, Theorem 1 provides a
complete picture on the approximate last iterate behaviour of
Q-Learning. It does this by determining a region to which Q-
Learning dynamics must remain trapped, even if it does not
ultimately reach a QRE within this region. This region is de-
fined with respect to the QRE of an NZSG, which is unique
and can be found by running Q-Learning.

3.2 Finding the Closest NZSG
In order use Theorem 1 to determine the approximate be-
haviour of an arbitrary competitive (but not zero sum) game,
it is first required that we find the nearest network zero-
sum game. In this section we show that this process can
be solved efficiently. In particular, given any network game
Γ = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) which is not neces-
sarily zero sum, the problem of finding the ‘nearest’ NZSG
can be written as a quadratic minimisation problem with lin-
ear constraints. In doing so, the approximate behaviour of
Q-Learning in the original game can be determined.

This formulation manipulates Proposition 1: that any
NZSG is payoff equivalent to a pairwise constant-sum game,
where the constants add to zero. As such, given the network
game Γ, we can write the problem of finding the ‘nearest’
NZSG as finding the nearest pairwise constant-sum game.
This is formulated as

min
(Âkl,Âlk,ckl)

∑
(k,l)∈E ||Âkl −Akl||22 + ||Âlk −Alk||22

s.t. [Akl]ij + [Alk]ji = ckl,∑
(k,l)∈E ckl = 0

(P1)
where Akl, Alk are the payoff matrices which define Γ. As

the objective function in (P1) is quadratic, and the constraints
are linear, (P1) is a quadratic optimisation problem which can
be solved efficiently.

To connect the minimisation of the 2−norm to (MPD), we
have the following results.
Proposition 2. Suppose Γ1 = (N , (Sk, Ak)k∈N ),
Γ2 = (N , (Sk, Bk)k∈N ) are games which have rewards
aki(x−k) = ∂Aki(x)/∂xki and bki(x−k) = ∂Bki(x)/∂xki

respectively. Suppose also that, for all k ∈ N , i ∈ Sk and
x−k ∈ ∆−k,

|aki(x−k)− bki(x−k)| ≤
δ

2nk

where δ > 0. Then d(Γ1,Γ2) ≤ δ

From Proposition 2 we immediately obtain the following
corollary for the particular case of network games.
Corollary 1. Suppose that, in the setting of Proposition 2, Γ1

and Γ2 are network games whose rewards are defined through
the payoff matrices (Akl, Alk)(k,l)∈E , (Bkl, Blk)(k,l)∈E re-
spectively. Suppose also that, for all (k, l) ∈ E , i ∈ Sk and
j ∈ Sl, ∣∣(Akl)ij − (Bkl)ij

∣∣ ≤ δ

2nk

∑
(k,l)∈E nl

where δ > 0. Then d(Γ1,Γ2) ≤ δ

Corollary 2. Suppose that, in the setting of Proposition 1,
Γ1, Γ2 are such that for all (k, l) ∈ E

||Akl −Bkl||2 ≤ δ

2nk

∑
(k,l)∈E nl

where the matrix norm for a matrix A ∈ Mm×n(R) is
given by ||A||2 = supx∈Rn : ||x||2 ̸=0(||Ax||2/||x||2). Then
d(Γ1,Γ2) ≤ δ.
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Using the process outlined in this section, it is possible to
determine approximate convergence in competitive, but not
zero sum, network games. Its advantage lies in the fact that
the QRE of NZSGs are unique for any Tk > 0 and it is known
that Q-Learning, for any initial condition must converge to
this QRE [Leonardos et al., 2021]. Therefore, the aforemen-
tioned process provides a method to determine approximate
convergence of Q-Learning in Γ for any initial condition.

4 Experiments on Near NZSG
In our experiments we examine the implications of Theorem
1. In particular we confirm that Q-Learning in near NZSG
asymptotically remain close to the QRE of the NZSG. We
also examine the implication of this finding for the introduc-
tion of noise in the payoffs.
Visualising Theorem 1. In Figure 1 we visualise the re-
gion to which Q-Learning converges as predicted by Theorem
1. In particular, we generate a two-action, zero-sum network
game for a given number of agents. We then plot the KL-
divergence from the QRE p for a given exploration rate, using
the dimensionality reduction technique of [Li et al., 2018],
which was adapted for the KL-Divergence by [Leonardos et
al., 2021]. The procedure is outlined in the Supplementary
Material. We then plot, on the x − y plane, the contour
DKL(p||x) = Nδ/Tmin for some choice of δ, Tmin. It is
clear that this forms a neighbourhood around the QRE of the
NZSG; the implication of Theorem 1 is that, in games which
are at most δ away from the NZSG, Q-Learning will asymp-
totically remain trapped in this neighbourhood.
Three Player Chain. We examine a ‘chain’ network with
three agents where each agent has two actions. We generate
a zero-sum game and run Q-Learning on this game to find its
QRE [Leonardos et al., 2021]. For the sake of simplicity we
assume that all agents have the same exploration rate Tk so
that we replace the notation Tk or Tmin with simply T . Then,
we perturb the payoff matrices to generate five near zero-sum
games. We can use Corollary 1 to determine an upper bound
on the distance between these games from the NZSG in terms
of (MPD).

The results from this experiment are shown in Figure 2.
The figures plot the probabiliy by which each player plays
their first action. In all cases, the near-NZSG converge to
equilibria (depicted with black markers) who are close to the
QRE of the NZSG (red marker). The distance of the QRE
of the pertubed games from the original increases as δ is in-
creased from 0.75 to 2.

When examining the effect of noise, we take the same
network game setup and periodically (every 50 iterations)
add noise to the payoff matrices to perturb the game away
from the zero sum. By ensuring that the perturbations satisfy
Corollary 1 for some δ, we can determine an upper bound
on (MPD). The results are shown in Figure 3. The power of
Theorem 1 is apparent in this setting since, in this case, Q-
Learning will not converge to an equilibrium. Despite this,
since the perturbations are upper bounded by δ, Theorem 1
enforces that the trajectories remain within the neighbour-
hood of the QRE of the original game. This ensures the ro-
bustness of Q-Learning under the presence of noise. Note

that, whilst in the experiments we use additive noise, Theo-
rem 1 makes no such assumption. The only requirement is
that the perturbations are bounded. Of course, the larger this
bound is, the larger the neighbourhood, as evidenced by the
increase in spread of the Q-Learning trajectories as δ is in-
creased.
Ten Player Network. Finally, we extend our analysis to a
10-agent network where agents have two actions. In this case,
the Q-Learning dynamics evolve in R20 and so it is not possi-
ble to visualise the trajectories. Rather, we generate a NZSG
and 100 near-NZSG which are generated in the same manner
as the three-player chain network. Figure 4 shows a summary
of the last iterates of Q-Learning in 100 randomly generated
near zero-sum games after 1× 106 iterations. The behaviour
agrees with the results in the lower dimensional case. In par-
ticular, it is clear that the last iterations of Q-Learning for all
nearby games is within a bounded region around the QRE of
the NZSG.
Conflict Network. We now examine competitive games
that do not satisfy the network zero-sum assumption. To do
this we consider conflict networks as considered in [Ewerhart
and Valkanova, 2020], which cover a wide array of competi-
tive games including the widely studied Colonel Blotto game
[Roberson, 2006]. The details of conflict networks can be
found in the Supplementary Material.

In our experiments, we generate a conflict network game
with three agents, which we call ΓC . The network is fully
connected and, for each agent k,

Ak,k+1 =

(
2.4 6.6
4.5 3.1

)
, Ak,k−1 =

(
2.8 1.0
4.2 7.2

)
,

and the sums k + 1, k − 1 are taken mod N . As this game
does not satisfy the network zero-sum assumption, it is not
necessary that (QLD) converges to a QRE, as shown in our
experiments in Figure 5. By applying the procedure in Sec-
tion 3.2, we find the nearest network zero-sum game which
we call ΓZ . Next, by using Corollary 2, it is possible to show
that d(ΓC ,ΓZ) ≤ 7.2. With this and the fact that Q-Learning
converges in ΓZ [Leonardos et al., 2021], it is possible to
use Theorem 1 to determine the approximate convergence of
(QLD) in ΓC . For low values of T , the region to which Q-
Learning converges is large, and takes up the entire simplex.
However, this region becomes smaller as T is increased, so
that Q-learning converges to a smaller neighbourhood close
to the QRE of ΓZ .

5 Conclusions
In this paper we begin developing an understanding of the
smooth Q-Learning dynamics beyond strictly competitive
many player games. We show that in games which are suffi-
ciently close to satisfying the network zero-sum assumption,
Q-Learning converges to within a region of a unique Quantal
Response Equilibrium (QRE). The size of this region can be
adjusted by controlling either the distance from the strictly
competitive setting, or the exploration rates of the agents.
Whilst the latter amounts to parameter tuning, we consider
the former by determining a method to find, for a given net-
work game, the nearest network zero-sum game (NZSG). In
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N = 5 N = 7 N = 13 N = 17

Figure 1: Visualisation of the KL-divergence between the unique QRE and a mixed strategy in an NZSG, alongside a depiction of the region
to which Q-Learning converges in nearby games. The minimum of the KL-divergence occurs at zero and the region is a neighbourhood
around the minimiser (i.e., the QRE of the NZSG). In all cases, we choose δ = 1 and T = 0.75, whilst we vary the number of players N .

δ ≤ 0.75 δ ≤ 2

Figure 2: Trajectories of Q-Learning in near NZSG. In each plot, the red line depicts Q-Learning in an NZSG and the black depicts Q-
Learning in a nearby game which is not zero sum. Q-Learning converges to an equilibrium in the near-NZSG (black marker), where the
equilibrium is ‘close’ to the QRE of the NZSG (red marker). In all cases T = 0.75.

δ ≤ 0.75 δ ≤ 2 δ ≤ 3

Figure 3: Trajectories of Q-Learning on an NZSG in the presence of additive noise. The noise is such that the perturbed game is always close
to the NZSG. In this case, Q-Learning does not reach an fixed point, but will still remain asymptotically within a region surrounding the QRE
of the NZSG (red marker). In all cases T = 0.75.

such a manner, the approximate behaviour of Q-Learning can
be understood in arbitrary competitive games. In our exper-
iments we demonstrate the utility of our results in practice,
in particular showing that, even in the presence of noise, the
asymptotic behaviour of Q-Learning can be understood in
terms of distance from the QRE of an underlying NZSG.

Our results also present an avenue for extending beyond

strictly cooperative settings. In particular, the approximate
behaviour of Q-Learning in near-potential games can be ex-
amined, thus beginning to bridge the gap between strictly
competitive and strictly cooperative games. Another interest-
ing direction would be to extend towards weighted NZSGs,
which comprise a larger set of games than the exact NZSG
setting considered in this work. Finally, our method for find-
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δ ≤ 2 δ ≤ 3

δ ≤ 5 δ ≤ 9

Figure 4: Summary Statistics of Last-Iterates of Q-Learning in 100 near-NZSGs. The y-axis depicts the probability which each agent assigns
to their first action. The red line depicts the QRE of the NZSG whilst the box depicts the spread of last iterates in the near-NZSG after 1×106

iterations. In all cases T = 0.75.

T = 0.35 T = 0.5 T = 2.5

Figure 5: Dynamics of Q-Learning in a Conflict Network. Axes indicate the probability with which each agent plays their first action.
Black trajectories denote the dynamics in the conflict network. Red trajectories denote the dynamics in the nearest network zero sum game.
Q-Learning dynamics in the NZSG converge to a QRE. In the conflict network, they converge to a neighbourhood of the QRE, whose size
decreases with increasing T

ing the nearest NZSG requires the original game itself to be
a bidirectional network game. Lifting this assumption would
allow for the approximate behaviour of a wider class of multi-
agent settings (e.g. leader-follower) games to be understood.
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