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Abstract
The use of multi-agent reinforcement learning
(MARL) methods in coordinating traffic lights
(CTL) has become increasingly popular, treating
each intersection as an agent. However, existing
MARL approaches either treat each agent abso-
lutely homogeneous, i.e., same network and param-
eter for each agent, or treat each agent completely
heterogeneous, i.e., different networks and param-
eters for each agent. This creates a difficult bal-
ance between accuracy and complexity, especially
in large-scale CTL. To address this challenge, we
propose a grouped MARL method named GPLight.
We first mine the similarity between agent envi-
ronment considering both real-time traffic flow and
static fine-grained road topology. Then we pro-
pose two loss functions to maintain a learnable and
dynamic clustering, one that uses mutual informa-
tion estimation for better stability, and the other
that maximizes separability between groups. Fi-
nally, GPLight enforces the agents in a group to
share the same network and parameters. This ap-
proach reduces complexity by promoting coopera-
tion within the same group of agents while reflect-
ing differences between groups to ensure accuracy.
To verify the effectiveness of our method, we con-
duct experiments on both synthetic and real-world
datasets, with up to 1,089 intersections. Com-
pared with state-of-the-art methods, experiment re-
sults demonstrate the superiority of our proposed
method, especially in large-scale CTL.

1 Introduction
In recent years, there has been an unprecedented trend in
coordinating and controlling traffic lights. This trend has
been shown to be effective in improving the efficiency and
robustness of road networks [Jiang et al., 2021]. With the
development of AI technology and the availability of large-
volume traffic data, learning-based control approaches have
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shown great potential in solving traffic signal control (TSC)
problems. In particular, multi-agent reinforcement learning
(MARL) has shown great potential as a promising solution
[Luo et al., 2020], as it enables coordinated control and global
optimization of large-scale traffic lights without the need for
manual intervention.

In the past few years, there are many representative re-
search achievements in TSC. IntelliLight [Wei et al., 2018]
highlights the importance of features and emphasizes that dif-
ferent agents in the same environment should give greater
weight to important features when making decisions. To
avoid the need for heuristic design of reinforcement learn-
ing (RL) parameters, PressLight [Wei et al., 2019a] maps the
rewards in the multi-agent system directly to the pressure val-
ues defined in traffic. FRAP [Zheng et al., 2019] recognizes
the spatial symmetry of the same agent model at different
times and improves the generalization ability of the model.
CoLight [Wei et al., 2019b] introduces the graph attention
mechanism (GAT [Velickovic et al., 2017]) in the multi-agent
system, considering the interaction of the surrounding agents
for the first time. In addition, in the latest study, EMVLight
[Su et al., 2022] provides a good solution for emergency vehi-
cles through TSC. However, none of the above methods have
been applied in large-scale scenarios. MPLight [Chen et al.,
2020] and OAM [Liang et al., 2022] are applied to large-scale
traffic scenarios, but the heterogeneity of each intersection as
well as the influence relationship between intersections are
not considered.
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Figure 1: Number of intersections in previous studies.

We investigated the number of intersections discussed in
the TSC field (approximately 150 studies published from
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1994 to 2020), which is shown in Figure 1. The results
showed that 96% of the studies were conducted in the sce-
nario with less than 100 intersections. Therefore, large-scale
TSC is still an immature field requiring special attention. Co-
ordinating large-scale traffic lights using MARL is a practical
requirement, but it is a challenging problem to solve. On the
one hand, it is difficult for all agents to use only a single net-
work representation and strategy [Smith, 1937] since large-
scale road intersections have complex and abundant patterns,
which requires an extremely large and deep neural network.
On the other hand, if each agent applies a different neural net-
work, there would be an extremely large number of parame-
ters, which has exceedingly low efficiency and high complex-
ity. Furthermore, intersections that are far apart could have
strong spatial-temporal correlation and dynamics, which in-
crease the connection complexity between agents.

To this end, we introduce GPLight, which extracts spatial-
temporal features from intersections in real-time and clusters
them into different groups. Agents in each group share the
same neural network. We first consider real-time traffic flow
and static fine-grained road topologies to dynamically divide
intersections into different groups by mining the similarity
between environments. Grouping agents can reduce the scale
of the multi-agent system and improve training efficiency. We
use GCN [Kipf and Welling, 2016] network to extract fea-
tures, and then introduce two loss functions to carry out fine-
grained partitioning of multi-agent systems. MI Loss aims to
keep agents changing smoothly, while Gather Loss aims to
let agents find their partners in the same group. The grouping
results will be transmitted into the improved QMIX [Rashid
et al., 2018] network for training. By mining the similarities
among intersections in large-scale intersections, intersections
with high similarity can be grouped for cooperation, even if
they are far away, thereby reducing the complexity of the sys-
tem. At the same time, differences between different groups
are preserved, allowing GPLight to strike a balance between
accuracy and complexity. This process breaks through the
traditional TSC method, which only considers the mutual in-
fluence of adjacent intersections.

We evaluate GPLight using both synthetic and real-world
datasets with up to 1,089 intersections. The experimental re-
sults demonstrate that our proposed multi-agent grouping ap-
proach, which incorporates dynamic features, enables agents
to share policies more effectively and dynamically. The traf-
fic system scheduled by GPLight achieves better efficiency
in coordinating large-scale traffic lights compared to existing
methods.

The contributions of this work are threefold:

• We comprehensively extract both dynamic and static
features of each agent to create its embedding. By con-
sidering the real-time dynamic traffic flow and the real
road topology, the similarity between intersections can
be better mined.

• We propose a MARL algorithm for large-scale traffic
light intersections, which divides the multi-agent sys-
tem into different groups to reduce complexity. Differ-
ent from the traditional method which only considers the
interaction between adjacent intersections, it allows in-

tersections that show similarities in the whole region to
cooperate even though they are far apart.

• We conduct extensive experiments on large-scale mul-
tiple scenarios with up to 1,089 intersections, including
both synthetic and real-world datasets. Experimental re-
sults show that GPLight can achieve better performance
in terms of total travel time than other advanced TSC
methods in large-scale scenarios.

2 Related Work
Intelligent transportation is an important direction of future
urban construction [Luo et al., 2022a; Luo et al., 2022b;
Luo et al., 2023]. TSC has been studied in the field of trans-
portation for many years. In recent years, there has been a
growing interest in combining TSC with MARL. In this ap-
proach, the road network is treated as the observation and the
signal phase combination as the action set. The signal phase
is defined as a set of permissible traffic movements [Zheng et
al., 2019]. For example, at an intersection shown in Figure 2,
there are eight signal phases combinations to choose from.

Figure 2: Signal phase and corresponding action set of crossroads.

In the past, there are many well-known studies of TSC
combined with MARL. Intellilight [Wei et al., 2018] uses
deep Q-Network (DQN), which states the queue length of
each lane, the total number of vehicles at the intersection,
the updated wait time, the image of each vehicle’s position at
the intersection, the current agent’s action and the next action.
Presslight [Wei et al., 2019a] proposes the use of max pres-
sure as an input feature and reward to maximize throughput in
the traffic network. A study in 2020 [Jamil et al., 2020] pro-
posed to integrate rewards obtained by different methods into
the training process. Each reward has an independent net-
work to learn Q value, and then votes to get the final action
and interact with the environment. GeneraLight [Zhang et al.,
2020] designed a traffic flow generator based on Wasserstein
generation adversarial network, which improves the adapt-
ability of MARL model to dynamic traffic flow and enhances
the generalization ability of MARL model. FedLight [Ye et
al., 2021] considers collaborative optimization between in-
tersections and proposes a combination of federated learning
and RL. Jiang et al. [Jiang et al., 2021] used multi-time scale
model training to learn appropriate strategies for optimal con-
trol of traffic signals and dynamic lanes. MACAR [Yu et al.,
2021] realizes active communication between agents by con-
sidering the effect of the synchronization of agents. It consists
of an active communication agent network (CAN) involving
a message propagation graph neural network (MPGNN) and
a traffic prediction network (TFN). By using predictive infor-
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mation, action value bias during the training process is miti-
gated to help correct the agent’s future actions.

To sum up, as a multi-agent problem, each intersection can
be considered as an agent in TSC. Considering the large num-
ber of intersections in a city, solving this problem becomes
exceptionally challenging. While creating a model for each
agent would ensure accuracy, it would require significant re-
sources and difficult training. Therefore, we propose group-
ing the multi-agent system to identify similar intersections in
the entire area for collaboration, thereby reducing the com-
plexity of the training process.

3 Preliminary
GPLight treats TSC as a multi-agent systems, by grouping
agents into clusters for achieving better accuracy-complexity
tradeoff in coordinating large-scale traffic lights. This section
introduces the MARL in TSC.

GPLight considers TSC as a multi-agent task that can
be modeled by a distributed multi-agent partially observable
Markov decision process (Dec-POMDP) [Oliehoek and Am-
ato, 2016] L = 〈 N , S, A, P , O, O, R, n, γ 〉, where N
= { 1,2,· · · , n } is the set of n agents. S is a finite set of
states. Each agent i ∈ N can observe only partial environ-
ment oit at each time step t, where oit is part of the state st ∈
S. In our scenario, oit includes both the real-time traffic flow
as well as road network topology. A is the set of joint actions,
where the action ait of each agent i at time step t involves the
signal phase combinations that can be selected at the current
intersection. Take Figure 2 as an example, for a four-way in-
tersection, there is a total of eight actions that can be selected
[Chen et al., 2020]. For an agent i, it will choose an appropri-
ate action ait ∈ A based on the observation oit at time t. The
agent will keep this action until the next decision is made. P
is the transition probability function. γ is the discount factor
whose value space is [0,1). Each intersection is controlled by
an RL agent. We consider the system partially observable,
which means agent i can only derive an observation oi ∈ O
from the observation O(s,i). Given the traffic situation and
current traffic signal phase, the goal of the agent is to take an
optimal action a ∈A to maximize the cumulative rewardR at
each time step t. Our goal is to expect the overall traffic sit-
uation to become more unimpeded. Therefore, we consider
combining each agent’s reward with the length of the queue
at the intersection. The reward R of each agent at time t is
obtained by the reward function S × A1 × ... × An → R.
Here, for a certain intersection i, we assume that zi,lt is the
queue length of vehicles in the approaching lane l at time t.
We define its reward as Rit=−

∑
lz
i,l
t . Each agent has history

phases τi. The joint strategy π generates a joint action-value
function:

Qπtot(s, a) = Es0:∞,a0:∞ [
∑∞

t=0
γtrt|s0 = s, a0 = a, π].

(1)

4 The Proposed Model: GPLight
In this section, we propose a grouped multi-agent reinforce-
ment learning method GPLight. As shown in Figure 3, our

model mainly includes three parts: Feature Extraction, Group
Cohesion and Q-Learning.

GPLight first mines the similarity of agents considering
both real-time traffic flow and static road topology, and then
maintains a learnable and dynamic clustering to group agents.
Since the road topology information is non-euclidean data,
we apply the GCN network to extract features for each in-
tersection. As previous research [Kipf and Welling, 2016]
suggests that GCN embedding (even with random weights)
can automatically cluster when extracting features, the fea-
ture extraction process enables a coarse-grained clustering.
However, such a clustering is not meticulously designed to
guarantee the best performance for subsequent MARL tasks.
To address this issue, we propose two loss functions, namely
Mutual Information (MI) Loss and Gather Loss, to supervise
the GCN network for fine-grained clustering. While MI Loss
is used to ensure steady changes of the agents, Gather Loss
is applied to maximize the separability between clusters. Fur-
thermore, the clustering is also supervised by the task (MARL
Loss), i.e., traffic lights coordination performance. These
three losses act as supervisory signals to guide the GCN net-
work to extract ample features, which ultimately lead to the
best grouping result for the MARL task. Finally, agents in the
same group will share the same network parameters to make
decisions.

4.1 Feature Extraction
We model the traffic network in the multi-agent scenario as
a graph G = (V ,E), where V is the set intersections and E
means the road connections in between. Each intersection is
treated as an agent. Each agent i ∈ V has a partial observation
oit at time step t. oit includes 1) static features, such as the
number of lanes, length, speed limits, type of roads, as well
as the local road topology; and 2) dynamic features, such as
the real-time traffic flow as well as the current signal phase.
We concatenate the state and dynamic features as vector xi ∈
RM , which represents the partial observation oit, where M is
the feature dimension. All nodes’ features can be represented
by a matrix Xn×M , where n represents the number of nodes.
The input of GCN at each layer is the adjacency matrix Z
and node feature H , where H0 = X . The final layer feature
propagation formula improved by GCN is as follows:

f(H(l+1), Z) = σ
(
C̃−

1
2 Z̃C̃−

1
2H(l)W (l)

)
, (2)

where C̃ is a matrix introduced to normalize Z.
For the feature extraction model, we construct a GCN net-

work with several layers, and the activation function adopts
ReLU and Softmax respectively, so the overall forward prop-
agation formula is as follows:

f(X,Z) = softmax
(
Ẑ ReLU

(
ẐXW (0)

)
W (1)

)
. (3)

Through the above, static and dynamic features are ex-
tracted and processed by the GCN embedding layer. The re-
sult obtained by the embedding will be input to the next part
for grouping cohesion.
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Figure 3: GPLight general framework includes Feature Extraction, Group Cohesion and Q-Learning.

4.2 Group Cohesion
In this section, we introduce two loss functions for better
group cohesion as follow.

MI Loss: Stability Maintenance
Given the features extracted by GCN, each agent i has an em-
bedding ρi. In order to adapt to the dynamic environment and
avoid rapid change that leads to learning instability, we pro-
pose to ensure slow changes of agents by maximizing I(τi;ρi
| oi), the conditional mutual information between the indi-
vidual actions and the group given the current observation.
However, estimating and maximizing mutual information can
often be challenging. To address this, we refer to the work
of ROMA[Lhaksmana et al., 2018], which introduced a vari-
ational posterior estimate to derive a tractable lower bound
for mutual information targets [Wainwright and Jordan, 2008;
Alemi et al., 2016]:

I(ρti; τ
t−1
i |oti) ≥ Eρti,τt−1

i ,oti

[
log

qξ(ρ
t
i|τ

t−1
i , oti)

p(ρti|oti)

]
, (4)

where τ t−1i = (o0i , a0i , · · · , ot−1i , at−1i ). qξ is the variational
estimator parameterised with ξ , and we call it an encoder,
which uses a GRU [Cho et al., 2014] to encode the history of
the agent’s observation and behavior. The first loss function
we use is rewritten from the lower bound of Eq. 4 as follows:

LI(θρ, ξ) = E(τt−1
i ,oti)∼B

[
BKL

[
p(ρti|oti) ‖ qξ(ρti|τ t−1i , oti)

]]
,

(5)
where parameters θρ are conditioned on ρi, B is a replay
buffer and BKL[·‖·] is the KL divergence operator.

Gather Loss: Separate Different Groups
Furthermore, we have to separate different groups in order to
1) make agents in the same multi-agent group have more sim-
ilar features to ensure the accuracy of the shared decision, and
2) maximize differentiation of different multi-agent groups
to ensure that the grouping is reasonable. To achieve distin-
guishable groups, we have the following formula to minimize

the similarity between agent i and agent j [Lhaksmana et al.,
2018]:

minimize
θρ,ξ,φ

U tφ2,0

subject to I
(
ρti, τ

t−1
j |otj

)
+ uφ

(
τ t−1i , τ t−1j

)
> 1, ∀i 6= j,

(6)

where matrix Uφ = (uij), uij = uφ(τi, τj) is used to mea-
sure the difference in the distribution of agent i and agent j
by historical local states comparison. The meaning of sub-
script (i.e., 2,0) is the Frobenius norm. I(ρi; τj) represents
the mutual information between agent i and agent j. The
values of u and I are both in [0, 1]. We want to minimize
the non-zero elements in matrix U while maximizing the sum
of I and u. The purpose of this is that we expect to maxi-
mize I preferentially, that is, to enhance compactness within
multi-agent groups. In this way, the value of u will be high
only when the mutual information I of the two agents is low,
which means their difference is large. Thus, the multi-agent
group becomes compact and the distinction between groups
becomes more obvious.

Similarly, we construct an upper bound as the second loss
function we will use:

LU (θρ, φ, ξ) = E(τt−1,ot)∼B,ρt∼p(ρt|ot) U tφF

−
∑
i6=j

min{qξ(ρti|τ t−1j , otj)

+ uφ(τ
t−1
i , τ t−1j ), 1},

(7)

where F represents Frobenius norm, τ t−1 joint distribution
and ot is the joint observation.

4.3 Q-Learning
QMIX [Rashid et al., 2018] is a multi-agent reinforce-
ment learning algorithm, which is suitable for Dec-POMDP
[Oliehoek and Amato, 2016]. Through group cohesion in
the previous step, it is possible for us to combine centralized
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training with the multi-agent group. As a result, the same
group of multi-agents will exhibit a high degree of similar-
ity in decision-making. Conversely, different types of multi-
agents will be distinguished by variations in their network pa-
rameters. Additionally, the group membership of individual
agents will continuously change over time.

To better utilize the system’s state information, St is incor-
porated into Qtot (the sum of q values of each agent through
linear transformation) using the hyper network, rather than
solely as an input to the mixing network. During the updat-
ing process, we employ the traditional Deep Q-Network ap-
proach and sample data from the replay buffer. This allows
us to obtain the final loss function for the Q-learning process
as follows [Rashid et al., 2018]:

LTD(θ) =
[
r + γmaxa′Qtot(s

′, a′; θ−)−Qtot(s, a; θ)
]2
,

(8)
where θ− are periodically updated parameters for the target
network.

From what has been discussed above, the final learning
goal of our GPLight framework consists of three Loss func-
tions:

L = LTD + λILI + λULU , (9)
where λI and λU are scaling factors.

5 Experiments
5.1 Settings
We run our experiments on CityFlow [Zhang et al., 2019], a
traffic simulator. Compared to SUMO [Lopez et al., 2018],
CityFlow is a highly concurrent multi-threaded system with
significantly faster simulation. In our experiments, each car
has its own set of parameters, e.g., acceleration, maximum
speed, which greatly improves the realism of the traffic sim-
ulation environment.

As each car makes its way from the start position to the
destination. GPLight schedules the traffic light of all intersec-
tions, which would influence the moving speed of all vehicles
since Vehicles follow the traffic rules. According to the tradi-
tional setting, each green signal is followed by three seconds
of yellow light and two-second all red time.

5.2 Dataset
Synthetic Data. In the synthetic dataset, we will use two
kinds of maps. They are made up of different numbers of
intersections. Synthetic maps are generated via Cityflow and
include road attributes such as the number of lanes and road
speed limits. Each road at the intersection has three lanes
with 3 meters in width, lanes between two intersections are
different in length.

• Grid10×10-Uni. In this type of map, traffic flows in one
direction. We uniformly set it to run west to east and
north to south. The west→east traffic flow is 300 ve-
hicles/lane/hour, and the north→south traffic flow is 90
vehicles/lane/hour.

• Grid33×33-Bi. In this type of map, there are 1,089
intersections, and traffic flows in both directions. Ve-
hicles moving in from east, west, north, south. The

east↔west traffic flow is 300 vehicles/lane/hour, and the
north↔south traffic flow is 90 vehicles/lane/hour. The
structure of the road network is heterogeneous, thus the
setting is more realistic.

Real-world Data. We also experiment with real traffic data.
For the convenience of subsequent comparative experiments,
we continue to use the real maps of Hangzhou, Jinan in China,
and New York in the USA. Their road network structure can
be imported from OpenStreetMap, as shown in Figure 4. A
detailed comparison of the three real-world datasets is shown
in Table 1.

DHangzhou DJinan DNewY ork

Intersections 16 12 196
Average arrival
(vehicles/300s) 526.63 250.70 240.79

Primary roads 86 183 195
Secondary roads 117 164 306

Trunk links 26 33 27

Table 1: Comparison between Real-world Datasets.

(a) Grid_33_33_Bi (b) Gudang Sub-district, Hangzhou, China

(c) Dongfeng Sub-district, Jinan, China (d) Manhattan, NewYork, USA

Figure 4: (a) is Synthetic Map with 1,089 intersections. (b)-(d) are
Real-world Maps with 16, 12, and 196 intersections. The green areas
on the maps are the ones we use. The intersections within the yellow
circles will be used in the experiment.

5.3 Baseline
Our experiments mainly compare two types of methods, tra-
ditional traffic signal control methods as well as deep rein-
forcement learning-based signal control methods. Here are
the details:

• Fixedtime [Koonce and Rodegerdts, 2008]. In the
method of Fixedtime, intersection traffic signals are in
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Method Grid10×10-Uni DHangzhou DJinan DNewY ork

Fixedtime [Koonce and Rodegerdts, 2008] 345.81 718.29 814.09 2125.97
MaxPressure [Varaiya, 2013] 319.28 416.82 487.52 1826.78

IntelliLight [Wei et al., 2018] 308.97 402.68 461.47 1952.11
CoLight [Wei et al., 2019b] 286.04 356.88 355.41 1534.36
MPLight [Chen et al., 2020] 305.65 348.12 417.51 1673.68

GPLight 260.37 301.45 307.52 1284.98

Table 2: Performance on synthetic data and real-world data.

accordance with the pre-set timing scheme. Traffic sig-
nal light changes periodically.

• MaxPressure [Varaiya, 2013]. In MaxPressure, the pur-
pose of traffic signal control is to minimize the pres-
sure at the intersection and balance the length of vehicle
queue on the lanes connected with the intersection.

• IntelliLight [Wei et al., 2018]. It essentially uses a deep
Q-learning network (DQN). The agent at each intersec-
tion is completely independent, regardless of adjacency
and parameter sharing. The reward value is set as the
weighted result of the six evaluation indexes.

• CoLight [Wei et al., 2019b]. Graph neural network is in-
troduced in CoLight. It takes into account the influence
of surrounding intersections on the current intersection
by introducing graph attention network and some multi-
head calculations.

• MPLight [Chen et al., 2020]. MPLight combined with
MARL to conduct experiments at large-scale intersec-
tions. It sets up a DQN at each intersection.

5.4 Evaluation Metric
The main purpose of controlling the traffic signal lights at
the intersection is to make the vehicles pass through the in-
tersection more efficiently. In order to achieve this goal, we
usually set some indicators to evaluate the efficiency [Wei et
al., 2019c]. In our experiment, we choose Travel Time to
evaluate the performance of the signal control algorithm. It is
defined as the average time taken by all vehicles during their
journey.

5.5 Effect Verification of Group Cohesion
In this section, we visualize the results of Group Cohesion to
demonstrate the feasibility of the method.

We process the data of Group Cohesion in GPLight, hoping
to see its effect intuitively. It is worth noting that since we
want to visualize the results, we compress the embedding of
GCN into two dimensions.

We run the experiment on the synthetic map. Figure 5
shows the clustering results of Group Cohesion. It can be
seen that GPLight can divide groups effectively and the re-
sults change in real-time with different traffic conditions at
different times. Figure 6 shows the results of Group Cohe-
sion combined with the road network. Different from tradi-
tional TSC in which only the influence of adjacent intersec-
tions is considered, we can see from the figure that in GP-
Light, it is possible to cooperate even when intersections are

far apart. This is because the topological structure and traffic
features are likely to be highly similar even if intersections
are far apart. GPLight processes the comprehensive features
of the intersections to mine these similarities.

embedding at stimulation time: 1510 embedding at stimulation time: 3310
 4

 3

 2

 1

 0

-1

   -3         -2         -1          0          1          2    -2         -1           0           1           2

 2

 1

 0

-1

-2

Figure 5: Visualization of GPLight clustering effect. It shows the
distribution of intersections after GPLight feature extraction. At dif-
ferent times, the results of clustering change with the change of fea-
tures.

Figure 6: The intersections of the same color are in a group, which
means that their extracted features have a high degree of similarity.
Note that the grouping at each intersection changes in real-time. In-
tersections far apart but similar can affect each other.

5.6 Performance Comparison
This section presents the performance of GPLight and com-
pares it with conventional transportation methods and RL
methods.

Overall Analysis
Table 2 shows GPLight’s comparison to the other five ap-
proaches, including two traditional TSC approaches and three
advanced TSC approaches in MARL. According to the ex-
perimental result, GRLight has an average improvement of
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Figure 7: Convergence speed of IntelliLight, CoLight, MPLight and
GPLight. Performance of GPLight is best.

Method Grid33×33-Bi Improvement

Fixedtime 2032.56 63.8%
MaxPressure 2171.13 66.1%

IntelliLight 2246.23 67.3%
CoLight 1493.72 50.8%
MPLight 1134.01 35.1%

GPLight 735.51 -

Table 3: Performance on large-scale.

21.6% compared with the two traditional methods (Fixed-
time and MaxPressure) on the synthetic datasets. On real-
world datasets, GPLight has improved 53.3% over Fixedtime
and 31.4% improvement over MaxPressure on average. This
is because conventional traffic light controls do not apply to
traffic conditions that change over time. The traffic signal
control methods which are adjusted according to the real-time
traffic flow are more suitable for our life.

We also compare GPLight with three advanced MARL-
based TSC methods (IntelliLight, CoLight and MPLight).
As we can see from the table, the performance of GP-
Light is significantly better. GRLight achieves an average
13.2% improvement over the other three methods on syn-
thetic datasets. In addition, GPLight averages 30.9% im-
provement over IntelliLight, 15.1% improvement over Co-
Light and 21% improvement over MPLight on real-world
datasets, which proves its superior performance. We can see
that the RL-based approaches are significantly superior to the
traditional TSC approaches. This is because the TSC methods
based on RL can flexibly make judgements derived from the
current states of the intersections, which makes a great con-
tribution to the changing traffic situation at every moment.

Furthermore, we conducted an experiment on a large and
irregular road network. As shown in Table 3, GPLight
demonstrates its superiority more prominently onGrid33×33-
Bi maps than on the others, highlighting the effectiveness of
our approach in large-scale TSC. The reason for this is that we
have mined intersections with high similarity among large-

scale intersections and grouped them for cooperation. The
experimental results demonstrate that this cooperation model
significantly improves efficiency.

In conclusion, GPLight groups multiple agents, which
not only ensures the diversity between different groups, but
also reduces the difficulty of training within the same group.
The experimental results prove that GPLight can effectively
group multi-agent systems and achieve superior performance,
which is particularly evident in large-scale TSC.

Convergence Analysis
In Figure 7, we compare GPLight with IntelliLight, CoL-
ight and MPLight’s convergence rate during training. The
metric used is the average travel time of vehicles evaluated
at each episode. CoLight’s convergence trend is similar to
GPLight’s, but GPLight performs best compared to the other
three advanced RL-based TSC approaches. This is reflected
in three aspects, respectively, initial performance after the
first episode, learning time to achieve a pre-expected goal,
and the final learning result. From this, we can conclude that
our model GPLight learned the best way to make decisions
and achieved good results in overall average travel time while
maintaining excellent convergence rates.

5.7 Ablation Experiments
In the above experiments, we can see that GPLight has shown
excellent results. As GPLight is mainly composed of three
modules: GCN Embedding, Group Cohesion and QMIX. To
prove the effectiveness of each module, we conduct ablation
experiments. It can be seen from Table 4 that multi-agent
reinforcement learning effects without GCN embedding or
Group cohesion will become worse, which proves that both
GCN Embedding and Group Cohesion have played indis-
pensable roles in GPLight.

Method Grid33×33-Bi

QMIX 1225.63
QMIX+Group cohesion 862.24
QMIX+GCN embedding 1013.78

QMIX+Group cohesion+GCN embedding 735.51

Table 4: Ablation experiments of GPLight.

6 Conclusion
This paper presents GPLight, a MARL TSC method that
effectively balances accuracy and complexity in large-scale
TSC by grouping agents with a high degree of similarity. Ex-
perimental results demonstrate its superiority. In future re-
search, we will focus on the following aspects: 1) addressing
heterogeneous intersections and 2) developing MARL algo-
rithms specifically designed for grouped agents. By divid-
ing agents into groups, we enable collaboration within each
group to enhance training efficiency and reduce complexity,
while agents from different groups cooperate to optimize traf-
fic efficiency. Taking these interactions into account, we aim
to propose novel MARL methods that improve training effi-
ciency and stability.
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