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Abstract
Trajectory prediction with uncertainty is a criti-
cal and challenging task for autonomous driving.
Nowadays, we can easily access sensor data rep-
resented in multiple views. However, cross-view
consistency has not been evaluated by the existing
models, which might lead to divergences between
the multimodal predictions from different views. It
is not practical and effective when the network does
not comprehend the 3D scene, which could cause
the downstream module in a dilemma. Instead, we
predicts multimodal trajectories while maintain-
ing cross-view consistency. We presented a cross-
view trajectory prediction method using shared 3D
Queries (XVTP3D). We employ a set of 3D queries
shared across views to generate multi-goals that are
cross-view consistent. We also proposed a random
mask method and coarse-to-fine cross-attention to
capture robust cross-view features. As far as we
know, this is the first work that introduces the out-
standing top-down paradigm in BEV detection field
to a trajectory prediction problem. The results
of experiments on two publicly available datasets
show that XVTP3D achieved state-of-the-art per-
formance with consistent cross-view predictions.

1 Introduction
Trajectory prediction for autonomous driving is challeng-
ing but critical. To improve the performance of autonomous
driving, more sensors are used to collect comprehensive, real-
time data for the driving environment. Point cloud data col-
lected by LiDAR is used to capture the location of visible
objects in 3D space, which can be projected onto a bird’s-
eye view representation. Camera-based data is represented
in either the first-person or fixed-specific view. Based on the
characteristics of each view, we can better perform current
trajectory prediction to improve the performance of decision-
making by analyzing the dynamic driving environment.

∗Corresponding Author. Code and models are released at
https://github.com/hasika000/xvtp3d
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Figure 1: Driving environment can be observed via multiple views
but the predicted goal in different views should be consistent. (Left)
A traffic scene is observed in BEV and FPV. (Middle) The front
candidate goal in BEV is assigned a higher probability than the left
one, while the result is reversed in FPV. It is contradictory in reality.
(Right) A compliant prediction with consistently assigned probabil-
ities between views.

Existing trajectory prediction methods [Bi et al., 2019;
Lin et al., 2021; Varadarajan et al., 2022; Wang et al., 2022a]
for autonomous driving have been able to achieve plausible
results using single-view data. However, it is unclear how to
effectively and efficiently utilize multi-view data. It is chal-
lenging to use the point cloud data from LiDAR, when it is
projected onto a bird’s-eye view, to track the continuous mo-
tion of objects. Even if it can be well proceeded, the per-
formance cannot be guaranteed in 3D space, especially for
the overlaying objects. For the first-person view, the spatial
distance has errors in pixel precision when projected onto a
2D plane, and the faraway elements are easy to omit. Re-
cent works have proposed trajectory prediction methods us-
ing multi-view data to overcome the limitation of only us-
ing single-view data. The aggregation of the cross-view fea-
tures is primarily divided into two categories: feature extrac-
tion for each view separately followed by a concatenation of
single-view features [Rasouli et al., 2019; Yao et al., 2019;
Malla et al., 2020; Bi et al., 2020], and adaptive extraction
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of temporal-spatial features in multi-view by attention-related
modules [Yin et al., 2021]. The interaction and propagation
of cross-view features used in these two methods are only
preserved at the view or agent level, without considering the
consistent correlations in 3D motion space. In the cross-view
feature aggregation, the invalid information and errors from
each view might be amplified and transferred to the other
views, which leads to incorrect trajectory predictions (Fig. 1).

We propose XVTP3D, a cross-view trajectory prediction
model using shared 3D queries. Unlike existing multi-view-
based trajectory prediction work simply aggregate cross-view
data, we perform the trajectory prediction based on the char-
acteristics of each agent’s movement in 3D space, and the
fusion of cross-view features: (1) we develop a coarse-to-
fine cross-view attention mechanism to extract features from
the vectorized representation inputs targeting at agent and
roadmap elements. A coarse attention layer is used to filter
the interaction information with high weight for each single
view. A fine attention layer is then used to enhance the fu-
sion of the filtered interaction information across views. (2)
We construct a group of 3D queries in motion space as pre-
dicted goal candidates, then map them to each view, respec-
tively. We use this top-down paradigm to generate the unified
3D motion representation from each 2D space in each sin-
gle view. This reduces the errors that come from predicting
goals from a single view. (3) The multi-goals generated in a
single view are mapped to the heatmap to ensure unified out-
puts , and the cross-view multi-target that dominates in each
view is chosen as the final motion trend. We also show that
our XVTP3D has better performance for trajectory prediction
from each view.

The main contributions of this work can be summarized as:
(1) We proposed XVTP3D using a coarse-to-fine cross-view
attention mechanism with shared 3D queries. It is capable
of capturing and aggregating cross-view characteristics to en-
sure the 3D consistent multi-goals. (2) As our best knowl-
edge, we are the first to introduce a top-down paradigm for
cross-view features fusion in trajectory prediction. We vali-
dated our method in Argoverse dataset and Nuscenes dataset.
The experimental results showed that our method can achieve
state-of-the-art performance by generating multimodal pre-
dictions that are compliant, accurate, and rational.

2 Related Work
This section reviews trajectory prediction work related to our
work.

2.1 Trajectory Prediction
The future motion of an agent is constantly influenced by
the occurrences in the scene, including surrounding agents,
and the external environment. For trajectory prediction, it is
essential to model complex social interactions. Early work
proposed using GNN to model interaction. STGAT [Huang
et al., 2019] first used a spatial-temporal graph to capture
the interaction between agents. Following work attempted
to use various of GNN such as graph transformer network
[Yu et al., 2020], graph convolutional neural network [Mo-
hamed et al., 2020], and message passing graph neural net-
work [Choi et al., 2021]. Other work, such as SGCN [Shi et

al., 2021] built a sparse directed graph based on their reckon
that the dense undirected graph would introduce superfluous
interactions. To account for environmental impact, recent
work [Gao et al., 2020; Zhao et al., 2020; Gu et al., 2021;
Liang et al., 2020; Kim et al., 2021; Wang et al., 2022a;
Zhou et al., 2022] used vectorized representations due to their
superior performance over rasterized representations[Chai et
al., 2019; Gilles et al., 2021; Gilles et al., 2022; Messaoud et
al., 2021].

Multimodality, which refers to the possibility of differ-
ent future motions based on the same historical observa-
tion, is an additional crucial challenge in trajectory predic-
tion. There are two primary approaches: implicit and ex-
plicit. The implicit methods provided for the potential in-
tent of the target agent by utilizing latent variables. They
generally employ generative networks to model the joint
data distribution such as using GAN [Gupta et al., 2018;
Dendorfer et al., 2021], VAE [Lee et al., 2017; Salzmann
et al., 2020; Chen et al., 2021; Choi et al., 2021; Chen et
al., 2022b], and diffusion [Gu et al., 2022]. The explicit
methods selected multiple potential future motion from a
set of anchors [Phan-Minh et al., 2020; Zhao et al., 2020;
Gu et al., 2021; Varadarajan et al., 2022; Wang et al., 2022a;
Sun et al., 2022]. Each anchor explicitly represents a poten-
tial future motion.

Both explicit and implicit methods are incapable of gener-
ating multiple meaningful modes. The mode collapse prob-
lem adversely affects implicit techniques (also called the pos-
terior collapse problem in VAE). Regardless of the context,
the majority of their anticipated outputs are limited to a small
number of comparable modes, typically one or two. In ad-
dition, their results cannot be interpreted as randomly gener-
ated. Some efforts have tried to solve this problem [Shao et
al., 2020; Choi et al., 2021], but yet no major progress. The
explicit methods can provide highly interpretable results, but
their multimodal predictions are limited. They are limited to
only one or two important modes. In our work, we intend
to develop a more relevant future mode by using cross-view
information.

2.2 Cross-view Trajectory Prediction
The majority of trajectory prediction research is conducted
based on a single view. It is difficult to generalize these
frameworks to fit the cross-view scenario. There are a few
cross-view methods. The first cross-view trajectory predic-
tion datasets was introduced by Tsotsos’s research group.
They collected and released the PIE and JAAD datasets [Ra-
souli et al., 2019; Rasouli et al., 2017], which contain the tra-
jectories of both BEV and FPV images using a ego-vehicle.
They proposed a prediction method across the two views.
Their work was extended by TITAN [Malla et al., 2020] and
LOKI [Girase et al., 2021], which further introduced the ex-
ternal environment and radar data to improve the prediction
accuracy. To better integrate information from the two views,
Yao et al. [Yao et al., 2019] proposed a pooling mechanism
based on ROI, Bi et al. [Bi et al., 2020] stacked two streams
of RNN to encode observations from the two views indepen-
dently and then concatenated them to obtain a joint social fea-
ture. Yin et al. [Yin et al., 2021] employed a transformer
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network to combine the dynamic feature across two views.
These methods considered observations from multiple

views resulting in significant improvements, which showed
the importance of cross-view information. However, the
existing cross-view prediction methods have shortcomings:
(1) the potentially inconsistent between views due to lack
of consideration of the consistency, (2) lack of capability
of multi-modal modeling, since the functions is designed
to superimpose 2D features and cannot effectively repre-
sent the 3D scene (i.e., they usually apply specific aggre-
gation functions to aggregate features from multiple views,
such as pooling (yao 2019 egocentric), concatenation [Bi
et al., 2020], and attention mechanism [Yin et al., 2021]),
(3) high computational cost due to the required additional
prior knowledge [Rasouli et al., 2019; Casas et al., 2018;
Malla et al., 2020].

2.3 3D Object Detection
The goal of 3D object detection is to predict the 3D bounding
boxes of each object in the scene based on images observed
from multiple views. The traditional methods detected ob-
jects in a bottom-up manner. They extract features in each
view (i.e., bottom) then fuse their result in 3D space (i.e., up).
Experiments showed that this traditional paradigm is sensi-
tive to compound error [Wang et al., 2022b]. Recent work
proposed novel top-down paradigms for 3D object detection.
DETR3D [Wang et al., 2022b] used a set of 3D queries in
3D space (i.e., top); each 3D query represented a predicted
bounding box reference point. These 3D queries were pro-
jected to each view (i.e., down) to interact with their fea-
ture map. The refined 3D queries constituted an effective
representation of the 3D scene. PETR [Liu et al., 2022]
eliminated the projection and the interpolation in DETR3D
to reduce computational complexity. BEVFormer [Li et al.,
2022] used a temporal dimension to maintain temporal sta-
bility. FUTR3D [Chen et al., 2022a] expanded DETR3D’s
applicability to accommodate a greater variety of sensor data.
The top-down paradigm works much better than the bottom-
up paradigm, and achieves remarkable success in 3D object
detection. We use the top-down paradigm for our cross-view
trajectory prediction for autonomous driving because it is
similar to how 3D information is captured.

3 Methodology
3.1 Problem Formulation
We generalize the trajectory prediction task as follows. A sce-
nario comprises N agents and a static environment. The his-
torical state sequence S comprises each agent’s past positions
and velocities. The static environment comprises lane seman-
tics (E). The objective is to predict the future trajectory Ŷi,
where the ground truth is Yi, for the target agent i ∈ [1, N ] at
the time period from t+ 1 to (t+ Tpred), given the historical
observation X = (E,S) from (t− Tobs + 1) to t.

We propose a cross-view trajectory prediction method
to perform a cross-view motion transformation by charac-
terizing temporal and spatial relationships between distinct
perspectives. For a given traffic scenario from M dif-
ferent views, meaning M observations are accumulated as

{Xm1 , Xm2 , ..., XmM
}. Our approach is to simultaneously

predict the future trajectory of each target agent i under the
corresponding view

{
Ŷi,m1 , Ŷi,m2 , ..., Ŷi,mM

}
.

We use m to identify each view observation. In this pa-
per, we consider two views: the bird’s-eye view, and the first-
person view, where M = {bev, fpv}. We noted our proposed
framework can be applied to a larger range of situations, not
limited to BEV and/or FPV.

3.2 Overall Framework
We propose a cross-view trajectory prediction method
(XVTP3D) using shared 3D Queries. Our XVTP3D model
(Fig. 2) comprises (1) a scene encoder (Sec. 3.3) utilizing vec-
torized inputs, including two encoder branches for BEV/FPV,
respectively, to characterize each perspective, (2) 3D consis-
tent multi-goals predictor (Sec. 3.4) utilizing the encoded fea-
tures and a set of cross-view goals to characterize the uncer-
tainty of future motion, while preserving the consistency be-
tween views based on the 3D queries that are shared across
views, (3) multi-view trajectory generator (Sec. 3.5) utilizing
the predicted cross-view goal for each agent to produce pre-
dicted trajectories in each view.

3.3 Vectorized Trajectory and Scene Encoder
Our method utilizes two identically structured encoders for
each view, named BEV Encoder, and FPV Encoder. They
are designed to encode vectorized observation within their re-
spective views using VectorNet [Gao et al., 2020] (which is a
hierarchical graph neural network for subgraph and global-
graph). We develop a coarse-to-fine cross-view attention
mechanism to capture social interactions, which preserved
the consistency and relatively significance within each view.

Vectorized Representation
We use subgraph to extract dependence from each instance’s
vectorized representation. It refines the input vectors within
each instance (e.g. agent, lane) and outputs their attributes ai
through an output layer.

v
(l+1)
i = MLP

([
v
(l)
i ;φattn

(
v
(l)
i , v

(l)
i , v

(l)
i

)])
(1)

ai = φagg

(
v
(L)
i

)
(2)

where MLP denotes a multi-layer perceptron, l denotes the
l-th layer of the total L refinement layers, [; ] denotes concate-
nation, φagg denotes max-pooling, and φattn denotes multi-
head attention.

We use global-graph to capture the interaction across the
entire scene. The global interaction is represented by a fully
connected graph. Each instance in the graph corresponds to
a vertex. Their attributes ai are assigned to the vertices. The
global-graph refines the vertex attribute between instances for
the l-th layer:

a
(l+1)
i = MLP

([
a
(l)
i ;φattn

(
a
(l)
i , a

(l)
N , a

(l)
N

)])
(3)

pi = a
(L)
i (4)
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Figure 2: Overall framework of XVTP3D. Our architecture is a goal-driven method. It is composed of three parts: (a) Vectorized Trajectory
and Scene Encoder includes a BEV branch and a FPV branch. (b) 3D Consistent Multi-Goals Predictor generates consistent cross-view goals
prediction using shared 3D queries. It first transforms the 3D queries into a scene representation using the encoded features. It then predicts
a heatmap and samples multimodal goals. (c) Multi-view Trajectory Generator generates the trajectories in each view accordingly with the
predicted multi-goals.

where N denotes instances in the scene other than i, φattn

denotes multi-head attention. The attributes at the last (i.e.,
L-th) layer are used as the final state features.

We compute the dot-product attention for each head within
multi-head attention for both subgraph and global-graph. The
multi-head attention outputs the concatenation of all heads
whose QKV are interpreted as vertex attributes:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

V

)
(5)

Coarse-to-fine Cross-view Attention
The attention mechanism extracts the semantic information
of social interactions. The attention weight αij indicates the
relatively significance of instance j to instance i:

αij =
exp

(
ai · aTj

)∑
k∈N exp

(
ai · aTk

) (6)

To further extract the semantic information across views,
we propose a coarse-to-fine cross-view attention mechanism
(Fig. 2). We modified the original attention mechanism in
global-graph using the cross-view attention module. It en-
hances the important instances to ensure that each potentially
influential instance is considered. Concretely, we employ a
coarse attention layer to identify significant instance cross-
views and a fine attention layer to calculate the final result on
the previously chosen instance set.

The coarse attention layer determines the initial attention
weights by calculating the attention weights in each view
({αij,bev|j ∈ N} and {αij,fpv|j ∈ N}). Based on attention
weights and predefined thresholds (ε), we focus on certain
instances in each view and proceed further matching and fil-
tering on them.

N ∗
bev = {j|j ∈ N,αij,bev > ε} (7)

N ∗
fpv = {j|j ∈ N,αij,fpv > ε} (8)

The observed data from each view contains characteristics
related to occlusion, perspective, or distance, and the learned

weighted sum

weighted sum

∪

cross-view focus

BEV

FPV

Coarse-to-fine Cross-view Attention

Figure 3: Coarse-to-fine Cross-view Attention module. It computes
the Multi-Head Attention of the coarse/fine layer to incorporate so-
cial information from BEV and FPV (denoted by dashed boxes).
Leveraging the ”union operation” (denoted by the red box), it takes
into account the consistency of interaction between two views re-
sulting in a more precise allocation of attention weights.

attention weights derived from both views, which are not nec-
essarily comparable. Considering the consistency of cross-
view motion, we take the instances focused in either view as
the final instance set:

N ∗ = N ∗
bev ∪N ∗

fpv (9)
A fine layer refines vertex attribute on the instance set (Eq. 9):

φattn (ai, aN , aN ) =
∑

k∈N∗

exp
(
ai · aTj

)∑
k∈N∗ exp

(
ai · aTk

) ·aj (10)

Encoder Loss
We utilize the sparse goal scoring loss [Gu et al., 2021] to
accelerate the convergence of our encoder. We employ an
MLP to score the sparse goal, and compute the classification
loss:

σsparse = softmax
(
MLP

(
p(L)

))
(11)
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Figure 4: The 3D Consistent Multi-goals Predictor. The 3D Queries
(orange stars) carry view-specific features (green boxes) to 3D
space, forming a unified scene representation (the box with orange
diagonal). 3D Queries are first projected onto two views, then cal-
culated by Transformer in each view, avoiding the error interference
and accumulation between the views.

L1 = CE (σsparse, πsparse) (12)
where CE denotes the cross entropy, and πsparse denotes the
ground truth sparse goal scoring (one for ground truth goal
sparse, and zero for others).

3.4 3D Consistent Multi-goals Predictor
We propose a multi-goals predictor to generate the cross-
view goals while preserving the consistency between views
using a set of 3D queries, which are employed as goal candi-
dates (Fig. 2). Those are transformed into an effective scene
representation. Inspired by DETR3D [Wang et al., 2022b]
developed for other cross-view tasks [Wang et al., 2022b;
Liu et al., 2022; Li et al., 2022; Chen et al., 2022a], we use
a similar top-down paradigm. Unlike traditional bottom-up
approaches directly concatenated view-specific characteris-
tics, we transform them into a 3D motion space via shared
3D queries. Then, we score each 3D query, and project them
onto a 2D heatmap. Because our 3D queries are shared across
views, the predicted heatmap and motion are guaranteed to
be consistent across views. Last, we sample the multimodal
goals based on the predicted heatmap.

Generating and Projecting 3D Queries
Inspired by DETR3D [Wang et al., 2022b], we initiate a set of
3D queries in 3D space Θ = {θ1, θ2, . . . , θn}. Each 3D query
represents a goal candidate in the 3D scene θ ∈ R3. A query
can be basically interpreted as asking how likely this point is
to become a goal. It is sampled using an anchor-free algo-
rithm [Gu et al., 2021], which introduces sparse and dense
goals. We registered them in a 3D space and our queries
can shared across views to forecast consistent cross-view mo-
tions.

In the transformation procedure F , we compute an effec-
tive representation for each query using the encoded features:

Ω = {ω1, ω2, ..., ωn} = F (Θ,Pbev, Pfpv) (13)

We use the top-down paradigm (1) to pass the 3D queries
(projected to each view) through a transformer along with

view-specific features, (2) to pass the computed features to
a 3D motion space using 3D queries and merge them into a
unified representation:

Ω′
bev = TF

(
MLP

(
φbev
proj (Θ)

)
, Pbev, Pbev

)
(14)

Ω′
fpv = TF

(
MLP

(
φfpv
proj (Θ)

)
, Pfpv, Pfpv

)
(15)

Ω = Ω′
bev ⊙ λbev +Ω′

fpv ⊙ λfpv (16)

where Pm = {p1,m, p2,m, ..., pi,m} denotes all state features
in view m, φproj denote the projection transformation from
camera’s intrinsics and extrinsics to the corresponding view,
⊙ denotes the element-wise product, and λ denote mask ma-
trix for the corresponding views. It masks the invisible query
(e.g., the candidate out of sight) to avoid the effect of invis-
ible query to the final outputs. TF denotes a Transformer
layer that comprises a multi-head attention, a feed forward
neural network, and a layer of normalization with residual
connection successively. Transformer’s computing elements
{Q,K, V } is equivalent of multi-head attention’s {Q,K, V }.

TF (Q,K, V ) = LN (FFN (Attention (Q,K, V ))) (17)

Heatmap Scoring
The network F transforms the original 3D queries into an
effective representation of the 3D scene with cross-view in-
formation. After that, we employ an MLP as an output layer
to score each query. The classification loss between the pre-
dicted scores and ground truth scores is computed as:

σgoal = softmax (MLP (Ω)) (18)

L2 = CE (σgoal, πgoal) (19)
where CE denotes the cross entropy, and πgoal denotes the
score of the ground truth (one for reaching the endpoint of a
given trajectory, and zero for all others).

The goal distribution is presented by the heatmap to show
all the candidates and their scores. Using the hill climb-
ing algorithm [Gu et al., 2021], we sample a set of goals
G = {g1, g2, ..., gk} from the heatmap. Our multimodal
goals G are plausible and consistent across views because the
3D query and heatmap are shared.

During training, the network may favor one view over the
other causing it to be degenerated into a single-view network.
To avoid this and enhance cross-view robustness, we generate
a random mask as ω. The original mask matrix was gener-
ated merely based on the visibility of a given candidate. We
use the random probability β = 0.1 to mask some visible
candidates. We perform this random mask independently on
each view, meaning the masked candidates are asymmetrical.
Some candidates can be concealed in one view but apparent
in the other. The asymmetric data improves the robustness.

3.5 Multi-view Trajectory Generator
We use a multi-view trajectory generator to predict multi-
modal trajectories in each view. Each trajectory is conditional
on each predicted goal in the 3D consistent multi-goals pre-
dictor. Similar to our encoder, our trajectory generator con-
tains two decoding branches, named BEV generator and FPV
generator, with identical structure but independent parame-
ters.
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Method Argoverse Nuscenes
No. Que RM CA BEV FPV BEV FPV

1 - - - 0.980/1.138 21.39/24.27 2.483/4.753 26.94/50.95
2 + - - 0.876/1.123 18.09/18.03 2.299/4.295 24.21/45.01
3 - - + 0.790/1.101 20.12/23.23 2.360/4.632 25.49/47.82
4 + + - 0.740/1.032 17.53/15.60 2.003/3.539 22.19/37.73
5 + + + 0.733/1.030 16.06/16.25 1.907/3.115 19.99/32.65

Table 1: Results of our ablation studies. We report minADE/minFDE in BEV and FPV. Lower is better.

β 0.0 0.5 1.0 1.5 2.0 2.5

BEV 0.77/1.09 0.78/1.06 0.73/1.03 0.74,1.05 0.85/1.08 0.80/1.10
FPV 16.0/17.6 16.9/16.9 16.1,16.3 16.6,16.6 18.7/17.1 17.7,18.4

Table 2: Influence of random probability β on Argoverse dataset (minADE/minFDE).

We project the predicted goals onto each respective view.
To capture the high-dimensional features of each goal, we
use an MLP as an embedding layer. Embedding features, and
state feature of each target agent i are concatenated as joint
features, which are passed through an MLP to generate the
complete trajectories:

Ŷi,bev = MLP
([
pi,bev;MLP

(
φbev
proj (gi,k)

)])
(20)

Ŷi,fpv = MLP
([

pi,fpv;MLP
(
φfpv
proj (gi,k)

)])
(21)

where φproj denotes the projection transformation to the cor-
responding view, k denotes the k-th multimodal prediction
generated by the k-th goal.

Regression Loss
We compute the Euler distance (i.e, L2 loss) between the pre-
dicted trajectory and the ground truth trajectory, using also
the teacher forcing technique [Gao et al., 2020]:

L3 =
∑
i

∥∥∥Ŷi − Yi

∥∥∥
2
. (22)

3.6 Implementation Details
Losses. The loss function of each view is a weighted sum
of three loss terms. We use the sum of the losses under each
view as our objective function:

L =
∑
m∈M

wmLm =
∑
m∈M

wm (w1L1 + w2L2 + w3L3)

(23)
where L1, L2, and L3, respectively, represent sparse goal
scoring loss of the encoder, cross-view goal scoring loss, and
trajectory regression loss. w1, w2, w3 are weights to balance
three terms, and wm,m ∈ M are weights to balance the mul-
tiple views.

In our implementation, the subgraph and the global-graph
have six refinement layers L = 6. All the mentioned multi-
head attentions in our network comprise four attention heads.
The embedding size is 128. All the MLPs/Transformers in
our framework share a similar structure but independent pa-
rameters, which contain two layers with a hidden size of 256.
The probability of a random mask is β = 0.1 as it perform
best.

4 Experiment
We compare our XVTP3D model with state-of-the-art predic-
tion methods for autonomous driving and present quantitative
and qualitative evaluation results in this section.

Dataset. We use two publicly accessible datasets for au-
tonomous driving: Argoverse [Chang et al., 2019] and
NuScenes [Caesar et al., 2020]. Both datasets provide agent
trajectories and vectorized scene geometry. They also provide
other auxiliary information, including semantic labels, cam-
era intrinsics and extrinsics. The Argoverse dataset [Chang et
al., 2019] contains 323557 samples and is split into 205942
for training, 39472 for validation, and 78143 for testing. The
length of all the sequences is 5 seconds. We use the first 2
seconds for observations, and the last 3 seconds for predic-
tions. The sample rate of the Argoverse dataset is 10 Hz. The
Nuscenes dataset [Caesar et al., 2020] contains 32186 sam-
ples for training and 9041 samples for validation. The total
length of the sequence is 8 seconds. We use the first 2 sec-
onds for observations, and the last 6 seconds for predictions.
The sample rate of the Nuscenes dataset is 2 Hz.

Data Processing for More Views. Both the Argoverse and
Nuscenes datasets provide bird’s-eye-view motion data and
scene geometry. To get the observations from other views,
we project the original instances onto the first-person view of
the target agent by using the known intrinsics and extrinsics
of the front camera. To eliminate the effect of ego-future, we
also use the absolute coordinate introduced by [Choi et al.,
2021]. For each sequence, the coordinate system is fixed at
the starting position of the target agent, facing forward, which
did not respond to the agent’s ego-motion. In FPV, we retain
the same semantic labels as BEV. Training samples with long
and unseen future trajectories are detrimental to the training
process. For this reason, we eliminated the training data that
contained unqualified future lengths, which is approximately
3% of the total amount.

Metrics. We choose minADE and minFDE as our evalua-
tion metrics, which are the two major metrics adopted in the
Argoverse competition and the Nuscenes competition. ADE
(Average Displacement Error) is the average L2 distance be-
tween the ground truth and our prediction over all predicted
time steps. FDE (Final Displacement Error) is the distance

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

303



Argovers Nuscenes
Method BEV FPV BEV FPV

Traj++ 0.90/1.92 33.70/52.19 1.88/3.65 25.83/57.28
DenseTNT 0.73/1.05 18.21/23.36 2.52/4.80 28.11/50.48

LaPred 0.71/1.44 17.88/26.14 1.53/3.37 21.43/42.72
HiVT 0.69/1.04 − / − − / − − / −
Ours 0.73/1.03 16.06/16.25 1.91/3.11 19.99/32.65

Table 3: Quantitative comparison on the Argoverse/Nuscenes dataset. We report the minADE/minFDE in BEV and FPV. Bold and underlined
numbers indicate the best and the second best, respectively.

between the predicted final destination and the true final des-
tination at the end of the prediction period. Both lowering
the ADE and FDE are preferable. The prefix min stands for
a multimodal evaluation strategy. That is, we sample k = 6
possible trajectories and calculate metrics based on the trajec-
tory that is closest to the ground truth. Note that the follow-
ing experiments focuses more on the minFDE results than its
minADE results. Our method is built on a goal-driven frame-
work. It is convenient to describe the consistency of 3D cross-
view motion by emphasizing the trajectory’s endpoints as op-
posed to the whole trajectory.

Baselines. We compared our method to four state-of-the-
art trajectory prediction models for autonomous driving (i.e.,
baselines): Traj++ [Salzmann et al., 2020], DenseTNT [Gu
et al., 2021], LaPred [Kim et al., 2021], HiVT [Zhou et al.,
2022]. The results of Traj++, DenseTNT, LaPred, and HiVT
are generated from the released code. We evaluated all meth-
ods on both BEV and FPV. Due to the lack of data process-
ing in the released code for the NuScenes dataset, the pre-
diction of the first-person view requires separate processing
of the target agents, while HiVT predicts all agents in the
whole scene simultaneously, making separation challenging.
Therefore, for HiVT, we only show the results of BEV for the
Argoverse dataset.

4.1 Ablation Study
We conduct ablation studies on both the Argoverse dataset
and the Nuscenes dataset. We isolate the contribution of each
module by gradually removing it. We use the symbols “+”
and “-” to represent whether we add or drop these compo-
nents. We especially investigate the following three compo-
nents: (1) Que: Que denotes the 3D consistent multi-goals
predictor using the shared 3D queries. “-” indicates predict-
ing goals on each single-view, we refer to it as the single-view
method. (2) RM: denotes the random mask technique em-
ployed during mask matrix generation. (3) CA: denotes the
cross-view attention in our encoder.

The quantitative results of our ablation studies are pre-
sented in Table. 1. And we can conclude the contribution of
each component as follows:

(1) Cross-view Predictor. The 3D consistent multi-goals
predictor takes view-specific characteristics of each view into
the 3D space and merges them into a unified representation
of the 3D scene. This is entirely distinct from the single-
view approach, which provides prediction in two views in-
dependently. The first and second rows of results indicate
the efficacy of our cross-view predictor. The single-view

method (Method 1) has the highest error in prediction. The
prediction accuracy increased by 9.6% ∼ 10.6% in BEV and
11.7% ∼ 28.7% in FPV when multiple views are combined
in Method 2. The improvement in FPV is greater due to the
fact that the FPV provides limited information for prediction.
The improvement of the two views supports our motivation to
utilize cross-view data. The single-view approaches capture
just single-view trajectories; it does not contain cross-view
information and is therefore incapable of comprehending 3D
scenes. In contrast, our cross-view predictor can leverage the
cross-view information more, which effectively generates a
reasonable 3D scene representation.

(2) Cross-view Consistency. The 3D consistent multi-goals
predictor connects two views, while maintaining cross-view
consistency by creating multimodal goals that are shared be-
tween views. The comparison between Methods 2 and 3
demonstrates the significance of cross-view consistency. The
approach with the cross-view attention module (Method 3)
can also connect and retrieve cross-view features from two
views. It outperforms the single-view method (Method 1)
in BEV by 2.5% ∼ 3.3% in BEV and 6.1% ∼ 8.1% in
FPV. However, it still generates multimodal predictions that
are nonconforming and lack cross-view consistency. This
explains why the CA approach (Method 3) in the Nuscenes
dataset performs 7.3% worse than the Que method (Method
2) in BEV and 5.9% worse in FPV. The aforementioned re-
sults suggested that, with the benefit of cross-view consis-
tency, our method might more accurately predict trends, par-
ticularly in long-term predictions such as NuScenes.

(3) Random Mask. Table. 1 showed the random mask ap-
proach (Method 4) has the most substantial effect on perfor-
mance. Adding the random mask increased the prediction
accuracy by 8.1% ∼ 17.6% in BEV and 13.5% ∼ 16.2% in
FPV compared with Method 2. Randomizing the mask can
improve both views’ performance. This shows that the orig-
inal method employing a fixed mask matrix degenerates into
an excessive reliance on one view, resulting in a weak per-
formance for both views. By randomly masking instances,
the predictor is prompted to extract more efficient cross-view
features from multiple views, resulting in improved perfor-
mance. Furthermore, we use a varying β, gradually increas-
ing from 0.05 to 0.2 to find the best random probability β.
Based on the performance shown in Table. 2, we use β = 0.1
in our final model.

(4) Cross-attention. Increasing the cross-attention contri-
bution to the final model improved the accuracy by 2.5% ∼
3.3% in BEV and 6.1% ∼ 8.1% in FPV. As shown in
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history ground truth neighbor lane

Figure 5: Illustration of cross-view consistency. Distribution is represented by pink dots. Darker color indicates higher probability, and vice
versa. Each column shows a case from (a) to (d). The first two rows show the inconsistent heatmap predicted by the single view method
in BEV and FPV. The last two rows show the consistent heatmap predicted by our method in BEV and FPV. The top rows do not have
consistency constraints, while the bottom rows have consistency constraints. In the top of (a), the results in BEV and FPV are inconsistent,
with the BEV outputting a dark area in the front indicating a prediction of going straight and the FPV outputting dark areas turning right.
This suggests that single-view methods are susceptible to producing unreasonable predictions due to noise interference. At the bottom of (a),
our method ensures consistent constrain to rectify the inaccurate prediction in BEV by the accurate prediction in FPV, resulting in a more
reasonable prediction without errors. (b) shows a scenario similar to (a). In the top of (c), the BEV outputs a dark area in the right, indicating
a prediction of turning right, while the FPV outputs a dark area in the front, indicating a prediction of going straight. BEV and FPV are
inconsistent and have a single-mode problem. This indicates that single-view methods are susceptible to mode collapsing. In the bottom of
(c), our method accepts both two plausible possibility provided by BEV and FPV, allowing us to produce a more diverse prediction. (d) shows
a scenario similar to (c).

the fourth and fifth rows of the Nuscenes dataset, dropping
the cross-attention module reduced the final performance by
12.0% in BEV and 13.5% in FPV. This showed that the cross-
attention module can benefit our model by focusing more
on significant instances and then encoding useful character-
istics from different views. The cross-attention module did
not add significantly to the overall performance of the Argov-
erse dataset. We believe this is because Nuscenes has a longer
prediction length than Argoverse (3 seconds vs. 6 seconds).

4.2 Quantitative Evaluation
The quantitative results compared with baselines are reported
in Table. 3. Traj++ performs poorly in Argoverse as it relies
on rasterized HD maps, whereas the Argoverse dataset pro-
vides maps of driveable areas.

Table. 3 showed our XVTP3D method outperforms other
state-of-the-art methods in both BEV and FPV. In terms of
minFDE in BEV, our method achieves state-of-the-art perfor-
mance for the Argoverse dataset against the other methods in-

cluding HiVT, LaPred, DenseTNT. For Nuscenes dataset, our
method also achieves competitive accuracy compared with
LaPred, with an improvement of 7.7%. Our method signifi-
cantly outperforms other methods in terms of minFDE. Com-
pared to LaPred, our method improves minFDE by 37.8% for
the Argoverse and 23.6% for Nuscenes datasets. Compared
to DenseTNT, our method improves minFDE by 30.4% for
the Argoverse and 35.3% for Nuscenes datasets. It suggested
our method might be better at comprehending 3D scenes and
generating more accurate predictions as a result. Our method
achieved the highest precision in FPV while keeping outper-
formed precision in BEV.

4.3 Qualitative Evaluation
Heatmap Visualization
Fig. 5 qualitatively showed how cross-view consistency im-
proves performance. We showed the predicted heatmap
from both the single-view method and our full model in
four scenes. Each column shows the prediction in the same
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Figure 6: The visualization on Argoverse dataset. We presented our predicted goals as well as our predicted trajectories in four complex
traffic scenarios. The first row shows the prediction in BEV, while the second row shows the prediction in FPV in the same scenario. We also
present a failure case in the last column.

scene for comparison. The top two rows show the BEV/FPV
heatmaps generated by the single-view method, and the bot-
tom two rows show the BEV/FPV heatmaps generated by our
XVTP3D method. Pink dots represent the goal distribution.
Deep color indicates high probability.

By imposing constraints on the consistency of the crossed
views, our XVTP3D approach is able to combine the two
views and adaptively choose the correct one.

In the first scenario (a), the BEV and FPV forecasts of the
single-view method mismatch. In BEV, it is predicted that
the target agent would go straight because the frontal region
has a high likelihood. In FPV, however, the target agent is
more likely to turn right because of the higher probability as-
signed to the right region. Our model accepts the FPV results
and rejects the BEV results. This aligns the two views so
that the ground-truth trajectory can be used to make accurate
predictions. The second row (b) shows a similar situation.
The agent is anticipated to make a right turn in BEV. And in
FPV, it is predicted to turn left or right. Our method corrects
the prediction of BEV according to the result of FPV.

With the benefit of cross-view consistency, our method
can generate more plausible future motion. In the third case
(c), the results of the two views are also incompatible. The
BEV predicts that the target agent will turn right while the
FPV predicts that the target agent will go straight. Our
method accepts both results to generate more multimodal pre-
dictions. The right-turn mode is not visible in the FPV as it
is outside the field of view. Despite the fact that this poten-
tial future motion is undetectable, our method continues to
account for it. This substantiates our random mask strategy.
In a similar way, the fourth row (d) shows an example of how
our method takes two results from two views and makes a
more accurate multimodal prediction.

Trajectory Visualization
We visualize our predicted trajectories on the Argoverse
dataset in Fig. 6. We illustrate various traffic scenarios, in-
cluding left-turn (a), straight forward (b), and multiple pos-
sible future (c and d). They are all difficult situations due

to their location at a complex crossroads with several neigh-
bors. In the majority of complex driving scenarios (a and
c) and from all views, our model generates accurate, multi-
modal, and reasonable predictions. In the final column, we
also present a failure case where our method predicts two
plausible future motions and misses a deceleration.

5 Conclusion
We proposed XVTP3D, a goal-driven approach to preserving
cross-view consistency. Our method can predict trajectory
using all accessible data from different views, which is not
limited to BEV and FPV. The experimental results showed
our proposed method achieved state-of-the-art performance.
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