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Abstract
We propose a novel algorithm to solve multi-robot
motion planning (MRMP) rapidly, called Simul-
taneous Sampling-and-Search Planning (SSSP).
Conventional MRMP studies mostly take the form
of two-phase planning that constructs roadmaps
and then finds inter-robot collision-free paths on
those roadmaps. In contrast, SSSP simultaneously
performs roadmap construction and collision-free
pathfinding. This is realized by uniting techniques
of single-robot sampling-based motion planning
and search techniques of multi-agent pathfinding
on discretized spaces. Doing so builds the small
search space, leading to quick MRMP. SSSP en-
sures finding a solution eventually if exists. Our
empirical evaluations in various scenarios demon-
strate that SSSP significantly outperforms standard
approaches to MRMP, i.e., solving more problem
instances much faster. We also applied SSSP to
planning for 32 ground robots in a dense situation.

1 Introduction
Solving a multi-robot motion planning (MRMP) problem
within a realistic timeframe plays a crucial role in the mod-
ern and coming automation era, including fleet operations
in warehouses [Wurman et al., 2008] as well as collab-
orative robotic manipulation [Feng et al., 2020]. Never-
theless, the problem is known to be tremendously chal-
lenging even with simple settings [Spirakis and Yap, 1984;
Hopcroft et al., 1984; Hearn and Demaine, 2005]. Filling
this gap is a key milestone in automation.

Informally, MRMP aims at finding a collection of paths for
multiple robots. Those paths must be obstacle-free, and also,
inter-robot collision-free. Single-robot motion planning itself
is intractable in general [Reif, 1979], furthermore, the specific
difficulty of MRMP comes from the second condition. As
a result, most studies on MRMP decouple the problem into
(i) how to find obstacle-free paths and (ii) how to manage
inter-robot collisions on those paths. This decoupling takes
the form of two-phase planning that first constructs roadmaps
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and then performs multi-agent search, finding collision-free
paths on those roadmaps. Here, a roadmap is a graph that
approximates the workspace for one robot and is carefully
constructed to include obstacle-free paths from initial to goal
states. We can see two-phase planning examples in [Švestka
and Overmars, 1998; Solovey et al., 2016; Hönig et al., 2018;
Solis et al., 2021], to name just a few.
Contribution. In contrast to approaches based on two-
phase planning, we propose a novel MRMP algorithm that
simultaneously performs roadmap construction and multi-
agent search. The crux is developing robot-wise roadmaps
as necessary according to the multi-agent search progress.
Doing so keeps the search space small, leading to quick
MRMP solving. The proposed algorithm, called Simulta-
neous Sampling-and-Search Planning (SSSP), guarantees to
eventually find a solution for solvable instances. Although
SSSP outputs sequential solutions such that at most one robot
moves at a time, it is possible to post-process known so-
lutions to remove redundant motion and waiting time, as
presented in this paper. Our extensive evaluations on vari-
ous scenarios with diverse degrees of freedom and kinematic
constraints demonstrate that SSSP significantly outperforms
standard approaches to MRMP, i.e., solving more problem in-
stances much faster. We also provide a planning demo with
32 ground robots (64-DOFs in total) in a dense situation.

1.1 Related Work
The (single-robot) motion planning problem, a fundamen-
tal problem in robotics, aims at finding an obstacle-free
path in cluttered environments. An established approach
is sampling-based motion planning (SBMP) [Elbanhawi and
Simic, 2014]. SBMP iteratively and randomly samples state
points from the space and then constructs a roadmap; a so-
lution is derived by pathfinding on the roadmap. Numer-
ous SBMP algorithms have been developed so far, such
as [Kavraki et al., 1996; LaValle, 1998; Karaman and Fraz-
zoli, 2011]. SBMP can solve problems even with many de-
grees of freedom and has achieved successful results not lim-
ited to robotics [LaValle, 2006].

In principle, SBMP is applicable to MRMP by consid-
ering one composite robot consisting of all robots [Choset
et al., 2005], as seen in [Sánchez and Latombe, 2002;
Le and Plaku, 2018]. However, such strategies require sam-
pling from the high-dimensional space linear to the num-
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ber of robots, being a bottleneck even for SBMP [LaValle,
2006]. Consequently, recent studies mostly take the afore-
mentioned two-phase planning. In those studies, as the first
phase, roadmaps are explicitly prepared via conventional
SBMP [Švestka and Overmars, 1998; Wagner et al., 2012;
Solovey et al., 2016; Solis et al., 2021; Dayan et al., 2021]
or implicitly embedded as lattice grids [Han et al., 2018;
Hönig et al., 2018; Cohen et al., 2019]. Depending on the
heterogeneity of robots, a roadmap is shared among robots,
or, robot-wise roadmaps are constructed. The lattice grids
are available when the configuration space of each robot is
not high-dimensional or state transitions of robots are re-
stricted to a limited number; otherwise, the search space dra-
matically grows. This study does not assume such limita-
tions. The second phase often uses multi-agent pathfinding
(MAPF) algorithms such as [Sharon et al., 2015; Barer et al.,
2014; Wagner and Choset, 2015], including prioritized plan-
ning [Erdmann and Lozano-Perez, 1987; Silver, 2005], and
sometimes discretized versions of SBMP [Cáp et al., 2013;
Solovey et al., 2016]. MAPF [Stern et al., 2019] is a problem
of finding a set of collision-free paths on a graph and collects
extensive attention since the 2010s.

SSSP is directly inspired by two algorithms, respectively
for SBMP and MAPF: (i) Expansive Space Trees (EST) [Hsu
et al., 1997] is an example of SBMP, which performs plan-
ning by constructing a query tree growing with random walks.
(ii) A∗ with operator decomposition [Standley, 2010] solves
MAPF efficiently by decomposing successors in the search
tree such that at most one agent takes an action, rather than all
agents take actions simultaneously. We realize rapid MRMP
by combining these techniques.

1.2 Paper Organization
Section 2 describes the problem formulation and assumptions
for MRMP. Section 3 describes SSSP. Section 4 presents the
empirical results. Section 5 provides discussions. Through-
out the paper, we present a sub-optimal algorithm and focus
on the decision problem because solving MRMP itself is chal-
lenging. Optimal SSSP is discussed at the end. The appendix,
code, and video are available at https://kei18.github.io/sssp/.

2 Preliminaries
2.1 Problem Definition of MRMP
We consider a problem of motion planning for a team of n
robots A = {1, 2, . . . , n} in the 3D closed workspace W ⊂
R3. Each robot i is operated in its own configuration space
Ci ⊂ RdC

i , where dCi ∈ N>0. A set of points occupied by
robot i at a configuration q ∈ Ci is denoted as Ri(q) ⊂ W .
The space W may contain obstacles O ⊂ W . A free space
for robot i is then Cfree

i := {q ∈ Ci | Ri(q) ∩ O = ∅}.
A trajectory for robot i is defined by a continuous mapping
σi : R≥0 7→ Ci.
Definition 1. An MRMP instance is defined by a tuple (W , A,
C, O, R, Qinit, Qgoal), where C := (Ci)i∈A, R := (Ri)

i∈A,
Qinit :=

(
qinit
i ∈ Ci

)i∈A
, and Qgoal := (Qgoal

i ⊆ Ci)i∈A.
Definition 2. Given an MRMP instance, the MRMP problem
is to find a tuple of n trajectories (σi)

i∈A (i.e., solution) and

tend ∈ R≥0, satisfying the following conditions:

• endpoint: σi(0) = qinit
i ∧ σi(tend) ∈ Qgoal

i

• obstacle-free: σi(τ) ∈ C free
i , 0 ≤ τ ≤ tend

• inter-robot collision-free: Ri

(
σi(τ)

)
∩ Rj

(
σj(τ)

)
=

∅, i ̸= j ∈ A, 0 ≤ τ ≤ tend

2.2 Constraints of Robot Motions
Definition 2 assumes that a robot can go in any direction in
the configuration space unless it encounters obstacles. We
call it geometric MRMP. Meanwhile, robots are often subject
to kinematic and dynamics constraints. Kinematic constraints
restrict the local directions of motion available to a robot from
a given configuration. For instance, wheeled robots cannot
translate sideways. Dynamics constraints are governed by
the time derivatives, such as velocity and acceleration. For
instance, cars cannot stop instantly. Kinematic and dynamics
constraints are collectively called kinodynamic constraints.
Motion planning under kinodynamic constraints is called kin-
odynamic planning [Donald et al., 1993]. Since this study
is an early-stage attempt at combining sampling and search,
we consider only kinematic constraints and ignore dynamics
constraints for simplicity.

2.3 Planning with Kinematic Constraints
Consider a control space Ui ∈ RdU

i for robot i, where
dUi ∈ N>0. For instance, the control space of a wheeled robot
is defined by motor controls of its wheels. Then, transitions
of configurations under kinematic constraints are governed
by q̇ = fi(q, u), where q ∈ Ci and u ∈ Ui. A kinematic
MRMP instance is defined by a composition of an MRMP in-
stance in Def. 1, control spaces (Ui)i∈A, and transition func-
tions (fi)

i∈A. Given a kinematic MRMP instance, the kine-
matic MRMP problem asks a sequence of control inputs for
each robot i, that is, ξi : R≥0 7→ Ui. A trajectory σi of
configurations is successively defined as σi(0) := qinit

i and
σi(t) :=

∫ t

0
fi (σi(τ), ξi(τ)) dτ + σi(0). ξi constitutes a so-

lution when σi satisfies the conditions in Def. 2 for all robots.

2.4 Discretized Time and Local Planner
Both geometric and kinematic MRMPs are defined in contin-
uous time. However, it is realistic for planning to discretize
the time. That is, by introducing ∆ ∈ R>0 as a small amount
of time, we aim at finding a path of configurations for each
robot, such that any consecutive two points are travelable in
∆, without encountering obstacles, without inter-robot col-
lisions, and following kinematic constraints. For instance,
given a sequence of control inputs ξ0, ξ1, . . ., a path of con-
figurations in kinematic MRMP is successively defined as
σ0
i := qinit

i and σk
i := σk−1

i + fi
(
σk−1
i , ξk−1

)
∆. Herein,

δ can be regarded as a problem input shared between robots.
For this discretization, as often assumed in motion plan-

ning studies [Choset et al., 2005; LaValle, 2006], we assume
that each robot i has a local planner denoted as connecti.
Given two configurations qfrom, qto ∈ Ci, this function re-
turns a unique trajectory σ of the duration ∆ that satisfies:
(i) σ(0) = qfrom ∧ σ(∆) = qto, (ii) σ(τ) ∈ Cfree

i for 0 ≤ τ ≤
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∆, and (iii) σ follows fi of kinematic MRMP. If no such σ is
found, connecti returns ⊥. For instance, connecti(qfrom, qto)
may output (∆− τ)qfrom + τqto for geometric MRMP, or Du-
bins paths [Dubins, 1957] for car-like robots. Since kinematic
MRMP excludes dynamics constraints, this paper assumes
that each robot can always remain in its current configuration,
i.e., connecti(q, q) ̸= ⊥ for any q ∈ Cfree

i .
Observe that the local planners hide control inputs of kine-

matic MRMP; as long as they are definable, we can directly
consider planning in configuration spaces. Therefore, we col-
lectively call geometric and kinematic MRMPs the MRMP
problem and do not distinguish the two explicitly. With the lo-
cal planners, a solution of MRMP is a tuple of paths (Πi)

i∈A,
where Πi = (q0, q1, . . . , qk | qt ∈ Ci) and k is common be-
tween robots, satisfying the following conditions:

• endpoint: Πi[0] = qinit
i ∧Πi[k] ∈ Qgoal

i

• consistent path: connecti(Πi[t],Πi[t+ 1]) ̸= ⊥
• inter-robot collision-free:

Ri

(
σi(τ)

)
∩Rj

(
σj(τ)

)
= ∅, 0 ≤ τ ≤ ∆, i ̸= j ∈ A,

σ{i,j} = connect{i,j}(Π{i,j}[t],Π{i,j}[t+ 1])
(1)

The domain of t is {0, 1, . . . , k − 1}.

2.5 Roadmap
A roadmap for robot i is a directed graph Gi = (Vi, Ei)
which approximates Cfree

i with a finite set of vertices. Each
vertex q ∈ Vi corresponds to a configuration of Ci, thus sim-
ply denoted as q ∈ Ci. The roadmap Gi must satisfy q ∈ Cfree

i
for all q ∈ Vi and connecti(q, q

′) ̸= ⊥ for all (q, q′) ∈ Ei.

2.6 Blackbox Utility Functions
To solve MRMP, we introduce four functions. The first three
are common in motion planning studies [Choset et al., 2005;
LaValle, 2006], whereas the last one is specific to MRMP.

Sampling. The function samplei randomly samples a con-
figuration q ∈ Ci, where q may not be in Cfree

i .

Distance. The function disti : Ci × Ci 7→ R≥0 defines a
distance of two configurations of robot i. It is not neces-
sary for this function to consider obstacles or inter-robot col-
lisions, however, we assume that p = q ⇔ disti(p, q) = 0,
dist(p, q) = dist(q, p), and disti satisfies the triangle inequal-
ity, e.g., the Euclidean distance.

Steering. The function steeri takes two configurations
qfrom, qto ∈ Cfree

i and then returns a “closer” configuration
q ∈ Cfree

i to qto. With a prespecified parameter ϵ > 0, for-
mally:

steeri
(
qfrom, qto) := argmin

q∈Uϵ

disti
(
q, qto) where

Uϵ :=
{
q ∈ Cfree

i | disti
(
qfrom, q

)
≤ ϵ, connecti

(
qfrom, q

)
̸= ⊥

}
In practice, steer can be approximately implemented by bi-
nary search, e.g., starting from qto, repeatedly sampling q ∈
Ci while halving the distance from qfrom until q is feasible.

Collision. For two robots i, j, given four configurations
qfrom
{i,j}, qto

{i,j} ∈ C
free
{i,j} such that connect{i,j}(qfrom

{i,j}, q
to
{i,j}) ̸=

⊥, the function collide(i,j)(q
from
i , qto

i , q
from
j , qto

j ) returns TRUE
when there is a collision if two robots simultaneously change
their configurations from qfrom

{i,j} to qto
{i,j}. Here, a collision is

defined similarly to Eq. (1). The function otherwise returns
FALSE. For convenience, we use collide(Qfrom,Qto), where
Q{from, to} = (q

{from, to}
i ∈ Cfree

i )i∈A. This shorthand notation
returns TRUE if and only if there is a pair (i, j) for which
collide(i,j)(q

from
i , qto

i , q
from
j , qto

j ) returns TRUE. As for imple-
mentation, since collision detection is important in single-
robot motion planning and has been studied for a long time,
well-known open-source libraries are available, e.g., [Pan et
al., 2012].

Domain Independence. To sum up, we solve MRMP using
only five blackbox functions: connect, sample, dist, steer,
and collide. Doing so makes our approach non-restrictive to
specific robotic systems, rather it is applicable to many plan-
ning domains as we will see in the experiments.

3 Algorithm Description
In a nutshell, SSSP performs a best-first search using operator
decomposition [Standley, 2010] while simultaneously grow-
ing robot-wise roadmaps via random walks [Hsu et al., 1997].
This section first explains the core idea, followed by the pseu-
docode, theoretical analysis of completeness, and postpro-
cessing to obtain better solutions.

3.1 Core Idea
As a high-level description, SSSP constructs a search tree
while expanding robot-wise roadmaps. Each search node
in the tree contains a tuple of configurations Q = (qi ∈
Cfree
i )i∈A and robot i that will take the next action. When this

node is selected during the search process, the algorithm does
vertex expansion and search node expansion in order. The
former expands the roadmap Gi for robot i by random walks
from Q[i]. The latter creates the successors of the node by
transiting the configuration of robot i from Q[i] to its neigh-
boring configurations on Gi, and then passing the turn for i to
i+ 1. Figure 1 illustrates this procedure with initial roadmap
construction explained later, while Fig. 2 shows an example
of constructed roadmaps.

3.2 Details
Algorithm 1 presents the pseudocode of SSSP. Some artifacts
are explained as follows.

Initial Roadmap Construction (Line 1) is done by con-
ventional single-agent SBMP such as RRT-Connect [Kuffner
and LaValle, 2000]. The objective is to secure at least one
valid path from initial to goal configurations for each robot.

Best-first Search (Lines 3–22) realizes the core idea by
maintaining a priority queue Open that stores generated
nodes and a set Explored that stores already generated search
situations. For each iteration, SSSP checks whether the
popped node from Open satisfies the goal condition (Line 8).
If so, it returns a solution by backtracking the node.
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Figure 1: Illustration of SSSP. The algorithm progresses from left to
right. top: Robot-wise roadmaps and search situations. Two robots
are shown by colored circles and an obstacle by a black rectan-
gle. bottom: Search trees. A node ‘xy’ corresponds to a situation
where the blue and red robots are respectively at vertices ‘x’ and ‘y,’
and the blue robot will take the next action. left: Initial roadmaps.
The search starts from the node ‘00.’ middle: Vertex expansion and
search node expansion for the blue robot. The node ‘20’ is not gen-
erated due to inter-robot collision. right: The red robot’s turn. The
search continues until all robots reach their goals.

Figure 2: Example of constructed roadmaps for 2D circular robots
(i.e., Point2d in Fig. 4). A solution is depicted at the leftmost. The
others show respective roadmaps for each robot.

Vertex Expansion (Lines 11–15) is implemented by steer-
ing from the target configuration to newly sampled ones, up
to a fixed number m ∈ N>0. To guarantee completeness,
SSSP also uses vanilla random sampling with a small prob-
ability λ (0.01 in our experiments). Each new vertex must
satisfy a constraint of distance threshold, which suppresses
roadmaps being too dense; otherwise, the search space dra-
matically increases, making it difficult to find a solution.
Similar techniques are seen in SBMP studies [Kala, 2013;
Dobson and Bekris, 2014]. Each new vertex qnew is followed
by edge updates, that is, connecting qnew to all vertices that
connect returns trajectories. Note that, in practice, many sam-
pling trials (i.e., large m) may compromise computation time.

Search Node Expansion (Lines 16–22) adds successors
that (i) have not appeared yet in the search process and (ii) do
not collide with other robots.

Search Iteration (Lines 2–23). The search iterates until a
solution is found while decreasing the distance thresholds for
vertex expansion by multiplying 0 < γ < 1 by current ones.

Search Node Scoring. The heart of the best-first search
is how to score each node that determines which node is
popped from Open (Line 7). Given a tuple of configura-
tionsQ, SSSP scores the node by summation over each robot
i’s shortest path distance from Q[i] to one of the configu-

Algorithm 1 SSSP; input: instance I; output: solution

params: #sampling m ∈ N>0

random sampling prob. λ ∈ (0, 1]
threshold distances θi ∈ R>0, decay rate γ ∈ (0, 1)

1: Gi = (Vi, Ei)← init roadmap(I, i); for each i ∈ A
2: while TRUE do
3: initialize Open , Explored ▷ priority queue, set
4: Open.push

(〈
Q : Qinit, next : 1, parent : ⊥

〉)
5: Explored .append

((
Qinit, 1

))
6: while Open ̸= ∅ do
7: N ← Open.pop()

8: if ∀i ∈ A,N .Q[i] ∈ Qgoal
i then

9: return backtrack(N )
10: i← N .next ; qfrom ← N .Qfrom[i]
11: for 1, 2, . . . ,m do ▷ vertex expansion via sampling
12: qnew ← samplei()
13: with prob. (1− λ): qnew ← steeri(q

from, qnew)
14: if minq∈Vi

disti (q, q
new) > θi then

15: Vi ← Vi ∪ {qnew}; update Ei

16: j ← i+ 1 if i ̸= |A| else 1 ▷ node expansion
17: for qto ∈

{
q ∈ Vi |

(
qfrom, q

)
∈ Ei

}
do

18: Qnew ← copy(N .Q); Qnew[i]← qto

19: if (Qnew, j) ∈ Explored then continue
20: if collide (N.Q, Qnew) then continue
21: Open.push (⟨Q : Qnew,next : j, parent : N⟩)
22: Explored .append ((Qnew, j))
23: θi ← γθi; for each i ∈ A

rations in Qgoal
i on the roadmap Gi, while weighting each

edge (qfrom, qto) ∈ Ei by dist(qfrom, qto). The path distance
is calculated by ignoring inter-robot collisions, as common in
heuristics for MAPF studies [Silver, 2005].

3.3 Properties
Let k ∈ N>0 be the number of search iterations of Lines 2–
23. Moreover, let Gk

i be the roadmap Gi at the beginning
of k-th iteration (i.e., Gi at Line 3) and Gk := (Gk

i )
i∈A. A

solution is called sequential when at most one robot transits
configurations simultaneously at any time.

Lemma 3. SSSP finds a solution in the k-th search iteration
if Gk contains a sequential solution.

Proof. For each k-th iteration, Gi is not infinitely increasing
due to the distance threshold θi. Thus, the search space is
finite: O (|V1| · . . . · |Vn| · |A|). Thanks to brute-force search
in finite space, SSSP finds a solution if Gk contains one.

Theorem 4. For the geometric MRMP problem (Def. 2), the
probability that SSSP finds a solution approaches one as k
approaches∞, provided the instance is solvable.

Proof. We limit the discussion to geometric MRMP wherein
each robot can move in arbitrary directions in its configura-
tion space. The proof is based on analysis in [Švestka and
Overmars, 1998], which claims if an instance is solvable,
(i) there is a sequential solution and (ii) sufficiently dense
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Figure 3: Postprocessing to refine a solution.

robot-wise roadmaps constructed uniformly at random sam-
pling (e.g., PRM [Kavraki et al., 1996]) contain a sequential
solution. According to Lemma 3, SSSP finds a solution once
roadmaps holding claim-(ii) are obtained. SSSP eventually
constructs such roadmaps for the following reasons.

For each search iteration, each robot i tries to develop its
roadmap with at least m ≥ 1 new samples. With the proba-
bility 1− λ > 0, some of them are outcomes of uniformly at
random sampling. Each iteration terminates in finite time (see
Lemma 3), therefore, each robot does not stop attempts of
uniformly at random sampling until finding solutions. More-
over, each iteration decreases the distance threshold, enabling
robots to construct denser roadmaps.

In short, Thm. 4 states that SSSP eventually finds a so-
lution. This corresponds to probabilistic completeness in
SBMP [Elbanhawi and Simic, 2014], defined by the probabil-
ity of finding solutions bounded by the number of sampling.

3.4 Postprocessing
SSSP returns only sequential solutions and compromises so-
lution quality such as the maximum traveling time. Thus, we
briefly discuss how to realize parallel execution that enables
two or more robots to move simultaneously. Specifically, we
consider postprocessing to refine solutions. Smoothing solu-
tion trajectories by postprocessing is common in single-robot
SBMP [Geraerts and Overmars, 2007]. However, MRMP ad-
ditionally takes care of inter-robot collisions.

We describe our method with Fig. 3a. Suppose that SSSP
outputs a sequential solution of Πi = (0, 1, 1, 2, 2, 3) (blue)
and Πj = (0, 0, 1, 1, 2, 2) (red). The method repeats the next
two steps until a given solution metric has not improved.

1. Construct a temporal plan graph (TPG) [Hönig et al.,
2016] of the solution. TPG is a directed acyclic graph
that records temporal dependencies of each robot’s mo-
tions. We also attach possible “shortcut” motions to
TPG. Figure 3b shows an example. There is an arc be-
tween the motions (0, 1) of robots {i, j}; these motions
must happen in order due to collision avoidance. Several
shortcut arcs exist, for example, i can skip using vertex-2
by directly going from vertex-1 to vertex-3.

2. Remove redundant motions in TPG while keeping the
dependencies between robots. Figure 3c shows an ex-
ample. For j, the motions (1, 1) and (2, 2) are removed
but (0, 0) survives to keep the dependency with i.

In the example, we finally obtain a refined solution Πi =
(0, 1, 3, 3) and Πj = (0, 0, 1, 2).

The above refinement is applicable to any MRMP solutions
not limited to those from SSSP. Indeed, the experiments ap-
plied the refinement for solutions obtained by all methods.

4 Evaluation
This section extensively evaluates SSSP on a variety of
MRMP problems and demonstrates that it can solve various
MRMP rapidly compared to other standard approaches. We
further assess solution quality, scalability about the number
of robots |A|, and which components are essential for SSSP,
followed by a ground-robot demo in a dense situation.

4.1 Experimental Setups
Benchmarks. As illustrated in Fig. 4, we prepared vari-
ous scenarios with diverse degrees of freedom and kinematic
constraints, in closed workspaces W ∈ [0, 1]{2,3}. To focus
on characteristics specific to MRMP, we modeled these sce-
narios with simple geometric patterns (e.g., spheres or lines)
and reduced the effort of the connect and collide functions;
these functions were performed with simple geometry calcu-
lations. For each scenario, we prepared 100 instances by ran-
domly generating initial/goal configurations and obstacle lay-
outs. For each instance, the number of robots |A| was chosen
from the interval {2, 3, . . . , 10}. Robots’ body parameters
(e.g., radius and arm length) were also generated randomly
and differed between robots. These parameters were adjusted
so that robots are sufficiently congested, otherwise, the in-
stances become easy to solve. Note that unsolvable instances
may be included, though we excluded obviously unsolvable
instances such as initial configurations with inter-robot colli-
sions. In summary, each instance consists of a team of hetero-
geneous robots and each robot has a different configuration
space; a shared roadmap is unavailable.
Baselines. Our goal is to develop planning algorithms that
can be applied to various domains without the use of exter-
nal knowledge other than five black-box functions. To this
end, we carefully selected the following well-known baseline
methods that are applicable to MRMP defined in Sec. 2. 1

• Probabilistic roadmap (PRM) [Kavraki et al., 1996] is
a celebrated SBMP. For MRMP, PRM samples a com-
posite configuration of |A| robots directly from O(|A|)
dimensional spaces and constructs a single roadmap, and
then derives a solution by pathfinding on it.

• Rapidly-exploring Random Tree (RRT) [LaValle,
1998] is another popular SBMP, focusing on single-
query situations. Similar to PRM, RRT for MRMP sam-
ples a composite state and constructs a tree roadmap
rooted in a composite one of initial configurations for
all robots.

• RRT-Connect (RRT-C) [Kuffner and LaValle, 2000] is
a popular extension of RRT, which accelerates finding
a solution by bi-directional search from both initial and
goal configurations.

1dRRT(∗) [Solovey et al., 2016; Shome et al., 2020] was not
included due to requiring an additional oracle.
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Figure 4: Summary of results. Each scenario is visualized with robots’ bodies (colored circles, spheres, or lines), obstacles (black-filled
circles or spheres), and a solution example (thin lines). Degrees of freedom (DOF) are denoted below scenario names. In Arm{22,33}, each
robot has a fixed root, represented as colored boxes. These two and Snake2d prohibit self-colliding. In Dubins2d, robots must follow Dubins
paths [Dubins, 1957]. The runtime scores of PP, CBS, and SSSP include the initial roadmap construction.

• Prioritized Planning (PP) [Erdmann and Lozano-
Perez, 1987; Silver, 2005; Van Den Berg and Overmars,
2005] is a standard approach to MAPF such that robots
sequentially plan paths while avoiding collisions with al-
ready planned paths. We applied PP to roadmaps con-
structed by robot-wise PRMs, as taken in [Le and Plaku,
2018]. PP was repeated with random priorities until the
problem is solved.

• Conflict-Based Search (CBS) [Sharon et al., 2015] is
another popular MAPF algorithm. CBS is applicable to
MRMP when roadmaps are given [Solis et al., 2021].
We run CBS on robot-wise roadmaps constructed by
PRM. Moreover, we manipulated the heuristic of CBS to
avoid collisions as much as possible during the search.
Doing so loses the optimality of CBS but speeds up find-
ing solutions significantly [Barer et al., 2014].

All hyperparameters of each method including SSSP were ad-
justed prior to the experiments (see the appendix). SSSP used
RRT-Connect [Kuffner and LaValle, 2000] to obtain initial
robot-wise roadmaps (Line 1). Note that this is irrelevant to
RRT-C in the baselines. PP/CBS were tested with PRM rather
than RRT-Connect because otherwise constructed roadmaps
do not include detours, which is essential for solving MAPF
in the second phase of two-phase planning. Since all methods
rely on non-determinism, we tested each method with 10 dif-
ferent random seeds for each instance (1,000 trials in total).

Metrics. The objective is to find solutions as quickly as
possible. Therefore, we rate how many instances are solved
within given time limits (maximum: 5min).

Evaluation Environment. The simulator and all methods
were coded in Julia. The experiments were run on a desktop

PC with Intel Core i9-7960X 2.8GHz CPU and 64GB RAM.
A maximum of 32 different instances were run in parallel us-
ing multi-threading. All methods used exactly the same im-
plementations of connect, collide, sample, and dist.

4.2 Results of Various MRMP Problems
Figure 4 summarizes the results. In short, SSSP outperforms
the other baselines in all tested scenarios, i.e., solving more
instances much faster. We acknowledge that runtime perfor-
mance heavily relies on implementations; however, these re-
sults indicate that SSSP is very promising. The results of
SSSP in Arm22 and Dubins2d are relatively non-remarkable
but we guess this is due to many unsolvable instances, which
could be easily generated in these scenarios. We later discuss
why SSSP is quick.

Solution Quality. As reference records of solution quality,
Table 1 shows the expected total traveling time of all robots
(aka. sum-of-costs), after applying the postprocessing intro-
duced in Sec. 3.4 to all methods. Compared to the other base-
lines, the total traveling time of SSSP is not the best but com-
parable. We will discuss optimality at the end of the paper.

4.3 Scalability Test
We next assess the scalability of SSSP about the number
of robots |A|, varied by 10 increments. For each |A|, 100
Point2d instances were prepared with smaller robots’ radius
(see Fig. 5). PP with tuned parameters (see the appendix) was
also tested as a baseline, which relatively scored high among
the other baselines in the scenario with many robots. Fig-
ure 5 shows that, with larger |A|, SSSP takes longer but still
acceptable time for planning, compared to the baseline.
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SSSP PRM RRT RRT-C PP CBS

Point2d
54/100

1.93
(1.75, 2.10)

3.67
(2.95, 4.25)

3.42
(3.02, 3.81)

3.04
(2.62, 3.43)

1.45
(1.37, 1.52)

1.43
(1.36, 1.49)

Point3d
26/100

2.88
(2.56, 3.16) N/A N/A 4.58

(4.14, 4.99)
1.91

(1.73, 2.06)
1.72

(1.59, 1.84)

Line2d
34/100

2.68
(2.42, 2.92) N/A N/A 5.89

(5.14, 6.62)
1.80

(1.69, 1.90)
1.62

(1.56, 1.69)

Capsule3d
61/100

2.34
(2.12, 2.53) N/A N/A 2.89

(2.55, 3.23)
1.84

(1.79, 1.90)
2.33

(2.24, 2.43)

Arm22
30/100

1.57
(1.35, 1.75)

2.46
(2.13, 2.78)

2.23
(1.96, 2.48)

1.73
(1.43, 2.00)

1.60
(1.43, 1.73)

1.51
(1.35, 1.64)

Arm33
94/100

2.31
(2.22, 2.40) N/A N/A 2.97

(2.72, 3.21)
2.74

(2.64, 2.83)
2.75

(2.68, 2.82)

Dubins2d
30/100

1.52
(1.42, 1.62)

3.84
(3.31, 4.32)

3.06
(2.78, 3.33)

2.07
(1.80, 2.32)

1.28
(1.23, 1.32)

1.39
(1.34, 1.45)

Snake2d
55/100

3.17
(2.91, 3.42) N/A N/A 4.62

(4.20, 5.02)
3.28

(3.08, 3.48)
3.25

(3.04, 3.44)

Table 1: Total traveling time. Scores are averaged over in-
stances successfully solved by all methods, and normalized by∑

i∈A dist(qinit
i , q ∈ Qgoal

i ). The numbers below on the scenario
names are those numbers of instances. To obtain meaningful values,
some cases are excluded from the calculation due to the low success
rates (≤20%; denoted as N/A). We also show 95% confidence inter-
vals of means. Bold characters are based on overlaps of the intervals.
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Figure 5: Scalability test in Point2d. left: An example instance
(|A| = 30) and its solution from SSSP. right: The number of solved
instances with annotation of |A|.

4.4 Which Elements are Essential?
We next address another question that asks which techni-
cal components are essential to SSSP. Specifically, we eval-
uated degraded versions that omit the following compo-
nents: (i) initial roadmap constructions (Line 1), (ii) search
node scoring (replaced by random values), (iii) vertex expan-
sion (Lines 11–15) (iv) distance thresholds check (Line 14),
(v) steering (by setting λ = 1), and (vi) integrated sampling
and search. The last one rated SSSP without vertex expansion
(m = 0) on robot-wise PRMs.

Table 2 reveals that all these components contribute to the
performance of SSSP. Among them, involving the appropriate
node scoring is particularly critical to achieving high success
rates within a limited time, as well as vertex expansion. The
initial roadmap construction is effective when single-robot
motion planning itself is difficult (Snake2d). The steering ef-
fect was non-dramatic because the workspace is small rela-
tive to robots; we discuss this in the appendix, together with
scores of total traveling time.

4.5 Robot Demo
We applied SSSP to 32 robots (https://toio.io/) modeled as
Point2d in a dense situation (Fig. 6). The robots evolve on
a specific playmat and are controllable by instructions of ab-

SSSP random
score

no init
roadmap

no vertex
expansion

no dist
check λ=1

on
PRM

Point2d 880 512 793 498 737 875 807
Arm22 586 101 565 388 523 584 398

Snake2d 710 0 379 674 519 677 39

Table 2: Ablation study. The numbers of instances solved within
5min are shown.

Figure 6: Robot demo. From left to right, the pictures show the
initial, intermediate, and final configurations, which eventually con-
stitute the characters ‘SSSP.’

solute coordinates. Even though an experimenter randomly
placed the robots as the initial states (see the movie), the
planning was done in about 30 s, and then all robots eventu-
ally reached their goal. Importantly, this demo was based on
only five utility functions of connect, sample, dist, steer, and
collide, without any prepared environmental representations.

5 Conclusion and Discussion
This paper introduced the SSSP algorithm that rapidly solves
MRMP. The main idea behind the algorithm was to unite
techniques developed for SBMP and search techniques for
MAPF. The former had been studied mainly in the robotics
community, while the latter in the AI community. Bring-
ing them together brings promising results, as extensively
demonstrated in our experiments. In the remainder, we pro-
vide further discussions and future directions.

Why is SSSP Quick? We provide two qualitative explana-
tions: one from the MAPF side, and another from the SBMP
side. The quickness of SSSP relies on both factors.

Branching Factor: During the search, SSSP decomposes
successors into search nodes corresponding to at most one
robot taking a motion. Compared to search styles allowing
all robots to move simultaneously, the decomposition signif-
icantly reduces branching factor, i.e., the number of succes-
sors at each node. In general, the average branching factor b
largely determines the search effort [Edelkamp and Schrodl,
2011]. Assume that each robot has k possible motions from
each configuration on average. Coupled with perfect heuris-
tics and a perfect tie-breaking strategy, allowing all robots
to move simultaneously results in b = k|A| and generates(
k|A|) · l nodes, where l is the depth of the search. In con-

trast, SSSP results in b = k and enables searching the equiva-
lent node with only (k|A|) · l nodes generation. This is a key
trick of A∗ with operator decomposition [Standley, 2010] for
MAPF; we based this idea to develop SSSP.

Imbalanced Roadmaps: PRM-based methods (i.e., PRM,
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PP, and CBS in our experiments) have no choice other than
to construct roadmaps uniformly spread in each configuration
space, making search spaces huge. Such drawbacks might be
relieved with biased sampling but representing good bias for
MRMP is not trivial; indeed, existing studies use machine
learning [Arias et al., 2021; Okumura et al., 2022]. In con-
trast, owing to carefully-designed components, SSSP natu-
rally constructs sparse roadmaps in important regions for each
robot as seen in Fig. 2. Consequently, the search space for
SSSP is kept small, which also contributes to quick MRMP.

Kinodynamic MRMP. We untreated dynamics constraints,
therefore, kinodynamic MRMP is an interesting direction.
Similarly to RRT [LaValle and Kuffner Jr, 2001] or EST [Hsu
et al., 1997] that are applicable to kinodynamic planning, we
consider that SSSP is also applicable to such planning. The
adaptation is by considering planning with a state x instead
of a configuration q ∈ Ci for robot i, which comprises a con-
figuration q and its derivative q̇ (i.e., x := (q, q̇)). Some parts
require care; in usual kinodynamic MRMP, connecti(x, x) =
⊥ as we see in cars that cannot stop instantly. This means that
sequential solutions are not allowed. In this case, it is neces-
sary to regard |A| successive search nodes in SSSP as “one
block” to enable concurrent motions of multiple robots.

Optimal MRMP. SSSP prioritizes solving MRMP itself,
rather than solution quality. However, it is possible to re-
flect quality by modifying node scoring, which is currently
designed as a greedy search. With terminologies of A∗

search [Hart et al., 1968], SSSP only uses h-value (i.e., esti-
mation of cost-to-go). A promising direction is to incorporate
g-value (i.e., cost-to-come), letting SSSP asymptotically op-
timal without degrading the performance of solvability. We
also point out that, to be optimal, rewiring the search tree
is mandatory as seen in SBMP or MAPF studies [Karaman
and Frazzoli, 2011; Okumura, 2023a]. Another possibility is
to incorporate iterative refinement schemes [Okumura et al.,
2021; Li et al., 2021] developed for MAPF, although there is
no theoretical guarantee.

Further Integration of SBMP and MAPF. The concept
behind the paper was developing robot-wise roadmaps ac-
cording to the multi-agent search progress, turning out to be
promising. We consider this direction should be further inves-
tigated. A very-recent study [Kottinger et al., 2022] explores
this direction for CBS. Many powerful MAPF algorithms ex-
ist not limited to A∗ adaptation or CBS, such as [Li et al.,
2022; Okumura, 2023b]. Therefore, integrating them with
SBMP may fruit practical methodologies for MRMP.
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