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Abstract

We study a rumor spreading model where individ-
uals are connected via a network structure. Ini-
tially, only a small subset of the individuals are
spreading a rumor. Each individual who is con-
nected to a spreader, starts spreading the rumor
with some probability as a function of their trust
in the spreader, quantified by the Jaccard similarity
index.Furthermore, the probability that a spreader
diffuses the rumor decreases over time until they
fully lose their interest and stop spreading.

We focus on determining the graph parameters
which govern the magnitude and pace that the ru-
mor spreads in this model. We prove that for the
rumor to spread to a sizable fraction of the individ-
uals, the network needs to enjoy “strong” expan-
sion properties and most nodes should be in “well-
connected” communities. Both of these character-
istics are, arguably, present in real-world social net-
works up to a certain degree, shedding light on the
driving force behind the extremely fast spread of
rumors in social networks.

Furthermore, we formulate a large range of coun-
termeasures to cease the spread of a rumor. We
introduce four fundamental criteria which a coun-
termeasure ideally should possess. We evaluate all
the proposed countermeasures by conducting ex-
periments on real-world social networks such as
Facebook and Twitter. We conclude that our novel
decentralized countermeasures (which are executed
by the individuals) generally outperform the previ-
ously studied centralized ones (which need to be
imposed by a third entity such as the government).

1

With the rapid development of the Internet, social media has
become a convenient online platform for users to obtain in-
formation, express and exchange opinions and stay in touch
with friends. However, online social networks also pave the
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road for the propagation of misinformation, particularly ru-
mors (commonly defined as unverified information or delib-
erately falsified news). It is usually difficult for the public to
recognize the falsehood of a rumor, especially if it is designed
skillfully, cf. [Vosoughi et al., 2018]. The spread of rumors
can mislead people to behave in irrational ways, which can
cause a series of undesirable consequences, such as public
panic, virtual assets losses, manipulation of the outcome of
political events, and economic damages. Consequently, there
has been a growing demand and interest to gain insights into
the rumor spreading dynamics and design powerful counter-
measures to reduce the threats posed by rumors.

To shed some light on the fundamental characteristics
and essential principles of rumor propagation phenomenon,
scholars from a vast spectrum of backgrounds have intro-
duced and studied various rumor spreading models, such
as SIR model [Zhao er al., 2012], Push-Pull protocol [Gi-
akkoupis, 2011], DK model [Daley and Kendall, 1965] and
the Independent Cascade (IC) model [Kempe et al., 2003].
In most of these models, the interactions and influence be-
tween the individuals are modelled using a graph structure,
which represents a social network (SN). The state of the in-
dividuals (e.g., informed/uninformed) is updated following a
rumor spreading rule. The updating rules are tailored to cap-
ture various properties observed in real-world scenarios, usu-
ally conceptualized by social scientists.

One aspect of the rumor spreading dynamics which has at-
tracted a substantial amount of attention is the design of effec-
tive countermeasures to stop or slow down the spread of ru-
mors, e.g., blocking users, blocking connections, and spread-
ing an “anti-rumor”, cf. [He et al., 2015].

In the present paper, we introduce a rumor spreading model
which inherits characteristics of the IC, Push-Pull, and SIR
model and additionally captures the well-established socio-
logical concepts of the impact of trust and forgetting mech-
anism. In an attempt at fighting rumor spreading, we study
six countermeasures. We establish four essential criteria that
a good countermeasure should possess and evaluate the pro-
posed countermeasures on those. We observe that the decen-
tralized countermeasures perform generally better.

1.1 Preliminaries

Let G = (V,E) be a simple connected undirected graph,
where n := |V| and m := |E|. For anode v € V,
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N () := {v/ € V : {v,v} € E} is the neighborhood of
v. Furthermore, N (v) := N (v) U{v} is the closed neighbor-
hood of v. Let d (v) := |N (v) | be the degree of vin G. We
also define d4 (v) := |N(v) N A| for aset A C V. Further-
more, let 0(A) :={v e V\ A:{v,v} € E,v' € A} be the
node boundary of A C V.

We define a coloring to be a function C : V' — {r,u, 0},
where 7, u, and o represent red, uncolored, and orange re-
spectively. For a node v € V, the set NS (v) = {v' €
N (v) : C(v") = a} includes the neighbors of v which have
color a € {r,u, o0} in coloring C.

Rumor Spreading Model. Consider an initial coloring Cy
of a graph G. In each round, all nodes simultaneously update
their color according to the following updating rule:

ifC;i1(v) =0
ifC;_1(v) =7 and Ji(v) < k
ifCi1(v) =7 and Ji(v) =k
ifC;—1(v) = uw.p. p*(v)
ifCi—1(v) =uwp. 1—p*(v)
where C; (v) is the color of node v in the ¢-th round,
integer k is a model parameter, [J;(v) is the number of
rounds v has been red until round ¢, S(v,v’) := |N(v) N
N@)|/IN(w) U N@')| for v,o’ € V, and p*(v)

11 c S(v,v")
v/EN,,.t’*l(v) 27t (v")

individual who is informed of the rumor. An informed node
stops spreading the rumor after k rounds and turns orange
(uninterested), which it remains forever. An uncolored node
corresponds to an uninformed individual. If an uninformed
(uncolored) node v is adjacent to an informed (red) node v,
then v’ turns v into red w.p. S(v,v’)/27+(*") independently.
Thus, v becomes red in the next round w.p. 1—p* and remains
uncolored w.p. p*. The coefficient 1/27 (v") corresponds
to the probability that v’ spreads the rumor and S(v,v’) is
the probability that v accepts it. The value of 1/27 ") ac-
counts for the fact that v" might not necessarily spread the
rumor w.p. 1 and the probability decreases exponentially in
the number of rounds v’ has been informed of the rumor, re-
flecting the fact that an individual loses interest in a rumor
over time, cf. [Zhao et al., 2013]. The coefficient S(v,v’)
(the Jaccard index) which measures the similarity between
two nodes reflects the fact that people are more likely to ac-
cept information from their trusted connections [Figeac and
Favre, 2021]. In the numerator, we use N (v). This is to
ensure that for two adjacent nodes v, u, S(v, u) (the accept-
ing probability) is not zero. We could analogously define
S(v,u) = (|JN(v) N N(u)| + 2)/|N(v) U N(u)| since we
are always concerned about adjacent nodes. We note that we
can also view S (v, v’) as the weight of the edge {v,v'}.

Our model is different from the IC model in two ways: In
the IC model (i) k is always set to 1 (i.e., a red node becomes
orange after one round) (ii) the weights are usually assigned
randomly.

Starting from any initial coloring, the process eventually
reaches a fixed coloring where all nodes are orange or uncol-
ored. If the process reaches a coloring with a constant frac-
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tion of orange nodes, say 10%, then we say that the rumor
spreads, and it does not otherwise. (There is nothing unique
about 10% and our results hold for similar fixed values.)

Graphs. Let G, , denote the Erdds-Rényi (ER) random
graph, which is the random graph on n nodes, where each
edge is present independently w.p. p. For integers n and r,
we define the (n,7)-flower graph in the following way. Con-
sider a cycle Cy = vy, -+ ,vy for N = n/r. For each node
v;, add a distinct clique of size » — 1 to the graph and add
an edge between v; and every node in the clique. We refer to
each node v; and its clique as a super node and v; is called
the boundary node of the super node. We are particularly in-
terested in the case of = log?(n), which is simply called
the n-flower graph. (Note that (n, 1)-flower graph is simply a
cycle graph with n nodes.)

To measure the expansion of a graph, we consider an
algebraic characterization of expansion. Let A(G) be the
second-largest absolute eigenvalue of the adjacency matrix
of G. Small values of A\(G) imply that G has strong ex-
pansion properties (i.e., is well-connected). For integers n, d,
we define the (n, d)-moderate expander graph in the follow-
ing way, where we always assume that n is “significantly”
larger than d. Let H be a N-node, D-regular graph such that
MH) < CVD, where N = g2y ad D = d - log?(n)
and C' is a positive constant. Replace every node = in H
with a clique of size log® n and then evenly distribute the D
edges of z among these log® n nodes. The obtained n-node
(log® n+ d — 1)-regular graph is an (n,d)-moderate expander,
which is denoted by M,, 4. Similar to the (n, r)-flower graph,
the set of log” n nodes in each of the N cliques is called a
super node. (Note that moderate expanders are not meant to
mimic real-world SNs. They are solely designed to maximize
the spread of rumors and are objects of theoretical interest.)

Experimental Setup. For our experiments, we rely on pub-
licly available graph data from [Leskovec and Krevl, 2014].
Our experiments were conducted on the following SNs: Twit-
ter (81306 nodes and 1342310 edges), Facebook (4039 nodes
and 88234 edges), Google+ (107614 nodes and 13673453
edges), Twitch Germany (9498 nodes and 153138 edges),
and Twitch France (6549 nodes and 122666 edges). We
use shorthand TW, FB, G+, T-GE, T-FR, respectively. We
also conducted experiments on ER random graph and Hyper-
bolic random graph (HRG). The parameters in these graphs
were set such that the (expected) number of nodes/edges
is comparable to the ones in the aforementioned real-world
networks. For HRG, one also needs to provide the expo-
nent of the power-law degree distribution 3 and the tem-
perature T as the input parameters. We set § = 2.5 and
T = 0.6. We used the algorithm of [Staudt et al., 2016]
for the generation of HRG random graphs. Furthermore, the
experiments which required random choice of edges or col-
ors were executed 100 times. and then the average output
was considered. The code for the experiments is available at
https://github.com/charlotteout/RumourSpreading.

Assumptions. All logarithms are to base e, unless pointed
out otherwise. We let n tend to infinity and say an event £
happens with high probability (w.h.p.) if it occurs w.p. 1 —
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o(1). We always assume that initially one randomly chosen
node is red, and all other nodes are uncolored, otherwise, it is
stated explicitly. Furthermore, we suppose the parameter k is
a small integer, say k = 5, but our results would hold for any
constant value of k.

1.2 Our Contribution

We study a rumor spreading model which captures fundamen-
tal characteristics such as the randomized spreading mecha-
nism and various agent types as introduced in the IC, Push-
Pull and SIR model, as well as sociological concepts such
as the impact of homophily on trust [Granovetter, 1973],
formulated by the Jaccard index, and the forgetting mecha-
nism [Zhao et al., 2013].

Firstly, we address the question: What are the graph struc-
tures for which the rumor spreads (in other words, what
graph parameters govern the spread of rumors)? It has previ-
ously been argued that that information disseminates quickly
when the graph has strong expansion properties (i.e., is well-
connected), cf. [Giakkoupis and Sauerwald, 2012]. However,
for our model expansion is not solely sufficient for a rumor
to spread, especially if the graph is sparse which is usually
the case in the real-world SNs. In particular, we prove that in
our model on the ER random graph G,, ,, (which enjoys strong
expansion properties, cf. [Le et al., 2017]) for p sufficiently
smaller than 1//n, the rumor does not spread with a constant
probability.

Additionally, we show that an abundance of very well-
connected local communities (which result in large values of
S (v, v") for adjacent nodes v, v’) alone also cannot guarantee
extensive spread of rumors. In particular, we prove that on
an (n, r)-flower graph, where S(v,v’) = 1 for almost every
two adjacent nodes v, v, the rumor does not spread w.h.p. for
r < n'~¢and € > 0 (even when we start with o(logn) red
nodes).

However, we show that the combination of these two prop-
erties guarantees an extremely fast spread of rumors. More
precisely, we prove for even very sparse moderate expander
graphs, the rumor spreads in logarithmically many rounds.
Roughly speaking, the strong local communities help the ru-
mor to spread quickly inside a community once it reaches a
node in that community and expansion ensures that it breaks
out into other communities invasively. (We emphasize that
the average degree of moderate expanders in this set-up is in
the order of log2 n, which is much smaller than the average
degree of \/n required in ER graphs for spreading.)

A natural question to ask is whether the rumor spreads on
real-world SNs in our model. Our experiments on real-world
graph data such as Twitter and Facebook demonstrate that the
rumor indeed spreads to a very large body of the network in
a short period of time. While the social graphs which emerge
in the real world do not have the expansion and community
structure tailored for the moderate expanders, they still enjoy
a certain level of expansion, and well-connected communi-
ties are present in abundance. Note that this is an indication
that our model is more realistic than previous models such
as Push-Pull models, which advocate strong expansion prop-
erties as necessary and sufficient condition for fast spread of
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rumors, as we know that in real life rumors spread very fast
in real-world SNs, and they are not strong expanders.

Moreover, we formulate and investigate several counter-
measures. Some of them (e.g., blocking nodes and edges)
need to be implemented by a third entity such as the govern-
ment, and we refer to them as centralized countermeasures.
On the other hand, the decentralized ones are executed by the
members of the network. It turns out that the proposed de-
centralized countermeasures not only enjoy several desirable
criteria such as not interfering with freedom of expression and
not being too intrusive, but also significantly outperform the
centralized ones in stopping the spread of the rumor accord-
ing to our experiments. The prior work has focused on the
development of centralized countermeasures, see Section 1.3
(which are also implemented in practice up to some degree,
e.g., by blocking accounts). Our work aspires to send out
the message that the focus should be shifted towards the de-
velopment of decentralized countermeasures, which can be
achieved for instance through educating the members rather
than forceful actions of a third entity.

1.3 Prior Work

A plethora of rumor spreading models have been developed
and studied in recent years. Here, we focus on the most fun-
damental and relevant models, which have inspired our work.

Push-Pull Models. In this set-up, each node is either red or
uncolored. In each round, every red node makes a randomly
chosen neighbor red (Push model), or every uncolored node
adopts the color of a randomly chosen neighbor (Pull model),
or both (Push-Pull model). Since there is no forgetting mech-
anism in place, all nodes eventually become red (i.e., the ru-
mor spreads). Thus, a natural question is how long this takes.
For the Push model, the spreading time is known [Feige et
al., 1990] to be O(A - (A + log(n)), where A and A are the
maximum degree and diameter of the underlying graph. For
the Push-Pull model, after a long line of research, the bound
O (®'log(n)), for @ being the conductance of the graph,
was proven [Giakkoupis and Sauerwald, 2012].

Independent Cascade (IC) Model. 1In the IC model [Gold-
enberg et al., 2001], in each round every red node v makes an
uncolored node w in its neighborhood red w.p. p,,. A red
node becomes orange after one round, which is similar to set-
ting £ = 1 in our model. However, in the IC model, the
probabilities p,,,, are chosen uniformly at random. Motivated
by viral marketing, the main focus in this model is devel-
oping algorithms for finding subsets of nodes that maximize
the spread of the red color, mostly exploiting monotonicity
and submodularity properties (cf. [Mossel and Roch, 2007;
Chen et al., 2011]).

Weighted Connections. Recall that in the IC model (and
other similar models) weights are assigned to the edges ran-
domly. As this is not entirely realistic, it would be relevant
to introduce meaningful weight assignment mechanisms. Us-
ing the communication information of individuals on various
real-world networks, [Onnela et al., 2007] and [Goyal et al.,
2010] observed that there is a strong correlation between the
number of shared friends of two individuals and their level
of communication. Consequently, they proposed the usage of
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similarity measures, such as Jaccard-like parameters, to ap-
proximate the weights of connections between nodes. This is
also aligned with the well-studied strength of weak ties hy-
pothesis [Granovetter, 1973]. This line of research has in-
spired the choice of Jaccard index in our model.

Countermeasures. A large part of the research efforts for
developing countermeasures is concentrated around blocking
nodes and edges. However, since in most models finding the
most “influential” nodes/edges is NP-hard, cf. [Kempe et al.,
20031, the focus has been on approximate blocking strate-
gies, which use structural properties. For nodes, various al-
gorithms such as blocking nodes with the highest degree, be-
tweenness, and closeness have been investigated, cf. [He et
al., 2015; Wang et al., 2015; Yu et al., 2008]. Furthermore,
for different greedy-based edge blocking strategies to mini-
mize the spread in the IC model, see [Kimura er al., 2008;
Yan et al., 2019]. Other studied countermeasures are spread-
ing the truth as an anti-rumor, cf. [Tripathy et al., 2010; Ding
et al., 2020], inoculation strategies (which rest on the idea that
if people are forewarned that they might be misinformed, they
become more immune), cf. [Lewandowsky and Van Der Lin-
den, 20211, and accuracy flags, cf. [Gausen et al., 2021]. For
more results on countermeasures also see [Coro erf al., 2020;
Bredereck et al., 2021; Zheng et al., 2022; Qian et al., 2018;
Ma et al., 2016].

2  When Does a Rumor Spread?
2.1 Erdés-Rényi Random Graph

Theorem 1. Consider the coloring where only one node is

red (the rest is uncolored) on G, , with p < f+€ for any
n2
constant € > 0. The rumor does not spread with a constant

probability.

Proof. Define s := [1/€] + 1. For a pair of distinct nodes v
and u, the probability that the inequality IN(w) N N(u)| > s
holds is upper-bounded by ( ) . Let X be the number
of pairs which satisfy the above mequahty Then, we have

E[X] S (121) (nSQ)p25 < ns+2p25 S % — 0( )’ where

we used that p < 1/ n3+e and se > 1, respectively. Hence,
by Markov’s inequality (cf. [Dubhashi and Panconesi, 2009]),
Pr[A] = Pr[X > 1] < o(1), where A is the event that X > 1
(and A is the complement of .A).

Let v be the only node which is colored red in Cy. For each
node u € N(v), we have Pr[Ci(u) = r|d(v) = d AN A] =

% s£2 1), For (s + 2)/(2d), we used

< min(

that |N(v) N N(u)| < |[N(w) " N(u)| +2 < s+ 2 and
|N(v) UN(u)| > d(v) = d. The upper bound of 1/2 holds
because | N (v) N N (u)| < [N (v) UN(u)].

Let &, for 1 < ¢ < k, denote the event that v does not
make any of its neighbors red in the i-th round. Then,

Pr(&|d(v) = dAA] > (1—min (52, 1) 1 52 < 1/2
then (1 - %{f)d > (%)(SH)/2 (which gives a constant lower
bound) using the estimate (1 — z) > (1) for z < 1/2. If

s£2 > 1/2, then d < s + 2, which implies that (1/2)?
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a constant.
(1 — min (

Therefore, in both cases, we can lower bound

, d .
52';2, %)) with some constant C' > 0.

Pr[&1] = Pr[A] - Pr[&1|A] + Pr[A] - Pr[&]A] >

Pr[A] - i Pr[&;|d(v)
d=0

Pr[A] - Z C - Pr[d(v)
d=0

=dA A Prld(v) =d] >

—d = (1-0(1)-C>

[ Q

With a similar argument, we can prove that Pr[&;|&;_1 A+ - A
&1] > C/2for2 < i < k. Thus, we have Pr[E1 A+ - AE] =
PrEu|Eei A+ A& -+ Pr[&|E1] - Pr[€1] > (C/2)". This

implies that w.p. at least (C'/2)* = (C'/2)?, no node becomes
red during the first k rounds. In that case, the process ends
with one orange node and n — 1 uncolored nodes in k rounds.
This bound on p turns out to be tight (a full proof is given in
the extended version). O]

2.2 Flower Graph

A super node whose all nodes are uncolored is called uncol-
ored and colored otherwise. And it is said to be red if all its
nodes are red.

1—e

Theorem 2. Consider an (n,r)-flower graph for r < n
and constant € > 0. If initially there are s(n) = o(logn) red
super nodes (and the rest is uncolored), the rumor does not
spread w.h.p.

Proof Sketch. A path of super nodes is a sequence of super
nodes which form a path in the cycle obtained from collaps-
ing each super node into a node. A path is uncolored if all
its super nodes are uncolored. In a reddish path, there are
no two adjacent uncolored super nodes and the endpoints are
colored. We note that for any coloring of the (n,r)-flower
graph, there is a set of maximal uncolored and reddish paths
which partition the nodes in the graph.

Define a phase to be a sequence of k rounds. Let C be the
coloring at the beginning of phase ¢. Consider all the end-
points of the uncolored paths in the aforementioned partition-
ing and define U to be their boundary nodes. Let &; be the
event that no node in U becomes red during the whole phase.

We observe that if the event &; occurs, then all boundary
nodes of the reddish paths endpoints become orange. Thus,
all nodes which are not on any reddish path remain uncolored
forever. Let us define t* := (1/C)?*(™ log(n), for a suit-
ably chosen constant 0 < C' < 1, then with some relatively
straightforward calculations, we can show that Pr[/\f*:lgi] <
%. Thus, w.h.p. after at most ¢* phases (i.e., kt* rounds), we
reach a coloring where all nodes which are not on any red-
dish path remain uncolored forever. Furthermore, we claim
that the number of nodes on the reddish paths during the first
kt* rounds is sub-linear. Hence, the rumor does not spread
w.h.p. (A full proof is given in the extended version.) O

2.3 Moderate Expander

Theorem 3. Consider an (n, d)-moderate expander M, 4
with d = w(1). If initially there is a red node (and the rest
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are uncolored), then the rumor spreads w.h.p. in O(log,n)
rounds.

Similar to a flower graph, we call a super node x uncolored
if all its nodes are uncolored. We say x is strong red if every
node in it has become red at most three rounds before. A su-
per node is weak red if it is neither strong red nor uncolored.
Let uy, s; and w,; denote the number of uncolored, strong red,
and weak red super nodes in the ¢-th round.

Recall that if we contract all N = n/log®(n) super nodes
in M., 4, we obtain a D-regular graph for D = dlog*(n). In
Lemma 1 (whose proof is given in the extended version), we
state that if a node in one of these super nodes is red, then the
super node becomes red in 2 rounds. Then, in Lemma 3, we
show that the number of strong red super nodes increases by
roughly a d factor after every three rounds. Repeated applica-
tion of Lemma 3 implies that the rumor spreads in O(log, n)
rounds. (A more detailed discussion is given in the extended
version, where we also argue that the bound d = w(1) is nec-
essary, i.e., the statement does not hold for constant d).

Lemma 1. Consider a graph G = (V, E) where nodes in
K C V form a clique, k == |K| > log®n, and for every
v e Kdw) <2k IfC(v) = r for some v € K and all other
nodes in IC are uncolored, then there is no uncolored node in
K inroundt + 2 wp. 1 —o(1/n).

To prove Lemma 3, we need Lemma 2 and Observation 1.
The proof of Lemma 2 is given in the extended version, which
relies on the expander mixing lemma, cf. [Friedman, 2003].

Lemma 2. Consider an N-node D-regular graph G, where
\ < CV/D, for some constant C > 0, and D = w(l). Ifa
node set A is of size at most %, then there is some constant
C’ > 0 such that |0(A)| > min (2N/5, |A|C' D).
Observation 1. Ler x and y be two distinct super nodes in
a moderate expander graph. Then, there is at most one edge
between x and y, by construction.

Lemma 3. Consider an (n, d)-moderate expander M,, 4
withd = w(l). If 1 < s, < C1N/D, for a sufficiently
small constant Cy > 0, and wy = O(s¢/d), then after three
rounds there are Q(sid) new strong red super nodes w.p.

1 —exp(Q(—dst)) — o(1/ logn).

Proof. Let £ be the event that every uncolored super node
becomes strong red in two rounds once it has at least one red
node. Based on Lemma 1, £ holds w.p. atleast 1 — N -
o(1/n) > 1 — o(1/logn) since there are N super nodes.

Furthermore, let ¢* denote the probability that a node v,
in a strong red super node, makes a node u, in an uncolored
super node, red where there is an edge between v and u. Since
N() 0 N(u)] > 2, [N(v) UN(u)| < 2(d + log>n) <
2.5 1og2 n (using the assumption that d is significantly smaller
than n), and v has been red for at most three rounds, we get
the following upper-bound:

[N (v) NN (u))| 2 1
~ B|N(v)UN(u)] ~ 8x25log’n  10log®n’
ey
Let S, W, and U be the set of strong red, weak red, and
uncolored super nodes in round ¢. Let us label the nodes in

*
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9(S) N U from wu; to up, where b is the size of 9(S) N U.
For each node u; consider one of its neighbors in S. Let
Bernoulli random variable y; be 1 if and only if w, is made
red by that neighbor in S in the next round (i.e., ¢ + 1). For
the random variable Y := Zle y;, we have E[Y] > bg* >
b/(10log® n), where we used Prly; = 1] = ¢* and Equa-
tion (1). Since y;’s are independent, applying Chernoff bound
(cf. [Dubhashi and Panconesi, 2009]) yields

>> - @

o

Note that w; = O(s;/d) = o(s;) implies that s; + w; <
1.1s;. Furthermore, 1.1s; < N/10 since s; < C1N/D =
o(N). Thus, we can apply Lemma 2 for A = SUW
and the graph obtained from contracting each super node to
a node. Since |A| = s; + wy < 1.1s; < 1.1C1N/D,
we get 2N/5 > |A|C'D by selecting C; to be sufficiently
small. Thus, |0(A)] > s:C’D. Furthermore, note that
[0(A)| = 19(S)NU|+ [o(W)NU| = b+ [0(W)NU|
and [0(W) N U| < w¢D. Combining the last two statements
gives b > $,C'D — wD. Using wy = O(s¢/d) = o(s;) im-
plies that b = Q(Ds;). Thus, Equation (2) implies that w.p.
1 —exp(—Q(Dsy/log?n)) = 1 — exp(—Q(ds;)), there will
be Q(Ds;/log?n) = Q(ds;) nodes in U which become red
in the next round. Note that all such nodes are in different su-
per nodes (see Observation 1). If event £* holds, then all such
super nodes will be strong red in two more rounds. Since £*
holds w.p. 1 — o(1/logn) (as discussed above), there will
be Q(ds;) new strong red super nodes after three rounds w.p.
1 —exp(2(—dst)) — o(1/ logn). O

b

<
log®n

~ 20log®n

Pr [Y

2.4 Experiments and Real-world Networks

The outcome of our experiments in Figure 1-(a) are consistent
with our theoretical findings. In particular, the rumor does not
spread in the flower graph and ER-low (i.e., p = 1/(4y/n))
while it does for the moderate expander and ER-high (i.e.,
p = 4/+/n). Note that in this set-up, a node in the moder-
ate expander is of degree d + log?n — 1 ~ 100 (actually,
we observe in the experiments that for D = 64 rather than
D = d-100 = 4 - 100 the rumor already spreads), which
indicates the rumor spreads even in very sparse graphs if they
possess some level of expansion and community structure.
Furthermore, we observe that the process on the moderate
expander ends in around 50 rounds, which indeed appears to
be logarithmic rather than linear in n = 16000 (this is aligned
with the bound O(log, n) proven in Theorem 3).

Figure 1-(b) depicts the extent to which the rumor spreads
in Twitter and Facebook graph and random graph model HRG
with comparable parameters. (Please refer to Section 1.1 for
more details.) The plots for the other three studied SNs are
given in the extended version. We observe that the rumor
spreads to a large part of the graph very quickly. This can
be explained by the fact that all these graphs have a decent
level of expansion and community-like structure, which are
the necessary properties for a fast and wide spread according
to our theoretical results. As a by-product, our experiments
also support that HRG is a suitable choice for modeling real-
world SNs.
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3 How to Stop the Rumor Spreading?

We present six countermeasures (the first four are inspired by
prior work as explained in Section 1.3, but the last two are
completely novel) and then compare them. The outcome of
our experiments on the countermeasures for Twitter and Face-
book graphs and moderate expander are given in Figure 1 and
for the other three SNs (T-GE, T-FR, and G+) in the extended
version.

CM1: Blocking Nodes. We assume that the 5% highest de-
gree nodes and 20% randomly chosen nodes are blocked (i.e.,
do not receive/spread the rumor). As Figure 1-(c) demon-
strates, this countermeasure is not very effective. We believe
blocking nodes according to the highest betweenness, close-
ness, or eigencentrality (instead of highest degree) would not
improve the countermeasure significantly since in real-world
SNs there is a large overlap between the highest degree nodes
and nodes chosen by the mentioned parameters due to certain
properties such as the power-law degree distribution.

CM2: Blocking Edges. The graph is partitioned into com-
munities using the Louvain algorithm [Blondel et al., 2008].
In each round of the process, if the fraction of red nodes is
above a global threshold 7, then we block all the edges which
are on the boundary of the “spreader” communities. A com-
munity is a spreader if its fraction of red nodes is larger than
a local threshold 7.. The blocked edges remain blocked un-
til the community is not a spreader anymore. (Both thresh-
old are set to 0.05 in our set-up.) Figure 1-(d) demonstrates
while this countermeasure slows down the spread, the rumor
still spreads to a large part of the graph. It is worth to mention
that around 20 — 30% of edges were blocked during the pro-
cess in our experiments. (Unlike other experiments, this was
executed only 10 times due to its high computational cost.)

CM3: Accuracy Flags. Assume that every time a node is
supposed to become red, it rejects the rumor with some reject
probability p,., and becomes orange directly. In practice, this
countermeasure corresponds to for example accuracy flags
in online social platforms, in which posts containing certain
keywords (say hot controversial or polarizing topics) are au-
tomatically accompanied by a banner warning the user about
the trustworthiness of the content. The outcome of our exper-
iments for p, = 0.3, depicted in Figure 1-(e), demonstrates
that the rumor still continues to spread to a significant portion
of the community.

CM4: Let’s Spread the Truth. Let the truth spreading
process be the same as the rumor spreading with the follow-
ing two differences: (i) green and light green are used instead
of red and orange, respectively (ii) the probability a node be-
comes green is one half of the probability of becoming red
in the rumor spreading process (this is to account for the ob-
servation that rumors spread faster than facts, cf. [Vosoughi
et al., 2018]). After 7 rounds into the rumor spreading pro-
cess, we color an uncolored node green and the truth starts
spreading simultaneously. (We assume that the rumor and
truth spread only to uncolored nodes, that is, a red/orange
node does not become green and vice versa.) The outcome
of experiments, depicted in Figure 1-(f), indicates that this
countermeasure cannot stop the rumor effectively even when
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7 = 4 (which implies that there is a strong rumor detection
algorithm in place) and the node which starts the truth is the
node with the highest degree among the uncolored nodes. We
depict the influence of the delay 7 on the final fraction of or-
ange nodes in a figure in the extended version.

CMS5: Fact Checkers. Consider a set of fact checker nodes,
who starts spreading the truth (i.e., anti-rumor) once exposed
to the rumor, as the truth spreading process in CM4. These
correspond to “good citizens” (e.g., credible news outlets or
scientists on the topic) who are educated or incentivized to
verify the received information and spread the truth if neces-
sary. (In our experiments, we assume they include 10% of the
network and are distributed randomly.) This has some simi-
larities to CM4, but instead of starting the spread of the truth
by implementing a green node in the graph (which needs to
be executed by a third entity), the fact checkers become green
and trigger the spread of the truth once contacted by a rumor
spreader. Furthermore, the fact checker spread the truth more
aggressively: (i) the forgetting parameter k is much larger
for the fact checker nodes (say 20 rather than 5) (ii) fact
checkers can make their red neighbors green as well (iii) the
fact checkers are three times more active in spreading (you
can think of each round as three sub-rounds, where all nodes
(red/green) spread in the first sub-round while the green fact
checker nodes continue to spread in the second and third sub-
round too). Note that green nodes which are not fact checker
behave as in the original truth spreading process. Our exper-
iments (see Figure 1-(g)) demonstrate that this countermea-
sure is very effective.

CM6: Let’s Hear It Twice. We require a node to hear a
rumor from at least two of its neighbors before accepting and
spreading it (i.e., becoming red), instead of once as in the
original process. Figure 1-(h) demonstrates that this counter-
measure is immensely effective, where in our experiments,
initially two randomly chosen nodes are red. We formalize
this observation in Theorem 4, whose proof is given in the
extended version.

Theorem 4. Consider the (n,d)-moderate expander M, 4

with d < nz—¢ for a constant € > 0. If initially two super
nodes x and y, chosen uniformly at random, have red node(s)
(and the rest is uncolored) and CM6 is in place, then w.h.p.
the rumor does not spread.

Comparison of Countermeasures. We consider four fun-
damental criteria that a good countermeasure should possess.
To the best of our knowledge, this is the first attempt to for-
malize such a list of criteria.

C1: Effective. A good countermeasure substantially reduces
the extent that a rumor spreads.

C2: Easy To Apply. An acceptable countermeasure should
be feasible and easily executable. If implemented by the
agents of the network, it should not require full knowledge of
the whole network or the complete history of the process. If
it is administrated by a third entity, such as the government,
it should not postulate a perfect rumor detection strategy or
running algorithms which are computationally very costly.
C3: Not Against Freedom of Expression. A countermea-
sure ideally should not take away the freedom of expression
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Figure 1: Fraction of orange nodes starting from one randomly chosen red node in (a) n-flower, (n, d)-moderate expander (ME-low) with
d = 4 and D = 64 and super nodes of size 16, ER with p = 4/+/n (ER-high) and p = 1/(4+/n) (ER-low), where n = 16000 (b) FB and
TW graphs and HRG with comparable parameters (c-h) moderate expander (ME) for n = 22000 and d = 12 and TW and FB graphs before

and after the implementation of countermeasures CM1 to CM6.

and liberties of the agents.

C4: Not Too Intrusive. A countermeasure which demands
fundamental changes in the mechanism of information
spreading or the network structure is not desirable.

Cl Cc2 C3 Cc4 Decentralized
CMI1 || no jein | no no no
CM2 || no jein | no no no
CM3 || no jein | yes yes no
CM4 || no jein | yes yes jein
CMS5 || yes jein | yes yes yes
CM6 || yes yes yes yes yes

Table 1: Determining which criteria are satisfied by each counter-
measure, where “jein”” means both yes and no.

Table 1 indicates which criteria each of the proposed coun-
termeasure satisfies. Note that it is inherently difficult to mea-
sure the above criteria in a strict quantitative manner. Thus,
the entries in the table are relative and up to interpretation.
The choices for C1 are according to the results depicted in
Figure 1. The entries for C2 are mostly set to jein since while
they are not extremely difficult to implement, they need a
smart rumor detection strategy or the full knowledge of the
network. Furthermore, CM1 and CM2 violate C3 since they
clearly intrude the freedom of expression and do not satisfy
C4 since they change the network structure radically. The
other countermeasures, arguably, satisfy the last two criteria.
A more comprehensive discussion on the entries of Table 1 is
provided in the extended version of the paper.

We say a countermeasure is decentralized if it is executed
by the members of the network rather than being enforced by
a third party such as the government or an online social plat-
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form management team. Summarizing the entries of Table 1
implies that, interestingly, the decentralized countermeasures,
namely CM5 and CM6 (and CM4, up to some degree), sat-
isfy most of the desired criteria while the centralized ones do
not. Hence, instead of developing centralized countermea-
sures which need to be imposed by a forceful third entity,
the focus should be devoted to the design and implementa-
tion of decentralized countermeasures which can be obtained
through educating the members of the network. In short, ed-
ucating is preferred over regulating.

4 Conclusion

We introduced a rich rumor spreading model and building
on our theoretical and experimental findings, we argued that
the abundance of community structures and good expansion
properties are two of the main driving forces behind the
spread of rumors. A potential avenue for future research is
to determine other graph parameters which govern the spread
of rumors. We also investigated several countermeasures. We
observed that the decentralized countermeasures (which do
not require a direct and forceful interference of a third en-
tity but rather the education of the network’s members) out-
perform the centralized ones vigorously. Therefore, a natural
suggestion for the future studies is the shift of focus from cen-
tralized countermeasures to decentralized ones, which have
been scarcely investigated by the prior work.
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