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Abstract
In the study of reactive systems, qualitative prop-
erties are usually easier to model and analyze than
quantitative properties. This is especially true in
systems where mutually beneficial cooperation be-
tween agents is possible, such as multi-agent sys-
tems. The large number of possible payoffs avail-
able to agents in reactive systems with quantitative
properties means that there are many scenarios in
which agents deviate from mutually beneficial out-
comes in order to gain negligible payoff improve-
ments. This behavior often leads to less desirable
outcomes for all agents involved. For this reason
we study satisficing goals, derived from a decision-
making approach aimed at meeting a good-enough
outcome instead of pure optimization. By con-
sidering satisficing goals, we are able to employ
efficient automata-based algorithms to find pure-
strategy Nash equilibria. We then show that these
algorithms extend to scenarios in which agents have
multiple thresholds, providing an approximation
of optimization while still retaining the possibil-
ity of mutually beneficial cooperation and efficient
automata-based algorithms. Finally, we demon-
strate a one-way correspondence between the exis-
tence of ϵ-equilibria and the existence of equilibria
in games where agents have multiple thresholds.

1 Introduction
Work in formal verification has seen recent trends towards
generalizations, such as considering quantitative properties
as opposed to qualitative ones [Bulling and Goranko, 2022;
Gupta, 2016; Kwiatkowska, 2007] and reasoning about multi-
agent systems as opposed to two-agent systems [Grädel et
al., 2002; Gupta, 2016; Mogavero et al., 2014; Shoham and
Leyton-Brown, 2009; Van der Hoek and Wooldridge, 2008;
Wooldridge, 2009]. This motivates combining both general-
izations to reason about extremely general systems.

The quantitative properties in the multi-agent formal ver-
ification literature are usually derived from modifications
of qualitative properties, i.e. temporal logics [Bulling and
Goranko, 2022; Bouyer et al., 2019]. Recent work in fields
like reinforcement learning and planning [Sutton and Barto,

2018; Lavalle, 2006], however, trends towards a different type
of system in which more general quantitative state-based re-
wards are considered. In these systems, agents choose ac-
tions in order to receive rewards, and the quantitative prop-
erty being considered reasons directly about the sequence of
rewards obtained. Since the sum of these rewards is likely
to be infinite in an infinite execution of a system, an aggre-
gation function is usually applied to this sequence [Osborne
and Rubinstein, 1994; Sutton and Barto, 2018]. One of the
most common aggregation functions is the discounted sum –
as each time step passes all rewards are decreased geomet-
rically by multiplication through a discount factor between
0 and 1 [Osborne and Rubinstein, 1994]. This function is
popular since it not only guarantees convergence but also dis-
counts rewards in the future against rewards in the present,
incentivizing agents to follow the rational economic behav-
ior of preferring to receive rewards immediately. The use of
the discounted sum then allows for us to reason about reward
sequences, commonly referred to as payoffs, in such systems.

We choose to reason about the Nash equilibrium solution
concept as our quantitative property of interest as it is one
of the most important concepts in the theory of multi-agent
systems [Nash, 1950; Shoham and Leyton-Brown, 2009;
Wooldridge, 2009]. A Nash equilibrium consists of a strat-
egy for each agent such that no agent in the system can in-
crease his payoff through a unilateral deviation. Since agents
are not incentivized to change their strategy, Nash equilibria
represent stable points in multi-agent systems. Deterministic
behavior is preferred in many settings (i.e. formal verifica-
tion), so pure Nash equilibria, which consist of determinis-
tic strategies, are a preferable concept [Bouyer et al., 2010;
Bouyer et al., 2011; Ummels et al., 2015]. We adopt this
preference here, referring to pure Nash equilibria whenever
we write Nash equilibria.

In these systems it is natural to consider agents that are in-
centivized by maximizing their payoff – i.e. their goal is pay-
off maximization. A difficulty arises, however, when this type
of agent is considered alongside the Nash equilibria solution
concept. Agents with a maximization goal are incentivized to
deviate for an arbitrary improvement in payoff, even if that
improvement is minuscule, a situation that naturally arises
with the accumulation of a discount factor. We demonstrate
that this behavior removes opportunities for mutually benefi-
cial cooperation between agents with an example (Figure 1).
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For this reason the notion of an ϵ-equilibria [Daskalakis et
al., 2006; Roughgarden, 2010] is often considered, in which
an agent is not incentivized to deviate unless it gain at least
ϵ more payoff for some fixed ϵ. While this solution concept
disincentivizes arbitrary deviations, we are not aware of gen-
eral solutions to finding ϵ-equilibria in these systems. A sys-
tem that that disincentivizes minuscule deviations (increasing
cooperative opportunities) and allows for efficient algorithms
that find Nash equilibria is then missing from the literature.

We address this gap by introducing a new type of agent
goal based on the concept of satisficing [Simon, 1956]. An
agent with a satisficing goal is only interested in searching for
some payoff that would meet a fixed threshold, i.e. a “good
enough” outcome. The use of this type of goal has been
successful in stochastic systems with two agents [Bansal et
al., 2021; Bansal et al., 2022b]. Satisficing goals address the
problem of agents deviating for negligible gain since agents
only have a single threshold to meet. Furthermore, they trans-
form our quantitative system into one with qualitative prop-
erties, allowing us to use efficient automata-based techniques
[Rajasekaran and Vardi, 2021; Rajasekaran and Vardi, 2022].

Satisficing goals, however, come at the cost of removing
much of the expressiveness we wished to originally capture
by considering general quantitative systems. To this end, we
introduce a novel approach based on multi-satisficing goals.
An agent with a multi-satisficing goal has multiple thresholds
to meet and is incentivized to meet as many of his thresholds
as possible. This allows us to recapture much of the expres-
siveness of our original quantitative system while still not in-
centivizing minuscule deviations. Furthermore, we show how
to extend the constructions used for satisficing goals (with
single thresholds) to retain the complexity-theoretic benefit
of our automata-theoretic approach, maintaining a PSPACE
upper bound for finding Nash equilibria that matches the
complexity of the qualitative setting [Rajasekaran and Vardi,
2021; Rajasekaran and Vardi, 2022]. We conjecture that this
bound is tight because the problem of finding Nash equi-
libria requires keeping track of the states of an unbounded
number of agents. Since, however, satisficing goals in multi-
agent games are a novel concept we found it challenging to
construct a complexity-theoretic reduction; the specification
of satisficing goals is quite different from the specifications
of the canonical PSPACE-hard multi-agent problems [Kozen,
1977; Sipser, 2006; Hopcroft and Ullman, 1979].

Finally, by considering many thresholds that are close to-
gether we can establish a relationship between Nash equilib-
ria in systems where agents have multi-satisficing goals to
the more traditional notion of ϵ-equilibria. Section 6 demon-
strates how to construct thresholds in a system with multi-
satisficing goals such that the existence of an equilibria in
that system corresponds to an ϵ-equilibria in the system where
only payoffs are considered. The inverse relationship repre-
sents a powerful open question, as a positive result would
allow for a highly efficient automata-based algorithm that
solves for ϵ-equilibria in a very general form of system.

The main contribution of this this paper is the introduc-
tion of a new type of goal (multi-satisficing) for agents in
a very general quantitative multi-agent concurrent game set-
ting. Three main reasons are provided in support of these

goals. First, they provide a framework that offers more oppor-
tunities for collaboration between agents, providing a strate-
gic reason to consider multi-satisficing goals. Second, they
admit efficient automata-based algorithms. In Section 4 we
discuss how a naive application of the techniques in [Bouyer
et al., 2015] would yield a NEXPTIME upper bound as op-
posed to the PSPACE upper bound provided in our paper,
providing a complexity-theoretic reason to consider this ap-
proach to multi-satisficing goals. Finally, this paper demon-
strates a one-way correspondence between equilbiria in sys-
tems with multi-satisficing goals and ϵ-equilibria, tying the
concept of multi-satisficing goals back to a widely accepted
and used notion in the literature.

2 Preliminaries
2.1 Büchi, Safety, and Co-safety automata
A Büchi automaton is a tuple A = ⟨Σ, Q, q0, δ, F ⟩, where Σ
is a finite input alphabet, Q is a finite set of states, q0 ∈ Q
is the initial state, δ ⊆ (Q × Σ × Q) is the transition re-
lation, and F ⊆ Q is the set of accepting states. A Büchi
automaton is deterministic if for all states q and input sym-
bols s ∈ Σ, we have that |{q′ : (q, s, q′) ∈ δ}| ≤ 1. For
a word w = w0w1 · · · ∈ Σω , a run ρ of A over w is a se-
quence q0, q1 · · · ∈ Qω such that q0 is the initial state and
τi = (qi, wi, qi+1) ∈ δ for all i ∈ N. Let inf (ρ) denote the
set of states that occur infinitely often in run ρ. A run ρ is an
accepting run if inf (ρ) ∩ F ̸= ∅. If A has an accepting run
over w then it accepts w. The language of A, denoted L(A),
is the set of words accepted by A. Languages specified by
Büchi automata are called ω-regular and are closed under set-
theoretic union, intersection, and complementation [Grädel
et al., 2002]. A safety automaton is a deterministic Büchi
automaton with a single rejecting sink state [Kupferman and
Vardi, 2000]; it accepts a word w if no finite prefix of w leads
to the rejecting state. A co-safety automaton is a deterministic
Büchi automaton with a single accepting sink state [Kupfer-
man and Vardi, 2000]; it accepts a word w if some finite prefix
of w leads to the accepting state.
Comparator automata. Given an aggregate function f :
Zω → R, a relation R ∈ {<,>,≤,≥,=, ̸=}, and a thresh-
old value v ∈ Q, the comparator automaton for f with up-
per bound µ ∈ Z, relation R, and threshold v ∈ Q is an
automaton that accepts an infinite word A over the alpha-
bet Σ = {−µ,−µ + 1, . . . µ} iff f(A) R v holds [Bansal et
al., 2018]. The discounted sum of an infinite-length weight-
sequence W = w0, w1, · · · ∈ Zω with discount factor
γ > 1 is given by

∑∞
i=0

wi

γi . The comparator automaton
for the discounted-sum has been shown to be a safety or co-
safety automaton when the discount factor γ > 1 is an in-
teger for all values of R, µ and v [Bansal and Vardi, 2019;
Bansal et al., 2021]. Furthermore, no Büchi comparator au-
tomata exist for non-integer discount factors γ > 1 [Bansal et
al., 2022a]. Here, we only consider integral discount factors.

2.2 Multi-agent Systems
Multi-agent systems provide a powerful framework for rea-
soning about interactions between multiple strategic agents.
One of the most general multi-agent systems is given by
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a concurrent game, defined as a 6-tuple ⟨V,v0,Ω, A, τ, α⟩,
where (1) V is a finite set of states. v0 ∈ V is the initial
state (2) Ω = {0 . . . k − 1} is a set of agents of size k (3)
A = ⟨A0 . . . Ak−1⟩ is a tuple of action sets; the set Ai is as-
sociated with Agent i, and it represents the actions available
to that agent. We denote D = A0 × A1 × . . .× Ak−1 as the
set of decisions, which represent global actions by the full
set of agents (4) τ : V × D → V is the transition function.
(5) α = ⟨α0 . . . αk−1⟩ is a tuple of goals. The goal αi is
associated with Agent i, and it represents some ordering on
outcomes of the game that constitutes the agent’s preferences.
We discuss different types of goals below. Intuitively, at each
state v ∈ V of the game, the agents concurrently choose ac-
tions from their set of actions. These actions then determine a
decision, which is used to transition the state of the game via
τ . Given this framework, we now define the notion of a play
in a concurrent game. A play ρ ∈ (V ×D)ω is an infinite se-
quence of states and decisions (v0, d0), (v1, d1) . . . such that
v0 is the initial state and, for all j ≥ 0, vj+1 = τ(vj , dj).
Plays represent outcomes of the game, so each αi represents
an ordering on the set of plays as we discuss further below.

Agents are then incentivized to choose actions that create
plays with maximal preference. These actions are dictated by
a strategy. A strategy for Agent i is a function πi : (V ×
D)∗ × V → Ai. Intuitively, this is a deterministic function
that, given the observed history of the game (represented by
a sequence of previously seen state-decision pairs (V ×D)∗

and a current state V ) returns an action ai ∈ Ai.
Let Πi represent the set of strategies for agent i. The set of

strategy profiles is defined as Π =
Ś

i∈Ω Πi. Thus, a strategy
profile π ∈ Π is a tuple of strategies, one for each agent, of
type (V ×D)∗ × V → D. We define π−i to be the strategy
profile π with the i-th element removed. By a slight abuse of
notation, we combine π−i with a strategy π′

i for Agent i to
create a new strategy profile ⟨π−i, π

′
i⟩.

Strategies are deterministic, so given a concurrent game
G = ⟨V,v0,Ω, A, τ, α⟩ and a strategy profile π, there is a
unique play ρ resulting from a strategy profile π, given by (1)
d0 = π((ϵ,v0)) (2) ρ0 = ⟨v0, d0⟩ (3) vi+1 = τ(vi, di) (4)
di+1 = π((ρ0, . . . , ρi), vi+1) (5) ρi+1 = ⟨vi+1, di+1⟩. We
denote this play as ρπ and call it the primary trace of π.

We now define the notion of a Nash equilibrium. A Nash
equilibrium is a strategy profile π = ⟨π0 . . . πk−1⟩ such that
for every agent i ∈ Ω there is no Agent i strategy π′

i such
that, under the preference induced by αi, the play ρ⟨π−i,π′

i⟩
is strictly preferred to the play ρπ . Therefore, under a Nash
equilibrium strategy profile no agent may deviate from the
profile in order to obtain a more preferable result. Since both
the notion of strategies for individual agents and the transition
function in a concurrent games are deterministic here, when
we refer to concepts such as Nash equilibria, we implicitly
mean pure-strategy Nash equilibria.

Turn-Based games. An important class of games are turn-
based games, in which the state set V is partitioned among
the k agents: V = V0 ∪ . . .∪ Vk−1. In a state v ∈ Vi only the
action of Agent i affects the transition. Formally, let d and
d′ be two decisions such that d[i] = d′[i] (they agree on Ai),
then we have that τ(v, d) = τ(v, d′). It is convenient to view

this as if only Agent i takes an action a in a state v ∈ Vi, and,
by slight abuse of notation we write that this action causes a
move from the state v to the state τ(v, a). We denote turn-
based games as ⟨V0, . . . , Vk−1,v0, E, α⟩, where E is a set of
edges over V =

⋃k−1
i=0 Vi describing the possible moves in

the game, the sets of agents and actions are implicit.

2.3 Reachability and Safety games
Two important types of goals αi are specified by Reachabil-
ity and Safety conditions. A reachability goal is specified by a
set of states R ⊆ V . An agent with a reachability goal prefers
plays that visit a state r ∈ R over those that do not. A safety
goal is the dual of a reachability goal and specified by a set of
states S ⊆ V . An agent with a safety goal prefers plays that
do not visit states in V \ S over those that do. In this paper,
when we refer to reachability and safety games we specifi-
cally mean a two-agent turn-based game in which one agent
has a reachability or safety goal and the other agent has the
negation of this goal [McNaughton, 1993]. In a reachability
game G = ⟨V0, V1,v0, E,R⟩ Agent 0 has a preference for
plays that visit at least one state in the reachability set speci-
fied by α0 = R; Agent 1 has the safety goal α1 = V \ R so
the two goals are mutually exclusive.

For both reachability and safety games we use the notation
G = ⟨V0, V1, E, C⟩, where C represents the winning con-
dition (either a reachability or safety set) without specifying
an initial state. Instead, we define a set of “winning states”
Win0(G). We say a state v ∈ V is in Win0(G) if Agent 0 has
a winning strategy π0 starting in state v, which means that
for all Agent 1 strategies π1, we have that ρ⟨π0,π1⟩ is winning
for Agent 0 when v is treated as the initial state. If no such
Agent 0 strategy exists then Agent 1 has a winning strategy
from v and v belongs to the analogously defined Win1(G).
Both sets can be computed in time O(|V | + |E|) [Martin,
1975; McNaughton, 1993].

3 Satisficing Games
A discounted-sum game ⟨V,v0,Ω, A, τ, γ,W, α⟩ is a con-
current game ⟨V,v0,Ω, A, τ, α⟩ with the following addi-
tions: (1) γ > 1 is an integral discount factor, and (2)
W : V × D → Zk is a reward function that associates
each state-decision pair with a k-length integer-valued vec-
tor. Intuitively, the reward function associates integer rewards
for each agent as a function of the state and the decision.
The discount factor devalues rewards in the future with re-
spect to rewards in the present, disincentivizing agents from
waiting before taking actions to get rewards. The addition
of these quantitative properties allows us to assign numerical
values to plays, which we use to define goals α. Given a play
ρ = (v0, d0), (v1, d1) . . ., the cumulative reward earned by
Agent i from ρ is defined as Ri(ρ) =

∑∞
j=0 W(vj , dj)[i] · 1

γj .
An often-used choice for the goal αi is an optimization

goal, i.e. a maximization goal which always prefers plays
with higher cumulative reward to those with lower cumula-
tive reward. An alternative we consider here is a satisficing
goal αi, specified by a pair ⟨Ri, ti⟩, where Ri ∈ {<,≤, >,≥
,=, ̸=} is a comparison relation and ti ∈ Q is a threshold.
These goals induce a binary preference on plays - an agent
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q1

q2 q3 q4

[n, 0] [0, 0]

[0, 0] [0, 1]

[m, 0]

[0, 0]

Figure 1: A two-agent turn-based discounted-sum game with states
V = {q1, q2, q3, q4}. Agent 0 owns the circled state (V0 = {q1});
Agent 1 owns the diamond states (V1 = {q2, q3, q4}).

with a satisficing goal prefers plays ρ in which Ri(ρ) Ri ti
holds to plays where it does not hold. We demonstrate the
utility of considering agents with satisficing goals as opposed
to optimization goals under the Nash equilibria solution con-
cept through an example.

Consider the two-player turn-based discounted-sum game
in Fig 1. Each edge is labeled with a pair of integers, rep-
resenting the reward function W - Agent 0 and Agent 1 re-
ceive the first and second reward, respectively. Suppose that
m >> n, such that for our given discount factor γ we have
m
γk > n > m

γk+1 for a large k. This means there exists a path
from q1 to q4 that loops in q3 for several turns such that the
(discounted) reward gained by Agent 0 is higher than what it
would have achieved on the path from q1 to q2.

Assume that both agents are given maximization goals.
Note that the single play that goes from q1 to q2 and stays
there represents the only Nash equilibrium in this game. In
this profile, Agent 0 chooses to go to q2 leading to a reward of
n and 0 for both agents, respectively. The alternative Agent 0
strategy of moving to q3 would lead to a 0 reward for the
Agent 0, since Agent 1 is incentivized to loop at q3 forever
– even when the marginal reward gained by each successive
loop is minuscule due to the discount factor. This is because
Agent 1 always chooses plays with more cumulative reward
per her maximization goal α1. Thus, the game’s only stable
point emerges from a double threat - Agent 1 threatens to loop
at q3 forever, while Agent 0 does not give her the chance, as
Agent 1’s desire to loop at q3 forever for increasingly minus-
cule rewards means that Agent 0 cannot “negotiate” with her.

For this reason, a notion of ϵ-Nash equilibria is sometimes
considered, in which a deviation is not considered preferable
unless it gains at least ϵ more reward for some fixed constant
ϵ > 0 [Daskalakis et al., 2006; Roughgarden, 2010]. This
gives the players a sense of rationality in that they will not
deviate for arbitrarily minuscule rewards. Here, we choose
another form of rationality based on attaining certain thresh-
olds via satisficing goals. Satisficing is a decision-making
strategy that entails searching through available alternatives
until a good-enough threshold is met [Simon, 1956]. It is,
therefore, a reasonable approach by a decision-maker in cir-
cumstances where an optimal solution cannot be determined
or are undesirable. In our example, if Agent 1 had a prop-
erly chosen satisficing goal instead of an optimization goal,
she could accept a strategy that loops at q3 a finite number of
times before moving to q4. To this end we study the existence

of Nash equilibria in satisficing games, which are discounted-
sum games where each agent has a satisficing goal.

We note that the change from optimization to satisficing
goals also influences the definition of Nash equilibria since
there are only two possible preferences for each agent. Given
a fixed play ρ in a satisficing game, for each Agent i it is
either the case that Ri(ρ) Ri ti holds or does not. Thus, we
introduce the concept of a winning set W induced by a play
ρ to be the set of agents W ⊆ Ω such that i ∈ W iff Ri(ρ)αi

holds. Therefore we can find Nash equilibria by finding W-
Nash Equilibria (W -NE for short), which are Nash equilibria
with winning set W - varying W as needed.

The next section develops the technical tools needed to
find W -NE in satisficing games. Satisficing games are able
to avoid certain undesirable behaviors from agents, but this
comes at the cost of equipping agents with only two possi-
ble payoffs. While the tendency for agents with optimization
goals to deviate for negligible rewards stemmed from the po-
tentially uncountable number of payoffs available, limiting
agents to two possible payoffs in the satisficing case presents
its own concerns. In Section 5 (Multi-Satisficing Goals) we
show how to extend the analysis of satisficing goals to allow
for a finite but unbounded number of payoffs for each agent,
which we believe represents an important middle ground be-
tween satisficing and optimization goals.

4 Characterization of Nash Equilibria
Agents in multi-agent satisficing games distinguish between
two types of plays based on goal satisfaction, allowing us to
characterize the existence of Nash equilibria through the exis-
tence of W -NE. Our goal is to develop an automata-theoretic
characterization of W -NE existence; we begin by describing
how to model satisficing goals via automata.

Since the discount factor γ is integral, we construct com-
parator automata that recognize infinite sequences of rewards
that satisfy a given satisficing goal in a multi-agent satisfic-
ing game. Let µi represent the maximum magnitude of the
rewards assigned to Agent i, i.e. the range of W(·)[i] is in the
interval [−µi, µi]. By following the construction in [Bansal et
al., 2021], we construct a comparator automaton Ai that rec-
ognizes reward sequences that satisfy the goal αi = ⟨Ri, ti⟩.
The size of Ai is µi·ηi

γ−1 , where ηi is the length of the base γ

representation of ti = ti[0] . . . (ti[m] . . . ti[η − 1])ω . This
is a linear-sized construction under the assumption that µi

is provided in unary. Furthermore, if Ri ∈ {≤,≥,=} then
Ai is a safety automaton; it is a co-safety automaton oth-
erwise [Bansal et al., 2021]. Therefore when given a sat-
isficing goal αi, we construct a Büchi automaton Ai =
⟨Σi, Qi, qi0, δ

i, F i⟩, where Σi = {−µi . . . µi}. Note that
when Ai is a co-safety automaton, once a state in F i is
reached the automaton accepts and when Ai is a safety au-
tomaton, once a state not in F i is reached the automaton
rejects. Since agents may either have a safety or co-safety
automaton representation of their goal, we denote ΩS as
the set of agents with a safety goal representations; ΩC is
analogously denoted for co-safety representations. Further-
more, WS = ΩS ∩ W ,WC = ΩC ∩ W , W = (Ω \ W ),
WC = W ∩ ΩC , and WS = W ∩ ΩS .
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The qualitative nature of satisficing goals means that a
strategy profile π is a W -NE iff (1) Precisely the goals for
agents in W are satisfied on ρπ and (2) For agents j ̸∈ W ,
there is no Agent-j-strategy π′

j such that Agent j’s goal is
satisfied on ρ⟨π−j ,π′

j⟩.This is because in the qualitative set-
ting, agents in W have achieved their maximal preference
and therefore have no incentive to deviate. Therefore, it is
enough to only consider deviations from agents outside of
W . Following [Rajasekaran and Vardi, 2021], we refer to the
first condition as the Primary-Trace condition and the second
as the j-Deviant-Trace Condition. We proceed by analyzing
each condition separately and then show how to unify them.

4.1 The Primary-Trace Condition
In order to analyze the Primary-Trace Condition for a
given set W , we construct a Büchi automaton AW =
⟨D,Q, qW0 , δW , FW ⟩ that recognizes words ρ ∈ Dω iff they
correspond to plays that satisfy the Primary-Trace Condition.
Note that since the transition function in a multi-agent satis-
ficing game is deterministic and the initial state v0 ∈ V is
fixed, plays are uniquely determined by an infinite sequence
of decisions, so we take the input alphabet to be D. The other
components of AW are defined as follows: (1) Q = V ×
Ś

i∈Ω Qi × 2Ω × 2Ω (2) qW0 = ⟨v0, q
0
0 . . . q

k−1
0 ,WC ,WS⟩

(3) For q = ⟨v, q0 . . . qk−1, S1, S2⟩, with S1, S2 ⊆ Ω and d
a decision, the transition δW (q, d) is ⟨v′, q′0 . . . q′k−1, S

′
1, S

′
2⟩,

where (3.i) v′ = τ(v, d) (3.ii) For i ∈ Ω, we have q′i =
δi(qi,W(v, d)[i]) (3.iv) Finally, we specify how we change
S1 and S2 to S′

1 and S′
2 by removing states – we always have

S′
i ⊆ Si: (3.iv.a) If i ∈ S1 then i ̸∈ S′

1 if q′i ∈ F i. (3.iv.b) If
i ∈ S2, then i ̸∈ S′

2 if q′i ̸∈ F i. (3.iv.c) If i ∈ WS , we specify
that the transition is not defined if q′i ̸∈ F i. Upon attempt-
ing such a transition the automaton AW rejects. (3.iv.d)If
i ∈ WC , we specify that the transition is not defined if
q′i ∈ F i. Upon attempting such a transition the automaton
AW rejects. (4) FW is the set of states with S1 = S2 = ∅.

Intuitively, S1 represents agents in W with co-safety goals
that have yet to be satisfied. Once a final state for such a goal
has been reached, this goal is satisfied. A dual logic applies
to S2, which represents agents not in W with safety goals. At
some point such goals must reach their rejecting state. For
co-safety goals for agents not in W , we must make sure they
never reach a final state, so we immediately reject if they do.
The same holds for safety goals in W , if we reach a rejecting
state then AW must also reject.

Theorem 1 (AW Correctness). For a given multi-agent sat-
isficing game G, AW accepts a word ρ ∈ Dω if Ri(ρ) Ri ti
holds for precisely the agents i ∈ W .

All omitted proofs can be found in the technical re-
port 1 [Rajasekaran et al., 2023]

4.2 The j-Deviant-Trace Condition
In order to analyze the j-Deviant-Trace Condition for an
agent j we wish to characterize the set of states (v, qj) and
(v, qj , d) with v ∈ V, qj ∈ Qj , d ∈ D from which there

1https://arxiv.org/abs/2305.00953

exists some Agent j strategy that leads to a successful devia-
tion. To characterize these states we create a two-agent turn-
based game Gj = ⟨V0, V1, E, C⟩ where (1) V0 = V × Qj ,
V1 = V × Qj × D and (2) For (v, qj) ∈ V0, we have
⟨(v, qj), (v, qj , d)⟩ ∈ E for all d ∈ D. For d ∈ D,
let d[−j] represent d with Aj projected out. We have
⟨(v, qj , d), (v′, qj′)⟩ ∈ E iff ∃d′ ∈ D s.t. d[−j] = d′[−j],
τ(v, d′) = v′, and δi(qj ,W(v, d′)[j]) = qj

′

The condition C depends on whether Agent j has a
cosafety or safety goal. If Agent j has a cosafety goal, C
is a safety condition specified by the set V × Qj \ F j ∪
V × Qj \ F j × D. If Agent j has a safety goal, then C
is a reachability condition specified in the exact same man-
ner. Intuitively, Agent 0 takes control of the agents who are
not j and tries to ensure that no successful deviation from
j is possible. Therefore, when Agent j has a cosafety goal
Agent 0 tries to prevent Agent 1 (the stand-in for Agent j)
from reaching an accepting state. And when Agent j has a
safety goal Agent 0 tries to reach the non-accepting state in
the corresponding safety automaton Aj .

Theorem 2. Agent j can only successfully deviate from a pro-
file π from a state in Win1(Gj).

That is to say, for a strategy profile π, if ρπ has a prefix
(v0, d0) . . . (vn, dn) and the run of Aj on the correspond-
ing reward sequence of this prefix puts it in a state qj such
that either (vn, qj) or (vn, qj , dn) belongs to Win1(Gj) then
Agent j has a strategy to ensure a successful deviation; oth-
erwise he does not and cannot deviate successfully.

4.3 Characterization of W -NE Existence
With the characterization of deviations given above, we cre-
ate the automaton A′

W = ⟨D,Q′, qW0 , δ′W , FW ⟩, defined
as AW with a restricted state space and transition function.
Here, Q′ consists of states ⟨v, q0 . . . qk−1, S1, S2⟩ such that
∀j ̸∈ W we have ⟨v, qj⟩ ̸∈ Win1(Gj). Furthermore, for
q ∈ Q, d ∈ D, δ′W (q, d) is now undefined if ∃j ̸∈ W such
that ⟨q[0], q[j], d⟩ ∈ Win1(Gj) (Note q[0] ∈ V ). Our charac-
terization is then given by the following:

Theorem 3. For a given multi-agent satisficing game G, A′
W

is nonempty iff there exists a W -NE strategy profile.

Therefore, we are able to reduce the problem of W -NE ex-
istence to that of non-emptiness in a Büchi automaton. We
now analyze the complexity of determining the nonemptiness
of A′

W . As mentioned before, if the rewards are specified in
unary, then each comparator is linear in the size of the input
of a multi-agent satisfying game. AW , which consists of the
cross-products of these comparator automata and 2Ω is expo-
nential in the size of the input.

In order to determine Win1(Gj) for each j ̸∈ W , we either
construct a reachability or safety game as outlined in Section
4.2. The size of these games is (|V | × |Qj | × |D|) + (|V | ×
|Qj |), which is polynomial in the size of the input. These
games can be solved in time linear to the size so this step
takes polynomial time. Testing the final A′

W therefore lies
in NPSPACE=PSPACE, as Büchi automata can be tested for
nonemptiness in NLOGSPACE [Vardi and Wolper, 1994].
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Theorem 4. The problem of deciding whether a W -NE exists
in a multi-agent satisficing game is in PSPACE.

The characterization of Theorem 4 is for a fixed W ⊆ Ω.
But we can also find some W ⊆ Ω, or some W ⊆ Ω of
maximal size such that a W -NE exists while remaining in
PSPACE. As mentioned in the introduction, one could con-
struct a game consisting of the cross-product of each com-
parator automaton and the underlying concurrent game in or-
der to apply the algorithms of [Ummels et al., 2015]. This
construction is exponential in the size of the input due to the
size of the cross-product. Applying the NP algorithm in [Um-
mels et al., 2015] then yields a NEXPTIME upper bound.

5 Multi-Satisficing Goals
In Section 3 we demonstrated a simple scenario in which the
tendency for agents with optimization goals to deviate for
negligible payoff improvements disallowed the possibility of
mutually beneficial cooperation between agents. Satisficing
goals were able to address this problem at the cost of allowing
each agent only two possible payoffs. Ideally, we would like
a goal type that allows agents more than two types of payoffs
but still keeps the possibility of mutual beneficial coopera-
tion that is often lost when using optimization goals. In this
section we describe a new type of goal in which each agent
is equipped with a single relation but has multiple thresholds
and payoffs that increase with the number of thresholds satis-
fied. This allows us to combine the algorithmic efficiency
and possibilities for cooperation achieved by using single-
threshold satisficing goals with the expressive payoff struc-
ture of optimization-type goals.

To this end, we consider multi-threshold satisficing goals
(henceforth, multi-satisficing goals), which are once again
specified by a pair ⟨Ri, Ti⟩. The difference is that instead of
a single threshold ti, Agent i has a monotone sequence Ti of
thresholds. In order to accommodate these multiple thresh-
olds, we only consider relations Ri ∈ {<,>,≤,≥}. On a
play ρ, Agent i with a multi-satisficing goal receives a payoff
(which is distinct from the cumulative reward) equal to the
number of thresholds in Ti that are Ri-satisfied on ρ. Since
the payoff structure is based on the number of thresholds met
and not the actual reward assigned on a play, multi-satisficing
agents always have a preference for a higher payoff over a
lower one regardless of their relation. For example, for an
agent with relation > and threshold sequence {5, 10, 15} a
payoff of 0 would be given for plays with cumulative reward
≤ 5, representing no thresholds met. If the threshold 5 was
met but not 10 this would be a payoff of 1, all the way to her
maximal preference of a payoff of 3 for plays with cumula-
tive reward greater than 15. Even an agent with the < relation
would still seek to maximize the number of thresholds met;
an agent with relation < and thresholds {1, 2, 3} would re-
ceive a payoff of 3 on a play with cumulative reward of 0 but
a payoff of 0 on a play with a cumulative reward of 4.

We once again consider W -NEs but a modification is
needed. Earlier, W specified which agents had their goal sat-
isfied. This can be seen as a list of agents that receive a pay-
off of 1 as opposed to a payoff of 0. In the multi-threshold
framework, W corresponds to a payoff assignment to each

agent. So, if each agent had three thresholds, there would be
four possible payoffs for each agent and therefore 4k possible
W ’s. As an example, for an agent with threshold sequence
{5, 10, 15}, if W assigns a payoff of 2, then only strategy
profiles that yielded this agent a cumulative reward of more
than 10 but less than or equal to 15 are acceptable. While
more thresholds lead to more possibilities for W , it is often
the case that a system planner has some intention towards the
outcome and therefore only needs to consider W that corre-
spond to these desired outcomes. Furthermore, the different
W ’s can still be enumerated in polynomial space.

We now construct an automaton AW that recognizes plays
that assign the payoffs stipulated by W . In Section 4 we
showed how to construct a Büchi automaton given a set of
co-safety and safety automata and a specification of which
automata should accept on infinite words (considering prefix
satisfaction) accepted by the Büchi automaton. We can apply
this same construction here in multiple ways by considering
comparator automata that model the cumulative reward inter-
vals corresponding to the payoffs assigned to each agent by a
given W . For example, if we have an agent with relation >
and thresholds 1 and 2 that receives a payoff of 1 by a given
W , we can construct the Büchi automaton as in Section 4 with
a co-safety comparator automaton for > 1 that we specify to
accept along with a safety comparator automaton for ≤ 2 that
we also specify to accept – here we are modeling payoff spec-
ification with two comparators as opposed to one. If an agent
has relation ≤, thresholds of 0,1, and 2 and receives a payoff
of 0 then we can model this with a co-safety comparator au-
tomaton for ≤ 2 that we specify not to accept or a co-safety
comparator for > 2 that we specify to accept. Since there is
a choice in how to represent a given cumulative reward inter-
val with comparators, automata may be re-used, an important
direction for future work concerning implementations.

Now, we consider the deviation games constructed in Sec-
tion 4.2 to analyze deviations. In order to do so, we consider
the threshold representing the next highest payoff for each
agent. To use our running example, if our agent with rela-
tion > and thresholds {5, 10, 15} was assigned a payoff of
1 by W , then a play with a cumulative reward greater than
10 represents a strictly preferable play to the current play.
Therefore, we can construct a safety game (since she has a
co-safety relation >) w.r.t the comparator that recognizes the
set of plays with cumulative reward greater than 10. This lets
us reapply the construction from Section 4.2 in order to com-
pute Win1(Gj) – which once again represents the set of states
from which profitable deviation is possible.

We can now construct the automaton A′
W by restricting

AW with respect to Win1(Gj) as described in Section 4.3.
Note that, as before, we consider games for every agent not
achieving their maximal payoff, as only agents achieving
their maximal payoff do not consider deviations.

Theorem 5. For a given multi-agent multi-satisficing game
G, we have that A′

W is nonempty iff there exists a W -NE
strategy profile.

We are now able to reduce the problem of W -NE exis-
tence to that of non-emptiness of Büchi automata for multi-
satisficing games, while retaining the same complexity – AW
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is still exponential w.r.t the input and each deviation game is
still polynomial in size, so this algorithm runs in PSPACE.

Theorem 6. The problem of deciding whether a W -NE exists
in a multi-agent multi-satisficing game is in PSPACE.

This result can also be extended, as before, to problems
such as the existence of some Nash equilibria in a multi-
satisficing game by repeatedly running the algorithm for ev-
ery possible W . Since the algorithm for deciding a single W
is in PSPACE, all W can be checked in PSPACE as well.

6 Relationship to ϵ-Equilibria
The notion of an ϵ-equilibria modifies the standard notion
of the Nash equilibria. In a Nash equilibrium strategy pro-
file, no agent could deviate to obtain a strictly preferable
payoff - an ϵ-equilibrium adds an extra condition to “prefer-
able”. Let G be a discounted-sum game. A strategy profile
σ = ⟨σ0 . . . σi . . . σm−1⟩ is an ϵ-equilibrium, for some fixed
constant ϵ, in G if there is no agent i ∈ Ω with a strategy
σ′
i ̸= σi such that Ri(ρσ) + ϵ ≤ Ri(ρ⟨σ0...σ′

i...σm−1⟩).
Since deviations must generate at least ϵ more cumula-

tive reward in an ϵ-equilibrium, this solution concept also
addresses the problems of minuscule deviations raised in
Section 3. This is one of the reasons ϵ-equilibria have be-
come an extremely popular concept in algorithmic game the-
ory [Roughgarden, 2010; Daskalakis et al., 2006]. In this
general concurrent game setting solving for ϵ-equilibria en-
tails adding in extra assumptions, see [Gupta, 2016; Ummels,
2011; Chatterjee et al., 2004] for a few examples.

In this section we develop a one-way correspondence be-
tween ϵ-equilibria in discounted-sum games and the W -NE
in the multi-satisficing games of section 5. Specifically, if
we are given a discounted-sum game G and a fixed constant
ϵ > 0, we show how to construct a family of multi-satisficing
games of the form ⟨G, α⟩ (representing G plus appropriately
chosen multi-satisficing goals α, so each ⟨G, α⟩ is a multi-
satisficing game) such that the existence of some W -NE in
some ⟨G, α⟩ corresponds to an ϵ-equilibria in G.

Here, we explore sufficient restrictions on the multi-
satisficing goals α such that the correspondence holds. For
an agent i in a discounted-sum game, let li (gi) be a lower
(upper) bound on the minimal (maximal) possible cumulative
reward available to the agent over all possible plays.

Theorem 7 (ϵ-Equilibria Correspondence). Let G be a
discounted-sum game with m agents and ϵ > 0 a fixed con-
stant. Let α = [α0, α1 . . . αm−1] be a multi-satisficing goal
such that each αi (which has smallest threshold ai and largest
threshold zi) satisfies the following properties: (1) αi has the
≥ relation (2) ai ≤ li (3) zi ≥ gi (4) For each pair of consec-
utive thresholds tj , tj+1 in αi we have that tj+1− tj ≤ ϵ. Let
σ = ⟨σ0 . . . σi . . . σm−1⟩ be a W -NE for some W in ⟨G, α⟩.
Then, σ is also an ϵ-equilibrium in G.

In the theorem statement we use the ≥ relation since it most
naturally corresponds to the definition of the ϵ-equilibrium in
the literature. Although it is not standard, we can define a
similar minimizing condition – i.e. agents with the minimiz-
ing condition are not incentivized to deviate unless they re-
ceive ϵ less cumulative reward, corresponding to agents with

the ≤ relation in the multi-satisficing setting. This is a natu-
ral extension that lets us consider “modified” ϵ-equilibria in
which agents seek to minimize total cumulative reward or a
mixed game with both maximizing and minimizing agents.

The bounds li and gi are critical. Without the bounds in
place, it may be possible for an agent to deviate to gain more
than ϵ additional cumulative reward but not satisfy additional
thresholds. For example, an agent i may receive a cumulative
reward of r and be able to deviate to a play to receive r + ϵ
cumulative reward, but if both of those values are lower than
agent i’s lowest threshold then the agent has no incentive to
deviate in the corresponding multi-satisficing game, breaking
the correspondence between the two solution concepts.

For this reason, we demonstrate one simple way to com-
pute sufficient values of li and gi. For each agent i, let bi
be the maximum possible reward available on all edges for i
(for biggest) and si be the minimum possible reward over all
edges (for smallest). Then, gi =

∑∞
j=0 bi ·

1
γj is an upper

bound for the cumulative reward for agent i (representing re-
ceiving the maximum reward at every time step) and similarly
li =

∑∞
j=0 si ·

1
γj is a lower bound.

Theorem 7 shows a general but only one-way correspon-
dence between the notions of W -NE and ϵ-equilibria. A re-
verse correspondence, which we leave for future work, would
be a completely characterize ϵ-equilibria purely in terms of
W -NE and would therefore be an extremely powerful result
as it would allow for our efficient automata-based algorithms
to find ϵ-equilibria in an extremely general game setting.

7 Conclusion

In this paper, we have argued for the use of satisficing goals
when analyzing Nash equilibria in multi-agent concurrent
discounted-sum games. There are three main advantages to
consider in favor of satisficing goals.

First, satisficing goals allow for the existence of mutually
beneficial equilibria that may not exist when considering op-
timization goals, as discussed in Section 3. Agents with opti-
mization goals are incentivized to deviate for negligible gain,
but satisficing goals address this problem. Second, satisfic-
ing goals allow for the use of efficient automata-based tech-
niques. The use of these techniques allowed us to demon-
strate a PSPACE upper bound. Furthermore, automata-based
techniques allow for the use of heuristics that have been
shown to be highly efficient in practice, such as BDD-based
encodings [Burch et al., 1992]. Finally, we have shown how
multi-satisficing goals allow us to consider a richer payoff
structure closer to that of an optimizing agent’s while still
addressing the negligible deviation problem and allowing for
automata-based techniques.

There are several directions available for future work; we
mention a few of particular interest here. As mentioned be-
fore, it is natural to consider a PSPACE-lower bound to match
our upper bound presented, noting that PSPACE-hardness is
a reasonable expectation for a multi-agent problem. Further-
more, we wish to continue exploring the relationship between
W -NEs and ϵ-equilibria and consider implementations.
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