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Abstract
We introduce and study a computational version of
the principal-agent problem – a classic problem in
Economics that arises when a principal desires to
contract an agent to carry out some task, but has in-
complete information about the agent or their sub-
sequent actions. The key challenge in this setting is
for the principal to design a contract for the agent
such that the agent’s preferences are then aligned
with those of the principal. We study this problem
using a variation of Boolean games, where multiple
players each choose valuations for Boolean vari-
ables under their control, seeking the satisfaction of
a personal goal, given as a Boolean logic formula.
In our setting, the principal can only observe some
subset of these variables, and the principal chooses
a contract which rewards players on the basis of the
assignments they make for the variables that are ob-
servable to the principal. The principal’s challenge
is to design a contract so that, firstly, the principal’s
goal is achieved in some or all Nash equilibrium
choices, and secondly, that the principal is able to
verify that their goal is satisfied. In this paper, we
formally define this problem and completely char-
acterise the computational complexity of the most
relevant decision problems associated with it.

1 Introduction
The principal-agent problem is a classic problem in eco-
nomics. It arises when a principal aims to sub-contract a task
to an agent (or agents) while having only imperfect informa-
tion about the agent(s). The two key classes of principal-
agent problems are adverse selection and moral hazard. In
a setting of adverse selection, the principal may have partial
information about the agents’ types, which may be relevant
to their ability to carry out the delegated task. For example,
when an employer hires a new employee, they have only par-
tial information about the skills and aptitude of the employee.
Their skills and aptitude will then play a part in the perfor-
mance of the delegated task. In moral hazard settings, upon
which we focus in the present paper, the principal is unable
to observe the actions taken by agents subsequent to the con-
tract. In particular, the principal may be unable to directly

verify that the terms of the contract have been respected. For
example, suppose we want to hire a cleaner to ensure that a
particular building is kept clean, although we are only able
to inspect the building at infrequent intervals: if the cleaner
desires to minimise effort, why would they then not simply
clean up only when an inspection is imminent? The key chal-
lenge here is to design a contract for the agent that aligns the
incentives of the agent with those of the manager, so that the
manager can have confidence that the agent will be rationally
motivated to expedite the task at hand, even if the manager is
unable to directly verify that this is indeed the case.

Principal-agent problems of this type are extremely rele-
vant in Artificial Intelligence as well as in Multi-Agent Sys-
tems: the venerable Contract Net protocol, for example, deals
with precisely the situation where a principal delegates tasks
to an agent [Smith, 1980], and although they were not consid-
ered in the original work, informational asymmetries between
the principal and the agent may of course occur.

Our present work investigates a computational version of
the principal-agent problem based on the Boolean games
framework [Harrenstein et al., 2001]. Boolean games are
non-cooperative games in which players each control a fi-
nite set of Boolean variables, and the pure strategies available
to a player correspond to the set of possible assignments of
truth or falsity to those variables. Preferences are captured by
assigning each player a propositional logic formula that the
player desires to see satisfied. In the variant of Boolean games
that we adapt in the present paper, secondary preferences are
defined by costs associated with assignments of truth or fal-
sity – a player first seeks to satisfy their goal, and secondarily
seeks to minimise costs [Wooldridge et al., 2013].

Classical work in the area of moral hazard in teams fails to
take into account the potential lexicographic or qualitative na-
ture of agent preferences. To our knowledge, our work is the
first to study multi-agent moral hazard problems in a game
where agents have lexicographic qualitative and quantitative
preferences. In our model, a principal has a goal they de-
sire to see accomplished, expressed, as with the agents’ goals,
as a propositional formula. The principal chooses a contract
that rewards individual agents on the basis of their observ-
able variables. The fundamental question we ask is whether
it is possible for the principal to design a contract such that, if
agents rationally make choices (i.e., make choices that form a
game-theoretic equilibrium), then, firstly, the principal’s goal
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will be accomplished, and secondly, the principal can for-
mally and automatically verify that the goal is accomplished,
under the assumption that agents have acted rationally.

We derive complexity results for two classes of problems:
Can the principal formally verify whether or not their objec-
tive, given as a propositional logic formula over the observ-
able variables in the game, is satisfied on some/all observa-
tions and can the principal design a contract such that their
objective is satisfied on some/all possible observations.

2 Related Work
Moral hazard. Investigations of the moral hazard prob-
lem were initially motivated by the desire to better under-
stand the relationship between risk and incentives in insur-
ance contracts [Pauly, 1968; Arrow, 1971]. Early models of
moral hazard sought to study how risks can be shared opti-
mally between principal and agent using contracts [Michael
and William, 1976; Holmström, 1979; Shavell, 1979; Gross-
man and Hart, 1992].1 Extensions of these models to settings
with multiple agents and a single principal were also devel-
oped, in which the presence of competition between agents
must be taken into account [Holmstrom, 1982; Itoh, 1991;
Che and Yoo, 2001]. More recently, computational ap-
proaches to contract design have extended the original models
in various ways and taken an algorithmic lens on computing
optimal contracts [Dütting et al., 2019; Dütting et al., 2021;
Alon et al., 2021; Guruganesh et al., 2021; Gan et al., 2022;
Dütting et al., 2023]. Multi-agent contracts have also been
studied from this perspective, which introduces the chal-
lenge of reasoning about combinatorially large action spaces
[Babaioff et al., 2006; Emek and Feldman, 2012; Dütting et
al., 2022; Castiglioni et al., 2023]. Common among these
studies is the assumption that agent preferences are quantita-
tive, and partial observability is primarily modelled as a noisy
signal of the agents’ actions, which are often represented as
a quantitative degree of effort. In contrast, our model allows
agents to have qualitative goals specified as propositional for-
mulae, which are prioritised over their quantitative objec-
tives and constrains the agents’ decision-making to a discrete
action space. Furthermore, the principal’s objective in our
model is a propositional logic formula, as opposed to a func-
tion of the observation signal. An example of a setting where
this may be more appropriate is a scenario in which a set of
tasks are divided among a group of autonomous agents, each
of whom are capable of reliably completing their assigned
tasks. Each task is associated with a cost of completion, and
the agents must decide which tasks to complete based on their
objectives and the contract payments that are offered under
the limited principal’s observational abilities.

Mechanism design. There are computational ap-
proaches to mechanism design in which approxi-
mation algorithms [Nisan and Ronen, 1999], pro-
gram synthesis [Narayanaswami et al., 2022],
and satisfiability checking [Maubert et al., 2021;
Mittelmann et al., 2022], among others, have been pro-
posed to automatically construct optimal mechanisms. These

1See [Georgiadis, 2023] for an overview of moral hazard studies.

works assume a stronger degree of control by the principal
over the agents’ interactions and their utilities.
Lexicographic qualitative and quantitative preferences.
Finally, there have been several studies devoted to under-
standing solution concepts in games with lexicographic qual-
itative and quantitative preferences [Chatterjee et al., 2005;
Bloem et al., 2009; Gutierrez et al., 2017; Gutierrez et al.,
2021; Bulling and Goranko, 2022], but these do not con-
sider problems of incentive design. Other previous work has
studied the idea of a principal introducing a taxation scheme
into games where players have a very similar preference
structure to the one we consider [Wooldridge et al., 2013;
Harrenstein et al., 2014; Harrenstein et al., 2017; Levit et
al., 2019]. Additionally, [Gutierrez et al., 2019] study a re-
lated problem called ‘equilibrium design’, but they consider
players with only quantitative objectives. A key assumption
in such previous works was that the principal can fully ob-
serve the outcome v⃗ selected by the agents. However, the
principal does not have this luxury in many real-world sit-
uations, and it is this issue that motivates the study of the
principal-agent problem. Other studies of incomplete infor-
mation in Boolean games introduce partial observability at
the level of the agents, as opposed to an external principal
who seeks to influence their behaviour [Ågotnes et al., 2013;
Clercq et al., 2014].

3 Preliminaries
Notation. Where S is a set, we denote the powerset of S
by 2S . We make use of propositional logic over Boolean
variables throughout this study. In this context, we will let
B = {⊤,⊥} denote the set of Boolean literals. Where S is a
set of Boolean variables, we let BS denote the set of possible
valuations, which are combinations of truth assignments to
each variable in S. Where T is also a set of Boolean variables
and v ∈ BS is a valuation in S, we will let v|T denote the re-
striction of v to T , which is the Boolean valuation v′ ∈ BS∩T

that agrees with v on all variables in S ∩ T .

3.1 Boolean Games
In this study, we will model a multi-agent moral hazard prob-
lem in the context of one-shot Boolean Games with costs,
as presented in [Wooldridge et al., 2013]. A Boolean Game
with costs (henceforth “Boolean game” or simply “game”) is
a structure

B = (N,Φ, (Φi)i∈N , (γi)i∈N , (ci)i∈N ),

where: N = {1, . . . , n} is a set of agents;
Φ = {p1, p2, . . . , pm} is a finite set of m ≥ n Boolean
variables; For each i ∈ N , the set Φi is the non-empty
set of Boolean variables uniquely controlled by agent i,
such that the collection (Φi)i∈N forms a partition of Φ;
For each i ∈ N , formula γi is the goal of agent i, which
is represented as a propositional formula over Φ; For each
i ∈ N , with ci : BΦ → Q+ we represent the cost function
of i, which assigns to each valuation v⃗ of the variables in Φ
a non-negative cost ci(v⃗), indicating the cost incurred by i
under the valuation. We let c∗i denote the maximal cost that i
can incur under their ci.
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A strategy vi : Φi → {⊤,⊥} for agent i is defined as an as-
signment of truth values to every variable in Φi. Here, we will
use 1 and 0 interchangeably with ⊤ and ⊥, respectively, in the
context of strategies. For each agent i ∈ N , let Vi be their set
of possible strategies. A strategy profile or outcome is then
a tuple of strategies v⃗ = (v1, . . . , vn), where agents select
their strategies simultaneously in the absence of communica-
tion and knowledge of what strategies other agents selected.
Additionally, given an agent i ∈ N , a strategy profile v⃗, and
an individual strategy v′i ∈ BΦi for i, we let (v⃗−i, v

′
i) be the

strategy profile obtained by replacing vi in v⃗ with v′i, i.e.,
the strategy profile (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn). Given

a game B, we also define its costless version as the game
B0 = (N,Φ, (Φi)i∈N , (γi)i∈N , (c0i )i∈N ) which is as game
B, except that c0i (v⃗) = 0 for all v⃗ ∈ BΦ and i ∈ N .

For a strategy profile v⃗ and a propositional logic formula
φ over the set of Boolean variables Φ, we write v⃗ |= φ to
mean that v⃗ satisfies φ, where |= denotes the propositional
satisfaction relation. If it holds that v⃗ |= γi for some agent
i ∈ N , we say that agent i’s goal is satisfied under v⃗ and i is a
winner under v⃗. Any agent whose goal is not satisfied under
a strategy profile v⃗ will be referred to as a loser under v⃗. We
write W (v⃗) and L(v⃗) to denote the sets of winners and losers
under a given strategy profile v⃗, respectively.

3.2 Utilities, Preferences, and Nash Equilibrium
In order to model both qualitative and quantitative prefer-
ences, we consider a model where agent preferences are de-
fined according to a lexicographic ordering on goal satisfac-
tion and their incurred costs. Specifically, an agent i prefers
any outcome in which their goal γi is satisfied over any out-
come in which it is not, no matter what cost they incur. Sec-
ondarily, each agent prefers to minimise the cost that they in-
cur. Formally, we define the utility function ui for each agent
i ∈ N given a strategy profile v⃗ as follows:

ui(v⃗) =

{
1 + c∗i − ci(v⃗) if v⃗ |= γi
−ci(v⃗) otherwise.

Observe that if an agent i achieves their goal, then their utility
will lie in the range [1, c∗i + 1]; if their goal is not achieved,
then their utility will lie in the range [−c∗i , 0]. Preference re-
lations ⪰i over outcomes for each i ∈ N are defined in the
obvious way: v⃗1 ⪰i v⃗2 if and only if ui(v⃗1) ≥ ui(v⃗2), with
indifference relations ∼i and strict preference relations ≻i de-
fined in the usual way.

The primary solution concept we will work with is the pure
strategy Nash equilibrium. Formally, a strategy profile v⃗ is a
Nash equilibrium of a Boolean game B with cost function c
if there is no agent i ∈ N and strategy v′i ∈ Vi such that
(v⃗−i, v

′
i) ≻i v⃗. If such a strategy exists for an agent i ∈ N ,

we say that i has a beneficial deviation from v⃗ to (v⃗−i, v
′
i).

Where B is a game, we write NE(B) to denote the set of Nash
equilibria of B. Additionally, if φ is a Boolean logic formula
over Φ, we let NEφ(B) = {v⃗ ∈ NE(B) | v⃗ |= φ} denote the
set of Nash equilibria of B which satisfy formula φ.

4 The Principal-Agent Verification Problem
In this study, we aim to formulate and analyse the multi-agent
moral hazard problem in the context of Boolean games with

costs, where hidden actions are modelled by the principal
only being able to observe the values of some subset O ⊆ Φ,
known as the observable set. An observation by the principal
is defined to be an assignment of truth values to all variables
in its observable set O, and is denoted by o⃗.2 In general, a
single observation o⃗ may correspond to more than one un-
derlying strategy profile v⃗ if not all of the variables are fully
observable. Thus, the observable set O naturally gives rise
to the possibility for strategy profiles to be indistinguishable
from one another. This can be expressed formally as an ob-
servational equivalence relation =O, defined over the set of
observations BO such that for all strategy profiles v⃗, v⃗′ ∈ V ,
we say that v⃗ is indistinguishable from v⃗′, written v⃗ =O v⃗′,
if it is the case that v⃗|O = v⃗′|O. If it is not the case that
v⃗ =O v⃗′, then we say that strategy profile v⃗ is distinguishable
from strategy profile v⃗ and write v⃗ ̸=O v⃗′ in that case.

The problem faced by the principal is to design a con-
tract so that they are able to ensure/verify that their objective
has been accomplished on some or all of the Nash equilib-
ria under the contract. To begin with, we will first analyse
the simple case where the principal does not intervene, but
simply asks whether they can verify whether or not some or
all Nash equilibria consistent with any observation will sat-
isfy their goal, given as a propositional logic formula φ. The
value of this problem is that it provides a baseline against
which the principal can assess the benefit of any potential
contract that is designed. In order to formally state these
problems, we first make precise the notion of consistency.
Formally, we say that a strategy profile v⃗ is consistent with
an observation o⃗ if it is the case that v⃗|O = o⃗. Then,
we define the consistent set of an observation o⃗ in a given
Boolean game B in the following way: CONS(B, o⃗) = {v⃗ ∈
NE(B) | v⃗ is consistent with o⃗}. Finally, we define the set
ENV(B, o⃗, φ) = NEφ(B) ∩ CONS(B, o⃗) to be the set of Nash
equilibria in game B that satisfy φ and are consistent with o⃗.
The first decision problem of interest is then stated as follows:

E-NASH VERIFIABILITY:
Given: Game B, observation o⃗ ∈ BO, formula φ.
Question: Is it the case that ENV(B, o⃗, φ) ̸= ∅?

Whilst an answer to the E-Nash Verifiability problem pro-
vides useful information to the principal about the possibil-
ity of their goal being achieved on some Nash equilibrium
that is consistent with an observation, it does not make any
guarantees as to whether or not the principal’s goal has been
achieved, given what they have observed. To obtain such a
guarantee, we require the natural counterpart to this problem
– the A-Nash Verifiability problem3:

A-NASH VERIFIABILITY:
Given: Game B, observation o⃗ ∈ BO, formula φ.
Question: Is the case that CONS(B, o⃗) ⊆ NEφ(B)?

If the answer to the A-Nash Verifiability problem is “yes”,
then the principal can be assured that any Nash equilibrium

2A special case of this is when we have O = ∅, where the prin-
cipal cannot observe the values of any of the Boolean variables in
the game. In this case, we can say that the principal makes a null
observation, which is written as o⃗ = ().

3Notation E- and A- are used to indicate existential and universal
reasoning about the set of Nash equilibria in a game respectively.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

146



1 0
1 (2, 0) (3, 0)
0 (1, 1) (1, 1)

1 0
1 (10, 1) (10, 2)
0 (1, 2) (1, 1)

Figure 1: Two cost matrices representing the agents’ costs incurred
under different strategy profiles in two different Boolean games. The
game represented by the left figure is referred to as B1 and discussed
in Example 1. The game represented by the right figure is referred to
as B2 and discussed in Example 2. Player 1 (the row player) controls
variable p1 and player 2 (the column player) controls variable p2.

consistent with their observation satisfies their goal. The fol-
lowing complexity results of the E- and A-Nash Verifiability
problems can be readily derived from existing results relating
to Boolean games [Wooldridge et al., 2013]:
Proposition 1. E-NASH VERIFIABILITY is Σp

2-complete,
and A-NASH VERIFIABILITY is Πp

2-complete.
Example 1. To illustrate the differences between the E-Nash
and the A-Nash verifiability problems, consider the game B1

consisting of two players with Φ1 = {p1}, Φ2 = {p2}, goals
γ1 = ⊤, γ2 = ¬p1, cost function as given by the table on
the left in Figure 1, and observable set O = {p1}. Now
suppose that the principal’s objective is φ = p2 and consider
the E- and A-Nash verifiability problems for each observation
o⃗ ∈ BO = {0, 1}. Firstly, we can identify the Nash equilibria
in B1 as being (0, 0) and (0, 1), with only the latter satisfying
φ. Under the observation o⃗1 = (1), there is no Nash equilib-
rium in B1 that is consistent with o⃗1, so the answer to E-Nash
verifiability is “no” and the answer to A-Nash verifiability is
“yes” for o⃗1. However, under the observation o⃗2 = (0), it is
the case that CONS(B, o⃗)∩NEφ(B) ̸= ∅ but not the case that
CONS(B, o⃗) ⊆ NEφ(B). Thus, the answer to E-Nash verifia-
bility for o⃗2 is “yes” while it is “no” for A-Nash verifiability.

5 Contract Design
The verification problem studied thus far allows the principal
to obtain helpful information about whether or not they can
be confident that their goal was satisfied under any possible
observation that is consistent with at least one Nash equilib-
rium. However, in the classical formulations of the moral haz-
ard problem, a principal is tasked with designing a contract to
align the agents’ incentives with their own. In this study, the
principal’s limitation lies not in an inability to accurately ob-
serve the outcome of its observables, but rather in their ability
to only observe some subset of the actions chosen, as well as
the agents’ lack of willingness to compromise on satisfying
their goal, no matter what the incentives are. For this, we
first introduce the concept of contracts, which amount to an
alteration of the costs incurred by the agents for taking vari-
ous actions. This is similar to the notion of taxation schemes
introduced in [Wooldridge et al., 2013], but with the critical
distinction that in our setting, the principal can only reward
agents based on the outcomes of observable variables.

Formally, a contract κ = (κ1, . . . , κn) is a tuple of func-
tions κi : BO → Q≥0 for each agent i ∈ N that map each
possible observation by the principal to a non-negative ratio-
nal number. Let K denote the set of all contracts for a given
game and let κ∗

i denote the highest possible payment that the

principal offers to each agent i ∈ N over all possible ob-
servations. Then, given a game B and an observation set O,
a contract κ gives rise to a new utility function uκ

i for each
agent i ∈ N given a strategy profile v⃗:

uκ
i (v⃗) =

{
1 + c∗i + κi(v⃗|O)− ci(v⃗) if v⃗ |= γi
−κ∗

i + κi(v⃗|O)− ci(v⃗) otherwise.

Defining the utility of agents under a given contract in this
way captures two desirable properties. Firstly, it preserves
the lexicographic preferences of agents – each agent is guar-
anteed to achieve a strictly positive utility if their goal is sat-
isfied, whereas they can achieve a utility of at most zero if
it is not. Secondly, regardless of whether an agent’s goal is
satisfied, their utility is strictly increasing in the payment re-
ceived from the principal and strictly decreasing in the costs
they incur. Given a game B, an observable set O and a con-
tract κ, we define the Boolean game induced by κ to be the
game Bκ which is as game B, but where each agent i’s util-
ity is given by uκ

i . Given a contract κ, an agent i ∈ N and
two strategy profiles v⃗1, v⃗2, we write v⃗1 ⪰κ

i v⃗2 if and only if
uκ
i (v⃗

1) ≥ uκ
i (v⃗

2) and define ≻κ
i in the obvious manner.

5.1 Inducing and Eliminating Equilibria
Due to the partial observability of the agents’ actions and the
fact that agents will always prefer to achieve their goal than
not to do so, there are limits to the ability of a principal to
either introduce or eliminate equilibria from a given game.
As a special case, note that if all agents’ actions are fully
observable (O = Φ), then the contract problem can be char-
acterised by the game’s hard and soft equilibria – respectively
those that can not be eliminated under any contract and those
that can [Wooldridge et al., 2013; Harrenstein et al., 2014;
Harrenstein et al., 2017]. Thus, we will focus on the case
where O ⊂ Φ. In this scenario, it is not in general possi-
ble to characterise the manipulability of a given game B by
analysing the qualitative structure of the underlying costless
Boolean game, as the principal is no longer able to eliminate
the cost considerations for all agents by designing a contract
so that each agent’s quantitative payoff is constant regardless
of their actions. Thus, the ability of the principal to induce or
eliminate equilibria by means of contract design will be criti-
cally dependent on the initial cost functions of the agents.

Example 2. As an example of the importance of initial costs
in this model, consider a game B2 consisting of two players
with goals γ1 = γ2 = ⊤, cost function as given by the table
on the right in Figure 1, and observable set O = {p1}. Now
suppose again that the principal’s objective is φ = p2. With
p̄x, x ∈ {1, 2}, we denote ¬px. Firstly, note that the only
Nash equilibrium outcome of B2 is (0, 0). Now, because the
principal cannot observe p2 directly, the only way for them
to ensure that p2 is rationally chosen by player 2 is to offer
a contract to player 1 to make the choice of setting p1 = 1
more rational than setting it to 0. However, in order to do so,
such a contract κ must satisfy κ1(p1) > κ1(p̄1) + 9, under
which the new unique Nash equilibrium becomes (1, 1). This
illustrates a scenario in which it is lucrative for an employee
to control what is observable by the employer so as to benefit
from indirect incentivisation.
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Before proceeding, we find it useful to define some ter-
minology [Harrenstein et al., 2014]. Firstly, we define the
set INIT(B) = NE(B0) of initial equilibria to be the set of
Nash equilibria in the costless game B0. Formally, we will
say that given a game B and an observable set O, a strat-
egy profile v⃗ is an inducible equilibrium if there exists a con-
tract κ such that v⃗ ∈ NE(Bκ), and we let IND(B,O) be the
set of inducible equilibria of a game B with respect to an
observable set O. Additionally, we will say that a strategy
profile v⃗ is a hard equilibrium (with respect to O), written
v⃗ ∈ HARD(B,O), if v⃗ ∈ NE(B) and there is no contract κ
such that v⃗ /∈ NE(Bκ). Complementarily, we say that a strat-
egy profile v⃗ is a soft equilibrium, written v⃗ ∈ SOFT(B,O),
if v⃗ ∈ NE(B) \ HARD(B,O). It is easy to verify that the
previously defined sets are related in the following way:

Proposition 2. For all Boolean games B and observable sets
O, it holds that HARD(B,O) ⊆ IND(B,O), SOFT(B,O) ⊆
IND(B,O), and NE(Bκ) ⊆ IND(B,O) ⊆ INIT(B) for all
contracts κ.

To reason about the principal’s ability to design effective
contracts, a method of analysing the inducibility and elim-
inability of sets of strategy profiles is needed. Following the
approach of [Harrenstein et al., 2017], we will introduce dif-
ferent types of potential deviations between strategy profiles.
Suppose that v⃗, v⃗′ ∈ V are two distinct strategy profiles such
that v⃗′ = (v⃗−i, v

′
i) for some i ∈ N and v′i ∈ Vi \ {vi}. Then

we say that:

• v⃗′ is an initial deviation for i from v⃗, written v⃗ ⇀i v⃗
′, if

i ∈ W (v⃗) ⇒ i ∈ W (v⃗′).

• v⃗′ is an inducible deviation for i from v⃗, written v⃗ →i v⃗
′,

if there is a contract κ such that v⃗′ ≻κ
i v⃗. Under such a

contract, we say that κ induces a deviation from v⃗ to v⃗′.

• v⃗′ is a soft deviation for i from v⃗, written v⃗ ⇆i v⃗′, if
both v⃗ →i v⃗

′ and v⃗′ →i v⃗.

• v⃗′ is a hard deviation for i from v⃗, written v⃗ ⇒i v⃗′, if
v⃗ →i v⃗

′ but not v⃗′ →i v⃗.

Note that just because a strategy profile is an initial devi-
ation from another strategy profile, this does not necessarily
imply that a contract exists which could induce that devia-
tion, i.e., convert it into a beneficial deviation. Instead, we
need the stronger notion of inducible deviations, which is,
in turn, used to define soft and hard deviations. The follow-
ing proposition characterises the relationship between initial
and inducible deviations. The proofs of the following three
Propositions proceed via a straightforward case analysis us-
ing the definitions of the previously defined concepts, so we
omit them for the sake of space. For the backward implica-
tions, contracts can be designed to offer c∗i + 1 to an agent i
in order to make a particular observation more appealing than
another observation, under which no reward is offered.

Proposition 3. Let B be a game, O ⊆ Φ an observable set,
and v⃗, v⃗′ ∈ V be two distinct strategy profiles such that v⃗′ =
(v⃗−i, v

′
i) for some i ∈ N and v′i ∈ Vi \{vi}. Then, v⃗ →i v⃗

′ if
and only if v⃗ ⇀i v⃗

′ and one of the following conditions hold:
1) v⃗ ̸=O v⃗′, or 2) v⃗ =O v⃗′ and v⃗′ ≻i v⃗.

This result highlights the fact that the ability to design con-
tracts to induce deviations between two strategy profiles is
wholly determined by the initial cost and goal structure of
the game in the case where the strategy profiles are indistin-
guishable. Next, we present a characterisation of the set of
inducible equilibria of a game, which tells a principal when
it is possible to design a contract κ such that a particular out-
come becomes a Nash equilibrium under κ:
Proposition 4. Let B be a game, O ⊆ Φ an observable set,
and v⃗ a strategy profile. Then, v⃗ ∈ IND(B,O) if and only
if the following conditions hold: 1) v⃗ ∈ INIT(B); and 2)
For all agents i ∈ N , and all choices v′i ∈ Vi such that
(v⃗−i, v

′
i) =O v⃗ and i ∈ W (v⃗) ⇔ i ∈ W (v⃗−i, v

′
i), we have

that ci(v⃗−i, v
′
i) ≥ ci(v⃗).

Now, we focus on characterising the sets of hard and soft
equilibria, which allows a principal to check whether an un-
desirable initial equilibrium can be eliminated from a game.
Proposition 5. Let B be a game, O ⊆ Φ an observable set,
and v⃗ a strategy profile. Then, v⃗ ∈ SOFT(B,O) if and only
if the following conditions hold: 1) v⃗ ∈ INIT(B); and 2)
There is agent i ∈ N and a strategy v′i ∈ Vi \ {vi} such that
(v⃗−i, v

′
i) ̸=O v⃗ and i ∈ W (v⃗−i, v

′
i) ⇔ i ∈ W (v⃗).

Because HARD(B) = NE(B) \ SOFT(B) by definition, a
characterisation of the set of hard equilibria in a game follows
immediately from Proposition 5:
Corollary 1. Let B be a game, O ⊆ Φ a non-empty observ-
able set, and v⃗ a strategy profile. Then, v⃗ ∈ HARD(B,O) if
and only if the following conditions hold: 1) v⃗ ∈ NE(B); and
2) For all agents i ∈ N and all strategies v′i ∈ Vi \ {vi} such
that (v⃗−i, v

′
i) ̸=O v⃗, we have (v⃗−i, v

′
i) ⇒i v⃗.

So far, our analysis has focused on whether or not a sin-
gle strategy profile is an inducible, hard, or soft equilibrium.
However, it is not sufficient in general to consider individual
strategy profiles in this way, as there may be several strategy
profiles that the principal would like to induce or eliminate.
The more general problem faced by the principal is thus how
it can determine whether a contract can be designed to jointly
eliminate several equilibria in a game.

Therefore, we will extend the concept of eliminability to
sets of strategy profiles. Given a set X ⊆ V of strategy pro-
files, we say that X is eliminable if there is a contract κ such
that X ∩ NE(Bκ) = ∅. Any such contract κ is then said
to eliminate X . To characterise the ability of the principal
to eliminate sets of equilibria, we will utilise a graph-based
approach to represent inducible deviations between strategy
profiles. Given a Boolean game B and an observable set O,
we define the potential deviation graph of B with respect to
O to be the directed graph G(B,O) = (V, E), where

• V is the set of vertices, where each vertex corresponds
to a strategy profile v⃗ ∈ V ;

• E = {(v⃗, v⃗′) ∈ V × V | v⃗ →i v⃗
′ for some i ∈ N} is

the set of directed edges, where there is an edge from a
vertex v⃗ ∈ V to another vertex v⃗′ ∈ V if and only if it is
the case that v⃗ →i v⃗

′ for some i ∈ N .
The potential deviation graph of a game B wrt. an observ-

able set O represents all possible deviations that could be in-
duced by a contract κ. We say that a subgraph D = (VD, ED)
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of G(B,O) is the deviation graph induced by a contract κ
iff it is the case that for every pair v⃗, v⃗′ ∈ VD, we have
(v⃗, v⃗′) ∈ ED ⇔ v⃗′ ≻κ

i v⃗. Intuitively, a contract κ induces a
deviation graph D when only those inducible deviations that
are actually made beneficial for some i ∈ N under κ are
included as edges in D, along with both of their endpoints.
For the purposes of eliminating undesirable equilibria, we
will also need to determine, given a deviation graph D of
G(B,O), whether there exists a contract κ such that D is the
deviation graph induced by κ. If such a contract exists, we
will say that D is an inducible deviation graph of B wrt. O.

We say that a tuple P = (v⃗1, v⃗2, . . . , v⃗k) is a deviation
path if it holds that v⃗1 →i1 v⃗2 →i2 . . . →ik−1 v⃗k, for
some tuple of agents (i1, i2, . . . , ik−1). Equivalently, a devi-
ation path may be defined simply as any directed path within
the potential deviation graph G(B,O). A deviation path
(v⃗1, v⃗2, . . . v⃗k) is a deviation cycle if k ≥ 2 and v⃗1 = v⃗k. Ad-
ditionally, we will say that a deviation path (v⃗1, v⃗2, . . . , v⃗k)
involves agent i if and only if we have v⃗j →i v⃗j+1 for
some j ∈ {1, . . . , k − 1} and i ∈ N .

Although deviation paths are defined with respect to se-
quences of strategy profiles that are pairwise related by in-
ducible deviations, it will be remembered that the influence of
the principal is restricted to providing incentives only based
on what they can observe, rather than the strategy profile that
is actually chosen. In particular, given two strategy profiles
v⃗, v⃗′ ∈ V such that v⃗ ̸=O v⃗′ and v⃗ →i v⃗

′ for some i ∈ N , the
principal cannot design a contract that rewards i for choos-
ing v⃗′ over v⃗ directly, but this must instead be done indi-
rectly, by rewarding i sufficiently more under the observa-
tion v⃗′|O than the observation v⃗|O. From the point of view
of the principal, then, it will sometimes be more useful to
reason about observed deviation paths, which we define as
a tuple PO = (o⃗1, o⃗2, . . . , o⃗k) such that there exists a set
{v⃗1, v⃗2, . . . , v⃗k} ⊆ V where for all j ∈ {1, . . . , k}, we have
1) v⃗j |O = o⃗j and 2) if j < k, then (v⃗j , v⃗j+1′) ∈ ED for some
v⃗j+1′ =O v⃗j + 1. In other words, an observed deviation path
need not be an actual deviation path in G(B,O); it simply
needs to look like one from the principal’s perspective. Given
this, a deviation path P = (v⃗1, v⃗2, . . . , v⃗k) is said to con-
tain an observed deviation cycle if v⃗1 =O v⃗j , for some j ∈
{2, . . . , k}. Terminology regarding the involvement of agents
in observed deviation paths/cycles is extended in the natural
way – an observed deviation path PO = (o⃗1, o⃗2, . . . , o⃗k) in-
volves agent i iff v⃗j →i v⃗j+1 for some j ∈ {1, . . . , k − 1}
such that v⃗j |O = o⃗j and v⃗j+1|O = o⃗j+1.

Example 3. To illustrate some of the recently introduced
concepts, consider the two-player game in Figure 2. The
diagram at the bottom depicts a deviation path P =
((1, 0, 0), (0, 1, 0), (1, 1, 0)) consisting of three Nash equilib-
ria of B. Note that P involves only one agent and is not a
deviation cycle. Nevertheless, P contains an observed de-
viation cycle that involves only player 1, as corresponding
observed deviation path is PO = (o⃗1, o⃗0, o⃗1). We will see
shortly that this property is crucial in determining whether a
set of strategy profiles can be eliminated or not.

Now, we present a characterisation of the eliminability of
sets of initial equilibria in a game:

Valuation v⃗ Observation o⃗ v⃗ ∈ NE(B)? v⃗ |= φ?
(0,0,0) 0 ✗ ✗
(0,0,1) 0 ✗ ✗
(0,1,0) 0 ✓ ✗
(0,1,1) 0 ✗ ✗
(1,0,0) 1 ✓ ✗
(1,0,1) 1 ✗ ✗
(1,1,0) 1 ✓ ✗
(1,1,1) 1 ✓ ✓

Figure 2: Example of a two-player costless game in which Φ =
{p1, p2, p3}, Φ1 = {p1, p2}, Φ2 = {p3}, γ1 = p1 ∨ p2, γ2 =
p3 ⇒ (p1 ∧ p2), O = {p1}, o⃗0 = 0, o⃗1 = (1) and φ = p1 ∧
p2 ∧ p3. The table on the top illustrates different properties of each
strategy profile, and the diagram on the bottom depicts a deviation
path which contains an observed deviation cycle.

Theorem 1. Let B be a Boolean game, O an observable set,
and X ⊆ INIT(B) a non-empty set of initial equilibria. Then,
X is eliminable if and only if there exists a deviation graph
D = (VD, ED) of B with respect to O that satisfies the fol-
lowing properties: 1) For every v⃗ ∈ X , there is some v⃗′ ∈ VD

such that (v⃗, v⃗′) ∈ ED; and 2) Every observed deviation cy-
cle in D involves at least two agents;

Proof Sketch. The forward direction can be shown via proof
by contrapositive, which proceeds under a case analysis. If
property 1) does not hold for a deviation graph D, then there
is some strategy profile in X which will not be eliminated by
inducing D. If property 2) does not hold, then it is impossi-
ble to induce D, because doing so would lead to a contradic-
tion by transitivity of the preference relation. The backward
direction can be shown by constructing a contract κ that as-
signs rewards using a ‘backward induction’ procedure, which
induces the deviation graph D. It can then be easily checked
using the properties of D that κ eliminates X .

5.2 Contract Design for Logical Objectives
Returning to the problem of designing contracts for the guar-
anteed satisfaction of logical objectives, the natural question
to ask is, given a Boolean game B, does there exist a contract
κ such that the principal can ensure that their goal φ has been
satisfied on some or every Nash equilibrium of the game Bκ?
The E-Nash version of this problem is defined as follows:

E-NASH CONTRACTIBILITY:
Given: Game B, observable set O, formula φ.
Question: Does there exist a contract κ such that
for some o⃗ ∈ BO we have ENV(Bκ, o⃗, φ) ̸= ∅?

Note that in the problem of contract design, the principal
is not given an observation to begin with, but must consider
all possible observations that are consistent with at least one
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Nash equilibrium of a given Boolean game – since the agents’
utilities are affected by the imposed contract, their strategies
will likewise be influenced by the incentives introduced by
the contract and hence, this component must be specified be-
fore agents in the game select their strategies. We have found
that this problem is no harder than the special case where the
principal has full observability within the game [Wooldridge
et al., 2013]:
Theorem 2. E-NASH CONTRACTIBILITY is Σp

2-complete.

Proof. For membership in Σp
2, first observe that the answer

to E-Nash Contractibility is “yes” if and only if it is the case
that v⃗ ∈ IND(B,O) ∩ NEφ(B) ̸= ∅, that is, if there exists
an inducible equilibrium that satisfies φ. Making use of the
characterisation of inducible equilibria in Proposition 4, we
can guess a strategy profile v⃗ and then check whether 1) v⃗ ∈
NEφ(B); and 2) For all agents i ∈ N , and all choices v′i ∈ Vi

such that (v⃗−i, v
′
i) =O v⃗ and i ∈ W (v⃗) ⇔ i ∈ W (v⃗−i, v

′
i),

we have that ci(v⃗−i, v
′
i) ≥ ci(v⃗). Checking the first con-

dition is a coNP problem [Wooldridge et al., 2013]. More-
over, checking the second condition is also in coNP – simply
guess an alternative choice v′i ∈ Vi for each agent i ∈ N and
then checking whether (v⃗−i, v

′
i) =O v⃗, v⃗ ⇆ (v⃗−i, v

′
i), and

ci(v⃗−i, v
′
i) < ci(v⃗) can be done in polynomial time. If the

answer is “yes”, then condition 2 is not satisfied. Thus, the
overall procedure is in the Σp

2 complexity class.
Hardness follows again from the fact that the problem of

checking whether or not a Nash equilibrium exists in a cost-
free Boolean game is Σp

2-complete [Wooldridge et al., 2013].
Given an instance of such a problem, we can check for E-
Nash contractibility of the formula φ = ⊤ in the same game,
where the principal is able to observe all of the variables (i.e.,
O = Φ). The answer to the E-Nash contractibility problem
will be “yes” if and only if a Nash equilibrium exists in the
corresponding cost-free Boolean game, by Proposition 2.

Finally, we introduce and settle the complexity of the uni-
versal counterpart to the E-Nash Contractibility problem:

A-NASH CONTRACTIBILITY:
Given: Game B, observable set O, formula φ.
Question: Is there a contract κ s.t. NE(Bκ) ̸= ∅ and
for all observations o⃗ ∈ BO, if CONS(Bκ, o⃗) ̸= ∅,
then CONS(Bκ, o⃗) ⊆ NEφ(B

κ)?

With this definition in place, we can then show the fol-
lowing result, which sharply contrasts with results appearing
in [Wooldridge et al., 2013]:4

Theorem 3. A-NASH CONTRACTIBILITY is Σp
3-complete.

Proof Sketch. For membership, note that the A-Nash Con-
tractibility problem is equivalent to deciding the following
statement: there are κ ∈ K and v⃗ ∈ V such that for all v⃗′ ∈ V
we have (v⃗ ∈ NE(Bκ))∧(v⃗′ ∈ NE(Bκ) ⇒ v⃗′ |= φ) , which is
a Σp

3 predicate, since there are at most an exponential number
of polynomial-sized contracts to be checked5, and checking

4This contradicts Proposition 14 in [Wooldridge et al., 2013].
Private communication with the authors has confirmed that there was
an error in the original publication [Wooldridge et al., 2013].

5More details in the arXiv version [Hyland et al., 2023].

whether v⃗ ∈ NE(Bκ) for some v⃗ ∈ V and κ ∈ K is coNP-
complete.

For hardness, we reduce from QSAT3, which is known
to be Σp

3-complete [Papadimitriou, 1994]. Suppose that we
have an instance of QSAT3, which is given by a Boolean
formula φ over a set X of Boolean variables and a parti-
tion of X into three sets X1, X2, X3. The question is to
decide whether ∃X1∀X2∃X3 φ. We transform this into an
instance of A-Nash Contractibility by defining a three-agent
game B = ({1, 2, 3},Φ, (Φi)i∈N , (γi)i∈N , (ci)i∈N ), where:
Φ = X ∪ {p, q}, Φ1 = X1,Φ2 = X2 ∪ {p}, and Φ3 =
X3∪{q}; γ1 = ⊤; γ2 = ¬φ∨ (p ↔ q); γ3 = φ∨¬(p ↔ q);
For all v⃗ ∈ V and i ∈ {1, 2}, we have ci(v⃗) = 0; For all
v⃗ ∈ V , we have c3(v⃗) = 1 if v⃗ ⊭ φ and is 0 otherwise. The
objective that the principal wishes to implement is simply φ,
and the observable set is given by O = X1. The proof is com-
pleted by verifying that the answer to an instance of QSAT3
is “yes” if and only if the answer to A-Nash Contractibility in
the above construction is also “yes.”

This result formally establishes the intuitive notion that the
task of designing incentives to eliminate all undesirable be-
haviours in a multi-agent system is, in general, significantly
more challenging than creating space for a desirable outcome
to be chosen among many possible outcomes in the game.

6 Concluding Remarks
Boolean games provide a very natural model in which to draw
a connection between two previously separate yet closely
related areas of study: moral hazard problems (from Eco-
nomics) and rational verification (from AI verification). By
extending the moral hazard problem to a qualitative setting
through the use of Boolean variables and propositional logic
goals, this framework provides a method for expressing rela-
tionships between discrete tasks which may require a thresh-
old of resources (costs) to complete, rather than being tied to a
continuous level of effort. Our work develops this connection
with a number of contributions: the formulation of a model of
multi-agent moral hazard problems with combined qualitative
and quantitative preferences, a characterisation of when equi-
libria can be induced or eliminated, and results settling the
computational complexity of the verifiability and contractibil-
ity problems associated with these model of games.

As this article and previous work on moral hazard prob-
lems demonstrate, the presence of hidden actions limits a
principal’s ability to design contracts that successfully align
agents’ local incentives with the principal’s higher-level ob-
jectives. This study presents a model which opens up many
possible extensions and questions. Further work may refine
the model in several ways by introducing an explicit quan-
titative utility function for the principal which is decreasing
in contract payments, adding randomness to observations, al-
lowing agents to report some of their actions, requiring that
contracts be individually rational, and letting the principal
decide which observations to make under the assumption that
observations are costly. Such extensions would provide fur-
ther insights into the computational aspects of incentive de-
sign in moral hazard settings, which are important concerns
in AI research.
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