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Abstract

This study extends the recently-developed LaCAM
algorithm for multi-agent pathfinding (MAPF). La-
CAM is a sub-optimal search-based algorithm that
uses lazy successor generation to dramatically re-
duce the planning effort. We present two enhance-
ments. First, we propose its anytime version, called
LaCAM∗, which eventually converges to optima,
provided that solution costs are accumulated tran-
sition costs. Second, we improve the successor
generation to quickly obtain initial solutions. Ex-
haustive experiments demonstrate their utility. For
instance, LaCAM∗ sub-optimally solved 99% of
the instances retrieved from the MAPF benchmark,
where the number of agents varied up to a thousand,
within ten seconds on a standard desktop PC, while
ensuring eventual convergence to optima; develop-
ing a new horizon of MAPF algorithms.

1 Introduction
The multi-agent pathfinding (MAPF) problem aims to assign
collision-free paths for multiple agents on a graph. To date,
various MAPF algorithms have been developed, motivated by
various applications such as warehouse automation [Wurman
et al., 2008]. Ideal MAPF algorithms will be complete, opti-
mal, quick, and scalable. However, there is generally a trade-
off between the former two and the latter two. Conversely, the
primary challenge of developments in MAPF algorithms is to
guarantee solvability and solution quality, while suppressing
planning efforts to secure speed and scalability.

To break this tradeoff, we present two enhancements to
the recently-developed algorithm called LaCAM (lazy con-
straints addition search for MAPF) [Okumura, 2023]. It is
complete, sub-optimal, and search-based (akin to A∗ search)
that uses lazy successor generation. The first enhancement
is its anytime version called LaCAM∗ that eventually con-
verges to optima, provided that solution costs are accumu-
lated transition costs. Since solving MAPF optimally is com-
putationally intractable [Yu and LaValle, 2013], one practical
approach to large instances is obtaining sub-optimal solutions
and then refining their quality as time allows. LaCAM∗ meets
such demands. The second enhancement is for the successor
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algorithm reference solvability optimality metrics

■ A∗ [Hart et al., 1968] complete optimal m, l
■ OD [Standley, 2010] complete sub-optimal (greedy)

■■ ODrM∗ [Wagner and Choset, 2015] complete optimal m, l
■■ I-ODrM∗ [Wagner and Choset, 2015] complete bnd. sub-opt. m, l
■ BCP [Lam et al., 2022] solution cmp. optimal f

■■■ CBS [Sharon et al., 2015] solution cmp. optimal f, m, l
■■■ EECBS [Li et al., 2021b] solution cmp. bnd. sub-opt. f, m, l

■ PP [Silver, 2005] incomplete sub-optimal
■ LNS2 [Li et al., 2022] incomplete sub-optimal

■■ PIBT(+) [Okumura et al., 2022] incomplete sub-optimal
■ LaCAM [Okumura, 2023] complete sub-optimal
■ LaCAM∗ this paper complete eventually opt. m, l

Figure 1: Performance on the MAPF benchmark. upper: The
number of solved instances among 13,900 instances on 33 four-
connected grid maps, retrieved from [Stern et al., 2019]. The size of
agents varies up to 1,000. ‘-f,’ ‘-m,’ and ‘-l’ respectively mean that
an algorithm tries to minimize flowtime, makespan, or sum-of-loss.
The scores of LaCAM∗ are for initial solutions. lower: Represen-
tative or state-of-the-art MAPF algorithms. “solution cmp.” means
that an algorithm ensures to find solutions for solvable instances but
it never identifies unsolvable ones. “bnd. sub-opt.” means a bounded
sub-optimal algorithm. Their sub-optimality was set to five.

generation, i.e., tuning of the PIBT algorithm [Okumura et
al., 2022], so as to quickly obtain initial solutions.

With these enhancements, we empirically demonstrate that
LaCAM∗ can break the trade-off. For instance, it sub-
optimally solved 99% of the instances retrieved from the
MAPF benchmark [Stern et al., 2019] within ten seconds
while guaranteeing the eventual optimality, on a standard
desktop PC. As illustrated in Fig. 1, this result is beyond
frontiers of existing MAPF algorithms. In what follows, we
present preliminaries, LaCAM∗, improved successor genera-
tion, empirical results, and discussion in order. The appendix
and code are available at https://kei18.github.io/lacam2/.
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Figure 2: Illustration of LaCAM using single-agent grid pathfinding.

2 Preliminaries
2.1 Notation, Problem Definition, and Assumption
Notations. S[k] denotes the k-th element of the sequence
S, where the index starts at one. For convenience, we use ⊥
as an “undefined” or “not found” sign.

Instance. An MAPF instance is defined by a graph G =
(V,E), a set of agents A = {1, . . . , n}, a tuple of distinct
starts S = (si ∈ V )i∈A and goals G = (gi ∈ V )i∈A.

Configuration. A configuration is a tuple of locations for
all agents. For instance, Q = (v1, v2, . . . , vn) ∈ V |A| is a
configuration, where Q[i] = vi is the location of agent i ∈ A.
The start and goal configurations are S and G, respectively.

Collision and Connectivity. A configuration Q has a ver-
tex collision when there is a pair of agents i, j ∈ A, i ̸= j,
such that Q[i] = Q[j]. Two configurations X and Y have an
edge collision when there is a pair of agents i, j ∈ A, i ̸= j,
such that X[i] = Y [j]∧Y [i] = X[j]. Let neigh(v) be a set of
vertices adjacent to v ∈ V . Two configurations X and Y are
connected when Y [i] ∈ neigh(X[i]) ∪ {X[i]} for all i ∈ A,
and, there are neither vertex nor edge collisions in X and Y .

Decision Problem. Given an MAPF instance, an MAPF
problem is a decision problem that asks existence of a se-
quence of configurations Π = (Q0,Q1, . . . ,Qk), such that
Q0 = S , Qk = G, and any two consecutive configurations
in Π are connected. A solution to MAPF is a Π that satisfies
the conditions. To align with the literature, the index of Π
exceptionally starts at zero (i.e., Π[0] = Q0). An algorithm
is said to be complete when it returns solutions for solvable
instances and reports non-existence for unsolvable instances.
Otherwise, it is called incomplete.

Optimization Problems. Given a transition (or edge) cost
between two configurations, coste : V |A| × V |A| 7→ R≥0,
we aim at minimizing accumulated transition costs of a solu-
tion Π, denoted as cost(Π) :=

∑k−1
t=0 coste

(
Π[t],Π[t + 1]

)
.

This notation can represent various optimization metrics. For
instance, cost is called makespan when coste(X,Y ) := 1.
It is called sum-of-fuels (aka. total travel distance) when
cost(X,Y ) := |{i ∈ A;X[i] ̸= Y [i]}|. Sum-of-loss counts
actions of non-staying at goals, defined by coste(X,Y ) :=
|{i ∈ A | ¬(X[i] = Y [i] = gi)}|. A solution Π is optimal
when there is no solution Π′ such that cost(Π′) < cost(Π).

Remarks for Flowtime. Another common metric of
MAPF is flowtime (aka. sum-of-costs):

∑
i∈A ti, where

ti ≤ k is the earliest timestep such that Π[ti][i] = Π[ti +

1][i] = . . . = Π[k][i] = gi. The difference from sum-
of-loss is cost contribution of agents who once reach their
goal and leave there temporarily. The flowtime is history-
dependent on paths of each agent; hence, it is impossi-
ble to represent as it is with accumulative costs.1 Instead,
this paper considers sum-of-loss as seen in [Standley, 2010;
Wagner and Choset, 2015].
Admissible Heuristic. We assume an admissible heuristic
h : V |A| 7→ R≥0, such that h(Q) is always the optimal cost
from Q to G or less; e.g., h(Q) :=

∑
i∈A dist(Q[i], gi) is

available for the sum-of-{loss, fuels}, where dist : V × V 7→
N≥0 is the shortest path length on G.
Understanding MAPF as Graph Pathfinding. Using con-
figurations, consider a graph H comprising vertices that rep-
resent configurations, and edges that represent the connectiv-
ity of configurations. Then, by regarding S and G as start and
goal vertices respectively, optimal MAPF is equivalent to the
shortest pathfinding problem on H . This is a key perspective
to understand LaCAM(∗).

2.2 LaCAM
LaCAM [Okumura, 2023] was originally developed as a sub-
optimal complete MAPF algorithm. In a nutshell, it is a graph
pathfinding algorithm, like A∗, but some parts are specific to
MAPF. Below, we provide the essence of the graph pathfind-
ing part, using an example of single-agent grid pathfinding.
The details of the MAPF-specific part are delivered in the ap-
pendix.
Classical Search. See Fig. 2a that illustrates how a typical
search scheme solves grid pathfinding. Specifically, we show
the greedy best-first search with a heuristic of the Manhattan
distance. Here, a location of the agent corresponds to a con-
figuration (aka. state) of the search. From the start config-
uration, the search generates three successor nodes: left, up,
and right. Each node corresponds to one configuration. The
search then takes one of the generated nodes according to the
heuristic, and generates successors. This procedure continues
until finding the goal configuration.
Branching Factor. Consider how many nodes are gener-
ated to estimate the search effort. Though the solution length
is 8, 22 nodes are generated. This number is related to the
number of connected configurations (i.e., branching factor).
It is four in grid pathfinding, therefore, the number of node

1However, it is worth noting that flowtime can be defined by in-
troducing virtual goals, where once an agent has arrived there, it
cannot move anywhere in the future.
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generations remains acceptable. However, the branching fac-
tor of MAPF is exponential for the number of agents. Con-
sequently, the generation itself becomes intractable. This is
why a vanilla A∗ is hopeless to solve large MAPF instances.

Configuration Generator. LaCAM tries to relieve this
huge-branching-factor issue when a configuration generator
is available. Given a configuration and constraints, it gen-
erates a connected configuration following constraints. Con-
straints should be embodied by each domain. In this example,
consider a constraint as a prohibition of direction, such as not
moving up, left, right, or down.

Constraint Tree. Each search node of LaCAM contains not
only a configuration but also constraints, taking the form of
a tree structure. For each node invoke, LaCAM gradually
develops the tree by low-level search, implemented by, e.g.,
breadth-first search (BFS). A node on the tree has a constraint
and represents several constraints by tracing a path to the root.

Search Flow. We now explain LaCAM using Fig. 2b–e,
with a depth-first search (DFS) style. The attempt to find a se-
quence of configurations is called high-level search. At first,
a search node of the start is examined (Fig. 2b). The node
poses no constraints for the first invoke, meaning that the con-
figuration generator can output any connected configuration.
Suppose that the generator outputs an “up” configuration, fol-
lowing the Manhattan distance guide, illustrated by the pink
arrow. Preparing for the second invoke, the node expands a
constraint tree with new constraints (e.g., “not go up”). The
high-level search does not discard the examined node imme-
diately, rather, it discards when all connected configurations
have been generated (i.e., when the low-level search com-
pletes). Next, Fig. 2c–d show an example of the second in-
voke of nodes. In Fig. 2c, the generator outputs an already-
known configuration. Since this example assumes DFS, La-
CAM examines the blue-colored node again in Fig. 2d. This
time, the generator must follow a constraint “not go right”
and its parent “no constraint.” The example then generates
a “left” configuration. The search continues until finding the
goal (Fig. 2e) and obtains a solution path by backtracking.

Adaptation to MAPF. With appropriate designs of con-
straints and tree construction, LaCAM can be an exhaustive
search and guarantees completeness for graph pathfinding
problems. In [Okumura, 2023], such an example is shown for
MAPF by letting a constraint specify which agent is where
in the next configuration. Moreover, LaCAM can greatly de-
crease the number of node generations if the configuration
generator is promising in outputting configurations that are
close to the goal. This reduction could be a silver bullet
to achieve quick planning, especially in planning problems
where the branching factor is huge like MAPF. The remain-
ing question is a realization of good configuration generators.
In the original paper, PIBT (priority inheritance with back-
tracking) [Okumura et al., 2022] served as it, explained in
Sec. 2.3.

Pseudocode. Algorithm 1 shows DFS-based LaCAM. Each
search node N stores (i) a configuration, (ii) a constraint tree
embodied by a queue (assuming BFS) and (iii) a pointer to a
parent node (see Line 2). Nodes are stored in an Open list and

Algorithm 1 LaCAM. Cinit means “no constraint.”
input: MAPF instance
output: solution or NO_SOLUTION
1: initialize Open , Explored ▷ stack, hash table
2: N init ←

〈
config : S, tree : J C init K, parent : ⊥

〉
3: Open.push

(
N init); Explored [S] = N init

4: while Open ̸= ∅ do
5: N ← Open.top()
6: ifN .config = G then return backtrack(N )
7: ifN .tree = ∅ then Open.pop(); continue ▷ discard node
8: C ← N .tree.pop() ▷ get constraint
9: low_level_expansion(N , C) ▷ proceed low-level search

10: Qnew ← configuration_generator(N , C)
11: ifQnew = ⊥ then continue ▷ generator may fail
12: if Explored [Qnew] ̸= ⊥ then continue
13: N new ← ⟨ config : Qnew, tree :

q
C init y

, parent : N
〉

14: Open.push (N new); Explored [Qnew] = N new

15: return NO_SOLUTION

Algorithm 2 PIBT

input: configurationQfrom, agents A, goals (g1, . . . gn)
output: configurationQto (each element is initialized with ⊥)
1: for i ∈ A do; ifQto[i] = ⊥ then PIBT(i)
2: returnQto

3: procedure PIBT(i) ▷ return VALID or INVALID
4: C ← neigh

(
Qfrom[i]

)
∪
{
Qfrom[i]

}
▷ candidate vertices

5: sort C in ascending order of dist(u, gi) where u ∈ C
6: for v ∈ C do
7: if collisions inQto supposingQto[i] = v then continue
8: Qto[i]← v
9: if ∃j ∈ A s.t. j ̸= i ∧Qfrom[j] = v ∧Qto[j] = ⊥ then

10: if PIBT(j) = INVALID then continue
11: return VALID ▷ assignment done
12: Qto[i]← Qfrom[i]; return INVALID

i

k j

v
(a) fixed order:
i, k, j

i

k j

(b) with PIBT:
i first

Figure 3: Concept of PIBT. Qfrom is illustrated. Bold arrows repre-
sent assignments of Qto. (a) Consider a fixed assignment order of
i, k, and j. If i and k are assigned following the illustrated arrows,
j has no candidate vertex as Qto[j] (annotated with ×). (b) This
pitfall is overcome by doing the assignment for j prior to k, reacting
to i’s assignment request.

Explored table, akin to general search schema, and are pro-
cessed one by one. We abstract how to create constraint trees
for MAPF by Line 9, which is elaborated in the appendix.

2.3 PIBT
PIBT [Okumura et al., 2022] was originally developed to
solve MAPF iteratively. In a nutshell, it is a configuration
generator, which generates a new connected configuration
(Qto), given another (Qfrom) as input. By continuously gener-
ating configurations, PIBT can generate a solution for MAPF.

Concept. To determine Qto, PIBT sequentially assigns a
vertex to each agent while avoiding assignments that trigger
collisions. This assignment order adaptively changes. Specif-
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ically, before fixing Qto[i] to v ∈ neigh(Qfrom[i])∪{Qfrom[i]},
PIBT first checks the existence of j ∈ A such that Qfrom[j] =
v. If such j exists, j may have no candidate vertex for Qto[j],
due to collision avoidance (see Fig. 3a). Therefore, PIBT next
determines Qto[j] prior to locations of other agents (e.g., k in
Fig. 3). This scheme is called priority inheritance. If Qto[j] is
successfully assigned, Qto[i] is fixed to v (Fig. 3b); otherwise,
Qto[i] needs to take another vertex other than v.
Pseudocode. Algorithm 2 implements the concept above,
by recursively calling a procedure PIBT (Line 3–), which
takes an agent i and eventually assigns Qto[i]. The assign-
ment attempts of Lines 6–11 are performed for candidate
vertices regarding Qfrom[i], in ascending order of the dis-
tance toward gi. The attempts continue until Qto[i] is deter-
mined, resulting in VALID outcome (Line 11). When all at-
tempts failed, PIBT(i) assigns Qfrom[i] to Qto[i] and returns
INVALID (Line 12). Priority inheritance is triggered as nec-
essary, taking the form of calling PIBT for another agent j
(Line 10). The success of priority inheritance triggers receipt
of VALID; otherwise, INVALID is backed, and then i con-
tinues the assignment attempts.
Dynamic Priorities. In addition to priority inheritance,
PIBT prioritizes assignments for agents that are not on their
goal, which is done by sorting A of Line 1 in that way. This
scheme is convenient for lifelong scenarios wherein all agents
are not necessarily being goals simultaneously.

3 LaCAM∗: Eventually Optimal Algorithm
Algorithm 3 presents LaCAM∗. The same lines as LaCAM
(Alg. 1) are grayed out. The blue-colored lines are not nec-
essary from the theoretical side but are effective in speeding
up the search. The main differences from LaCAM are two:
(i) it continues the search when finding the goal configuration
G, and, (ii) it rewrites parent relations between search nodes
as necessary. For convenience, the transition cost coste and
admissible heuristic h can take nodes as arguments, instead
of configurations. Below, the updated parts are explained.
Keeping Goal Node. LaCAM∗ retains the goal node N goal,
rather than immediately returning solutions when first finding
the goal G (Line 6). The search terminates when there is no
remaining node in Open; otherwise, there is an interruption
from users such as timeout (Line 4). A solution is then con-
structed by backtracking from N goal (Lines 27–28). Doing
so makes LaCAM∗ an anytime algorithm, that is, after find-
ing the goal node, it is interruptible whenever a solution is
required, while gradually refining solution quality as time al-
lows.
Search Node Ingredients. Each high-level node contains a
set neigh that stores connected configurations (i.e., nodes)
and g-value that represents cost-to-come from the start S
(Line 2). They are initialized and updated appropriately when
finding a new configuration (Lines 24–26).
Updating Parents and Costs. To maintain the optimality,
when finding an already known configuration, LaCAM∗ up-
dates neigh (Line 14). This is followed by updates of g-value
and parent , performed by Dijkstra’s algorithm (Lines 15–
21). Figure 4 illustrates the update.

Algorithm 3 LaCAM∗. Cinit means “no constraint.”
input: MAPF instance, edge cost coste, admissible heuristic h
output: solution, NO_SOLUTION, or FAILURE
notation: f(N ) := N .g + h(N ); ♠ :=

(
N goal ̸= ⊥

)
1: initialize Open,Explored ;N goal ← ⊥
2: N init ←

〈
config : S, tree : JC initK, parent : ⊥, neigh : ∅, g : 0

〉
3: Open.push

(
N init); Explored [S] = N init

4: while Open ̸= ∅ ∧ ¬interrupt() do
5: N ← Open.top()
6: ifN .config = G thenN goal ← N
7: if ♠ ∧ f

(
N goal) ≤ f (N ) then Open.pop(); continue

8: ifN .tree = ∅ then Open.pop(); continue
9: C ← N .tree.pop()

10: low_level_expansion(N , C)
11: Qnew ← configuration_generator(N , C)
12: ifQnew = ⊥ then continue
13: if Explored [Qnew] ̸= ⊥ then
14: N .neigh.append (Explored [Qnew])
15: D ← JN K ▷ Dijkstra, priority queue of g-value
16: while D ̸= ∅ do
17: N from ← D.pop()
18: forN to ∈ N from.neigh do
19: g ← N from.g + coste

(
N from,N to)

20: if g < N to.g then
21: N to.g ← g;N to.parent ← N from; D.push(N to)
22: if♠∧ f (N to) < f

(
N goal) then Open.push (N to)

23: else
24: N new ←

〈
config : Qnew, tree : JC initK, parent : N ,

neigh : ∅, g : N .g + coste (N ,Qnew)
〉

25: Open.push (N new); Explored [Qnew] = N new

26: N .neigh.append (N new)
27: if ♠ ∧Open = ∅ then return backtrack

(
N goal) ▷ optimal

28: else if ♠ then return backtrack
(
N goal) ▷ sub-optimal

29: else if Open = ∅ then return NO_SOLUTION
30: else return FAILURE

Discarding Redundant Nodes. Once the goal node is
found, LaCAM∗ discards nodes that do not contribute to im-
proving solution quality (Line 7). It also revives nodes as
necessary when their g-values are updated (Line 22).

Theorem 1. LaCAM∗ (Alg. 3) is complete and optimal.

Proof. Consider Alg. 3 without blue lines (Lines 7 and 22);
they just speed up the search without breaking the optimal
search structure. In this proof, the term “path” refers to a
sequence of connected configurations.

First, we introduce a directed graph H , where its vertex
corresponds to a configuration. Initially, H has only a start
vertex S . Then, the search iterations gradually develop H .
When a new node is created (Line 24), its configuration is
added to H . An arc (X,Y ) of H occurs when the search
finds a connection from X to Y , i.e., N Y ∈ NX .neigh .

We now prove that: (♣) for any configuration Q in H , a
path from S to Q constructed by backtracking (i.e., by fol-
lowing N .parent) is the shortest path in H , regarding ac-
cumulative transition costs, at the beginning of each search
iteration. This is proven by induction. Initially, H comprises
only S , satisfying ♣. Assume now that ♣ is satisfied in the
previous iteration of Lines 4–26. In the next iteration, H is
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Figure 4: Updating parents and costs. Each circle is a search node
(i.e., configuration), including its g-value of makespan. Arrows rep-
resent known neighboring relations. Among them, solid lines repre-
sent parent . The updated parts are red-colored. left: A new neighbor
relationship, a red dashed arrow, has been found. right: Rewrite the
search tree. Observe that the rewriting occurs in a limited part of the
tree due to g-value pruning (Line 20).

updated by: (i) generating a new configuration (Lines 24–26),
or (ii) finding a known configuration (Lines 14–21). Case (i)
holds ♣ because only a new vertex and an arc toward the ver-
tex are added to H . Case (ii) holds ♣ because only an arc is
added for the node N (Line 14), and then Lines 15–21 per-
form Dijkstra’s algorithm starting from N that maintains the
tree structure of the shortest paths.

The search space of LaCAM∗ is finite (see [Okumura,
2023]); the search terminates in finite time. Each node even-
tually examines all connected configurations. Consequently,
when terminated, H includes all possible paths from S to G
for solvable instances. Together with ♣, LaCAM∗ returns an
optimal solution, otherwise, reports the non-existence.

Implementation Tips. Following [Okumura, 2023], when
finding an already known configuration at Line 13, our imple-
mentation reinserts the corresponding node to Open . More-
over, with a small probability (e.g., 0.1%), the implementa-
tion reinserts a node of S instead of the found one. Doing
so enables the search to “escape” from configurations be-
ing bottlenecks. Such techniques relying on non-determinism
have been seen in other search problems [Kautz et al., 2002]
and MAPF studies [Cohen et al., 2018b; Andreychuk and
Yakovlev, 2018]. Indeed, we informally observed that this
random replacement slightly improved the success rate. Note
that the optimality still holds with these modifications.

4 Improving Configuration Generator
The performance of LaCAM heavily relies on a configura-
tion generator, therefore, the development of good generators
is critical. The implementation in [Okumura, 2023] uses a
vanilla PIBT of Alg. 2, resulting in poor performances in sev-
eral scenarios, especially in instances with narrow corridors.
This is because PIBT itself often fails such scenarios, hence
being an ineffective guide for LaCAM. This section elabo-
rates on this phenomenon and presents an improved version.

4.1 Failure Analysis of PIBT
As seen in Sec. 2.3, PIBT sequentially assigns the next lo-
cations for agents. Since this order prioritizes agents being
not on their goals, livelock situations might be triggered. See
Fig. 5; two agents reach their goal vertex periodically but
PIBT never reaches the goal configuration.

Algorithm 4 procedure PIBT with swap

1: C ← neigh
(
Qfrom[i]

)
∪
{
Qfrom[i]

}
2: sort C in increasing order of dist(u, gi) where u ∈ C
3: j ← swap_required_and_possible

(
i, C[1],Qfrom)

4: if j ̸= ⊥ then reverse C
5: for v ∈ C do
6: Lines 7–10 of Alg. 2
7: if v = C[1] ∧ j ̸= ⊥ ∧Qto[j] = ⊥ thenQto[j]← Qfrom[i]
8: return VALID
9: Qto[i]← Qfrom[i]; return INVALID

1

2
(a)

1

2
(b)

1

2

(c)

Figure 5: Failure example of PIBT. Goals are represented by arrows.

1

2
(a)

1

2
(b)

12

(c)

12

(d)

Figure 6: Swap operation. The last two steps are omitted because of
just moving two agents toward their goal.

1
2

3
4

5
6

|A|=2 |A|=4 |A|=6

w/Alg. 2 128 23,907 287,440
w/Alg. 4 6 8 8

Table 1: The number of search iterations of LaCAM to solve the
instances. When |A| = 2, only agents-{1, 2} appear, and so forth.

LaCAM can break such livelocks by posing constraints.
However, it may require significant effort because appropriate
combinations of constraints should be explored. Even worse,
with more agents, the search effort dramatically increases, as
demonstrated in Table 1.

4.2 Enhancing PIBT by Swap
Livelocks in PIBT can be resolved by swap operation, orig-
inally developed in rule-based MAPF algorithms [Luna and
Bekris, 2011; De Wilde et al., 2014]. In short, this operation
swaps locations of two agents using a vertex with a degree of
three or more. Figure 6 shows an example. Here, we extract
its essence and incorporate it into PIBT. Specifically, this is
done by adjusting vertex scoring at Line 5 in Alg. 2.

Algorithm 4 extends the PIBT procedure of Alg. 2. The
modification is simple; if an agent i and neighboring agent j
are judged to require swapping locations (Line 3), i reverses
the order of candidate vertices C (Line 4); that is, i tries to
be apart from gi. Then, if i successfully moves to the first
vertex in the candidates C, i pulls j to the current occupy-
ing vertex (Line 7). With an appropriate implementation of
the function swap_required_and_possible, PIBT does not fall
into the livelock of Fig. 5, rather, it can generate a sequence
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of configurations shown in Fig. 6.
The swap_required_and_possible function is a pattern de-

tector and implementation-depending. We do not aim at de-
signing complete detectors because pitfalls of the detectors
can be complemented by LaCAM. However, a well-tuned im-
plementation can relax the search effort of LaCAM. Below,
we illustrate our example implementation, while omitting
tiny fine-tunings.

Pattern Detector Implementation
Assume that the detector is called for i. Assume further that
another agent j is on C[1] for i at Line 2 of Alg. 4, such that
the degree is 2 or less. Our detector uses two emulations.

The first emulation asks about the necessity of the swap.
This is done by continuously moving i to j’s location while
moving j to another vertex not equal to i’s location, ignoring
the other agents. The emulation stops in two cases: (i) The
swap is not required when j’s location has a degree of more
than two. (ii) The swap is required when j’s location has a
degree of one, or, when i reaches gi while j’s nearest neigh-
boring vertex toward its goal is gi.

If the swap is required, the second emulation asks about
the possibility of the swap. This is done by reversing the
emulation direction; that is, continuously moving j to i’s lo-
cation while moving i to another vertex. It stops in two cases:
(i) The swap is possible when i’s location has a degree of
more than two. (ii) The swap is impossible when i is on a
vertex with degree of one.

The function returns j when the swap is required and possi-
ble. For instance, in configurations of Fig. 6(a,b), the swap is
required for both agents. However, the swap is possible only
for agent-1, then, the order of candidate vertices is reversed
for agent-1 (Line 4). Consequently, Alg. 4 generates config-
urations of Fig. 6(b,c). An exception is the case of Fig. 6c,
where agent-2 needs to reverse its candidates to generate a
configuration of Fig. 6d. We note that this case is also possi-
ble to be detected by applying the two emulations.

5 Evaluation

This section empirically assesses the two improvements,
comprising: (i) how the improved configuration generator
reduces planning effort, (ii) how LaCAM∗ refines solution,
(iii) how discarding redundant nodes speeds up the con-
vergence, (iv) evaluation with small complicated instances,
(v) evaluation with the MAPF benchmark, (vi) comparison
with another anytime MAPF algorithm, and (vii) evaluation
with extremely dense scenarios.

Setup. The experiments were run on a desktop PC with In-
tel Core i7-7820X 3.6GHz CPU and 32GB RAM. A max-
imum of 16 different instances were run in parallel using
multi-threading. LaCAM∗ was coded in C++. All exper-
iments used four-connected grid maps retrieved from the
MAPF benchmark [Stern et al., 2019]. Unless mentioned,
this section uses a timeout of 30 s for solving MAPF. Base-
line MAPF algorithms are summarized in Fig. 1. Their im-
plementation details are available in the appendix.

search iterations runtime (ms)

|A| w/Alg. 2 w/Alg. 4 w/Alg. 2 w/Alg. 4

100 374 (344,54468) 366 (338,401) 65 (31,1218) 112 (34,216)

300 54802 (388,369131) 392 (357,482) 3049 (291,18858) 301 (187,409)

500 181459 (44534,268724) 410 (391,432) 18063 (4598,29820) 500 (347,574)

Table 2: Effect of configuration generators. For each |A|, median,
min, and max scores are presented for instances solved by both al-
gorithms among 25 instances retrieved from [Stern et al., 2019], on
warehouse-20-40-10-2-1, illustrated in Fig. 8.
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Figure 7: Refinement of LaCAM∗. Three maps were used, shown in
Table 4 and Fig. 8. For each chart, five identical instances were used
where starts and goals were set randomly. The optimization was
for sum-of-loss. “loss” shows the gaps from scores of (I-)ODrM∗.
In random-32-32-20, the bounded sub-optimal version with sub-
optimality of 1.5 was used because ODrM∗ failed to solve the in-
stances. LaCAM∗ used Alg. 2 as a configuration generator.

tree corners tunnel string loop-chain connector

no discard 10K 2M 410M 19M N/A N/A
w/Alg. 2 1K 28K 287K 103K N/A N/A
w/Alg. 4 1K 1K 199K 103K N/A N/A

Table 3: The number of search iterations for termination. “no dis-
card” is blue-lines omitted version of LaCAM∗. The metric was for
makespan. The instances are displayed in Table 4. In the last two
instances, LaCAM∗ did not terminate before the timeout.

Effect of Improved Configuration Generator. Table 1
presents the number of search iterations of LaCAM on an in-
stance that requires “swap,” using a vanilla PIBT (Alg. 2) and
the improved one (Alg. 4) as a configuration generator. Ta-
ble 2 further compares the generators with larger instances.
The results show that Alg. 4 dramatically reduced the search
iterations of LaCAM, contributing to smaller computation
time in large instances. Note however that the pattern detector
has runtime overhead, as seen in |A| = 100 of Table 2.

Refinement of LaCAM∗. Figure 7 shows how LaCAM∗

refines solutions. As baselines, we used scores of a com-
plete and optimal algorithm called (I-)ODrM∗ [Wagner and
Choset, 2015]. In the small instances, LaCAM∗ quickly
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Figure 8: Results of the MAPF benchmark. Scores of sum-of-loss are normalized by
∑

i∈A dist(si, gi). For runtime and sum-of-loss,
median, min, and max scores of solved instances within each solver are displayed. Scores of LaCAM∗ are from initial solutions.
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time s-opt time s-opt time s-opt time s-opt time s-opt time s-opt solved

LaCAM∗ 0 1.20 0 1.23 0 1.41 0 1.81 2 6.58 0 1.62 6/6after 1 s 0 1.00 2 1.00 6 1.00 7 1.00 578 1.35 226 1.00

A∗ 0 1.00 0 1.00 30 1.00 27 1.00 11125 1.00 N/A N/A 5/6
ODrM∗ 5 1.00 2 1.00 396 1.00 402 1.00 N/A N/A N/A N/A 4/6
I-ODrM∗ 1 1.00 0 1.50 70 1.07 2 1.25 N/A N/A N/A N/A 4/6
CBS 71 1.00 0 1.00 N/A N/A 149 1.00 N/A N/A N/A N/A 3/6
EECBS 2 1.00 1 1.00 N/A N/A 0 1.00 N/A N/A N/A N/A 3/6

OD 0 1.00 0 1.88 14 2.73 0 1.25 2133 31.22 5 1.50 6/6
LaCAM 0 1.17 1 2.12 92 2.00 0 2.25 55 17.83 0 1.56 6/6
PP N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A N/A N/A 2/6
LNS2 N/A N/A 0 1.00 N/A N/A 0 1.00 N/A N/A 29 1.00 3/6
PIBT N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/6
PIBT+ 0 3.50 0 1.25 0 4.07 0 2.12 N/A N/A 0 1.81 5/6

BCP 194 - 150 - N/A - 117 - N/A - N/A - 3/6

Table 4: Results of the small complicated instances. “s-opt” is
makespan normalized by optimal ones. The minimum is one. The
sum-of-loss version appears in the appendix. Two rows show results
of LaCAM∗: (i) scores for initial solutions and (ii) solution qual-
ity at 1 s and the runtime when that solution was obtained; they are
an average of 10 trials with different random seeds. Algorithms are
categorized into LaCAM∗, those optimizing makespan, sub-optimal
ones, and BCP optimizing another metric (i.e., flowtime).

found initial solutions and converged to optimal ones. Mean-
while, the convergence speed was slow in large instances with
many agents. This is due to finding new connections be-
tween known configurations becoming rare, hence reducing

the chance of rewriting the search tree.

Effect of Discarding Redundant Nodes. Table 3 shows
how discarding redundant search nodes (blue lines of Alg. 3)
affects the search to identify optimal solutions. Regardless
of the generators, the discarding dramatically reduced the
search effort. The reduction was larger with Alg. 4 because
initial solutions can be found with smaller search iterations
than Alg. 2. Note that without the discarding, the numbers of
search iterations are equivalent between Alg. 2 and Alg. 4
because the search spaces are identical. In the remaining,
LaCAM∗ uses Alg. 4 while LaCAM denotes the original im-
plementation that uses Alg. 2.

Small Complicated Instances. Table 4 shows the results
of LaCAM∗ with instances retrieved from [Luna and Bekris,
2011]. Overall, it immediately found not only initial solutions
but also (near-)optimal ones. In contrast, the baselines failed
some instances or returned low-quality solutions.

MAPF Benchmark. We tested LaCAM∗ on the MAPF
benchmark that includes 33 maps, each having 25 “random
scenarios” which specify start-goal pairs. From each sce-
nario, we extracted instances by increasing the number of
agents by 50 up to the maximum (1,000 in most cases) and
obtained 13,900 instances in total. The percentage of solved
instances is summarized in Fig. 1. Figure 8 presents partial
results for each map. LaCAM∗ only failed in the instances
of maze-128-128-1 and sub-optimally solved all the other in-
stances within 10 s, outperforming the other algorithms. The
failures might be reduced by improving the pattern detec-
tor; however, we consider such implementations are too opti-
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mized for the benchmark. As shown in Fig. 9, the refinement
was steady but not dramatic due to the same reason of Fig. 7.
Further discussions are available in the appendix.

Comparison with Anytime MAPF Solver. We compared
LaCAM∗ with AFS [Cohen et al., 2018a], a CBS-based any-
time MAPF solver that guarantees to converge optima. Ta-
ble 5 summarizes the results. Contrary to LaCAM∗, AFS
can obtain plausible solutions from the beginning, however, it
compromises scalability. We consider this quality gap can be
overcome by developing better generators other than PIBT.

Extremely Dense Scenarios. Table 6 reports LaCAM∗ in
very congested scenarios that existing solvers mostly fail.
Even with such challenging cases, LaCAM∗ solved many in-
stances, demonstrating its excellent scalability.

6 Conclusion and Discussion
The primary challenge of MAPF is to maintain solvabil-
ity and solution quality while suppressing planning efforts.
To break this tradeoff, this paper presented two enhance-
ments to LaCAM, namely, LaCAM∗ which eventually con-
verges to optima and an effective configuration generator.
The enhancements were thoroughly assessed, achieving re-
markable results. From the empirical evidence, we believe
that LaCAM∗ has developed a new frontier in MAPF.

Related Work. LaCAM(∗) relates to partial successor ex-
pansion during the search, as seen in [Goldenberg et al., 2014;
Wagner and Choset, 2015], because it also generates a sub-
set of successors, but differs in the use of constraints and a
configuration generator. Anytime MAPF algorithms that con-
verge to optima have been studied [Standley and Korf, 2011;
Cohen et al., 2018a; Vedder and Biswas, 2021]. However,
their scalability is limited; they often fail to derive initial so-
lutions, as we empirically saw. Techniques to refine arbi-
trary MAPF solutions have also been studied [Surynek, 2013;
De Wilde et al., 2014; Okumura et al., 2021; Li et al., 2021a]
but they do not ensure optimality. Rewriting the search tree
structure is popular in optimal motion planning [Karaman
and Frazzoli, 2011; Shome et al., 2020], by which LaCAM∗

is partially inspired. Incorporating swap into PIBT is in-
spired by sub-optimal rule-based MAPF algorithms [Luna
and Bekris, 2011; De Wilde et al., 2014]. Meanwhile, the
solution quality of rule-based approaches themselves is often
severely compromised.

Future Directions. We are interested in more effective con-
figuration generators than PIBT variants which can output
near-optimal initial solutions. Improving the convergence
speed of LaCAM∗ is also important. Moreover, LaCAM∗ in
MAPF variants, e.g., multi-robot motion planning [Okumura
and Défago, 2023], is worth to be studied. Other than MAPF,
since LaCAM∗ is just a graph pathfinding algorithm, apply-
ing its concept to other planning domains might be exciting.
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solved(%) time-init(ms) loss-init loss-30 s

|A| AFS LaCAM∗ AFS LaCAM∗ AFS LaCAM∗ AFS LaCAM∗

50 100 100 88 1 25 159 24 118
100 56 100 7223 2 140 609 139 545
150 0 100 N/A 4 N/A 1463 N/A 1368

Table 5: Comparison of anytime MAPF algorithms. We used sum-
of-loss and 25 “random” scenarios of random-32-32-20. “init”
shows scores related to initial solutions. “loss” is the gap scores from∑

i∈A dist(si, gi). The scores are averaged for instances solved by
both solvers, except for |A| = 150 because AFS failed all.

map |A| % time(s) other algorithms

empty-8-8 58 100 0.00 PIBT&LaCAM (100%; 0.00 s)
random-32-32-20 737 100 0.63 LaCAM (4%; 14.81 s)
random-64-64-20 2943 68 11.64 N/A
maze-128-128-10 9772 100 55.54 N/A

Table 6: Results on extremely dense scenarios. |A| was adjusted so
that |A|/|V | = 0.9. For each scenario, 25 instances were prepared
while randomly placing starts and goals. “%” is the success percent-
age by LaCAM∗ with timeout of 60 s. “time” is the median runtime
to obtain initial solutions. We also tested the other solvers in Fig. 1
and report solvers that solved in at least one instance.
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