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Abstract

Coalition formation is a central approach for multi-
agent coordination. A crucial part of coalition for-
mation that is extensively studied in Al is coalition
structure generation: partitioning agents into coali-
tions to maximize overall value. In this paper, we
propose a novel method for coalition structure gen-
eration by introducing a compact and efficient rep-
resentation of coalition structures. Our representa-
tion partitions the solution space into smaller, more
manageable subspaces that gather structures con-
taining coalitions of specific sizes. Our proposed
method combines two new algorithms, one which
leverages our compact representation and a branch-
and-bound technique to generate optimal coalition
structures, and another that utilizes a preprocessing
phase to identify the most promising sets of coali-
tions to evaluate. Additionally, we show how parts
of the solution space can be gathered into groups to
avoid their redundant evaluation and we investigate
the computational gain that is achieved by avoiding
that redundant processing. Through this approach,
our algorithm is able to prune the solution space
more efficiently. Our results show that the proposed
algorithm is superior to prior state-of-the-art meth-
ods in generating optimal coalition structures under
several value distributions.

1

Coalition formation is an important research area in multia-
gent systems. Forming certain coalitions can be more valu-
able than forming others. A crucial part of coalition formation
is coalition structure generation (CSG): partitioning agents
into coalitions to maximize overall value, that is, finding an
optimal coalition structure. This has a number of impor-
tant applications such as collaboration among trucking com-
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panies [Sandholm and Lesser, 19971, distributed sensor net-
works [Dang et al., 20061, etc.

This coalition structure generation problem has been ex-
tensively studied in AL It is NP-complete [Sandholm et al.,
19991, and several algorithms have been proposed to solve
it either optimally or approximately. Many works [Yeh,
1986; Rahwan and Jennings, 2008; Michalak et al., 2016;
Taguelmimt et al., 2022b] proposed dynamic programming
algorithms, which guarantee finding the optimal coalition
structure but must be run to completion to do so. To al-
low returning solutions prior to termination, a number of
works [Sandholm er al., 1999; Dang and Jennings, 2004;
Rahwan et al., 2009; Taguelmimt ef al., 2022a] have turned to
developing anytime algorithms in an effort to allow premature
termination while providing intermediate solutions during the
algorithm’s execution. When the number of agents increases
and the problem becomes too hard, heuristic algorithms
present a practical option. For this reason, many works [Sen
and Dutta, 2000; Keindnen, 2009; Di Mauro et al., 2010;
Taguelmimt et al., 2021] have presented algorithms that focus
on speed and do not guarantee finding an optimal solution.

The fastest exact algorithms to date are hybrid solutions
called ODP-IP [Michalak et al., 2016], ODSS [Changder et
al., 2020], and BOSS [Changder er al., 2021] that combine
IDP [Rahwan and Jennings, 2008] and IP [Rahwan et al.,
2009]. IDP is based on dynamic programming and computes
the optimal solution for n agents by computing an optimal
partition of all the coalitions C of size |C| € {2,...,n}. In
contrast, IP uses an integer representation of the search space
and computes the optimal solution by traversing in a depth-
first manner multiple search trees and uses branch-and-bound
to speed up the search. Those algorithms are efficient on
some value distributions. However, for many value distri-
butions, they fail to produce an optimal solution within rea-
sonable time. Also, the hybridization of IDP and IP in these
two algorithms relies heavily on the effectiveness of IP. Thus,
the time required by the algorithms grows considerably when
IP is not fast enough. Moreover, several coalition structures
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share common parts, that is, they contain common coalitions.
The evaluation of such common coalitions is duplicated in
those algorithms because they evaluate the common parts of
some coalition structures separately. This repeated process-
ing is wasteful and can be highly time consuming. In light of
these observations, and to address the aforementioned issues,
we present a new method that uses a novel compact search
space representation and a new algorithm to efficiently ex-
plore the coalition structure search space. In short, our main
contributions are the following.

* A novel compact representation of the search space that
gathers solution subspaces in a new way. This repre-
sentation not only enables to optimize the evaluation of
coalition structures but also enables to eliminate the re-
dundant processing of common coalition structures, re-
sulting in a significant reduction in computational time.

A hybrid algorithm, ELIXIR, that combines the
strengths of graph search and dynamic programming
to provide both speed and optimality in exploring the
search space. It uses the new representation to optimize
the evaluation of the coalition structures and a new and
refined selection technique for the coalitions to evaluate
in dynamic programming.

Empirical evaluation showing that ELIXIR generates
optimal solutions faster than prior state-of-the-art algo-
rithms. Moreover, we provide a thorough theoretical
analysis of the proposed method to prove its soundness.

The paper is organized as follows. We begin by present-
ing the CSG problem in Section 2. In Sections 3 and 4, we
describe our novel representation of the search space and our
algorithm. In section 5, we present our experiments. Finally,
Section 6 draws some conclusions.

2 Problem Formulation

In this paper, we use the terms coalition structure and solu-
tion interchangeably. A CSG problem instance is specified
by aset A = {a1,as,...,a,} of n agents and a characteristic
function v assigns a real value v(C) to each coalition C. The
size of the CSG problem is n. A coalition C in A is any non-
empty subset of \A. The size of a coalition C is |C|. This value
captures the desirability (e.g., efficiency) of the coalition. A
coalition structure CS is a partition of the set of agents A
into disjoint, exhaustive coalitions. Given a set of non-empty
coalitions {Cy, Ca, ...,Ci }, a coalition structure is a collection
of coalitions CS = {Cy,Ca, ...,C}, where k = |CS], which
satisfies the following constraints: Ule C; = A and for all
i,j €{1,2,...,k} wherei # j,C; N C; = 0.

ITI(A) denotes the set of all coalition structures. The value
of a coalition structure CS is assessed as the sum of the values
of the coalitions that comprise it: v(CS) = » ;.5 v(C). An
optimal solution to the coalition structure generation problem
is a value-maximizing coalition structure: CS* € II(A) such
that CS™ = argmaxcgseri(ay V(CS).
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3 Compact Solution Subspace Graph
Representation

In this section we introduce our compact representation for
the problem. The compact solution subspace (CSS) graph
is an undirected graph that consists of a number of nodes
that are made up of two components each: a set of numbers
Z1,..,Zp and a set of variables vy, ..,v,. The vector com-
posed of these numbers and variables [z1, .., Zp,v1, .., Uq),
where p+ q < n, represents an ordered integer partition of n,
that is, a vector of positive integers, ordered from smallest to
largest that sum to n. This vector satisfies certain constraints,
Vi,j € {1,..,p}, where i < j,z; < z;and Vi,j € {1,..,¢},
where 7 < j, v; < v; and x, < v;), which guarantees the
order. The series of numbers 1, .., x;, of this vector is called
an integer prefix. Given this, every node in this graph rep-
resents a set of ordered integer partitions that share the same
integer prefix. For instance, in Figure 1 with ten agents, the
node [1, 1, vy, v}] gathers 4 ordered integer partitions, namely
[1,1,1,7], [1,1,2,6], [1,1,3,5], [1,1,4, 4], which share the
same integer-prefix 1, 1. These partitions correspond to the
different possible values that the variables v4 and v} can take,
while ensuring that the sum of the parts of each partition is
equal to n, thatis, 1 + 1 + v4 + vj = n = 10. The index
e of a node is the number of partitions that the node gathers,
which is 4 for the node [1, 1, vy, v}] (see the red rectangles in
Figure 1). Additionally, the degree k of a CSS graph is de-
fined as the number of variables its nodes have. Using this,
we can define the level of compaction in our graph. Figure 1
illustrates a degree 2 CSS graph where there are two vari-
ables. However, by using more variables in building a CSS
graph, we can increase the level of compaction and decrease
the number of nodes in the graph. Conversely, using fewer
variables decreases the level of compaction. Therefore, by
adjusting the number of variables used in the CSS graph, we
can fine-tune the level of compaction and find the most effi-
cient degree for the problem at hand. For example, if we have
partitions [1,1,2,2,4] and [1,1,1,3,4], if we use three variables,
both partitions will be gathered in the same node as they share
the prefix 1,1, however, if we use only two variables, these
two partitions will be separated as the prefix for the first one
is 1,1,2 and for the second one is 1,1,1.

The nodes in the CSS graph are distributed across several
levels, each representing a different number of parts of the in-
teger partitions. Each level [ € {1,..,n} contains nodes rep-
resenting groups of ordered integer partitions of n that con-
tain [ parts. For instance, level 4 contains nodes where integer
partitions of n have four parts. It should also be noted that a
node cannot have more variables than parts. As an example,
if £ = 5, the node in level 2, which contains 2 parts, will only
have two variables. Each group represents a set of coalition
structures in which the sizes of the coalitions match the parts
of the group. For instance, the group [1,1,v,v’,v"], with
n = 10 agents, consists of all coalition structures that contain
two coalitions of size 1 and three other coalitions, where the
sum of the sizes of these three coalitions is 8 (10-1-1). We
denote the set of all integer partitions that belong to a group
G by I9. A special case is the node [n], which is at level 1; it
always contains a unique coalition of size n (i.e., which con-
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tains all agents). In the CSS graph, two nodes representing
groups of ordered integer partitions G; and G- are connected
by an edge if and only if one of the integer partitions gath-
ered in the group G- can be obtained from one of the integer
partitions gathered in the group G; by splitting only one in-
teger. For example, the nodes [1,v1,v] and [1, 1, vy, v}] are
connected because the integer partition [1, 1,2, 6] (gathered
n [1,1,v4,v)]) can be obtained from the partition [1,1, 8]
(gathered in [1,v1,v]]) by splitting the integer 8 into 2 and
6. It should be noted that the number of considered variables
can range from 0 to n. In the case where there are no vari-
ables, each node will contain only one integer partition. If
there is only one variable, there is only one integer that the
variable can take, hence each node will still contain only one
partition. Based on this, the following theorem holds.

Theorem 1. Let N denote the number of nodes in the CSS
V)

Proof. The number of nodes N of the CSS graph depends
on its degree. If it is O or 1, each node gathers one integer
partition and therefore, N is equal to the number of integer
partitions, which is known to be O(ﬂ) [Wilf, 2000].
Then, the higher the degree, the more partitions are gathered
in the nodes and the fewer nodes the CSS graph contains.

Thus, N < O(<% j"/s). Since at least one subspace must
appear on a level, and for a problem of size n there are n

levels, there are at least n nodes in the graph. Thus, N'>n.
O

graph. For every problem size n, we have n<N <O(

For the remainder of this paper, we use the terms partition
group, subspace group, and node interchangeably.

4 ELIXIR Algorithm

Our main algorithm, ELIXIR (ordEred-soLutlon-subspace
focused eXploration with refined dynamlc pRogramming), is
based on the CSS graph and combines dynamic programming
with CSS graph search. It combines two algorithms, CSSA
and RDP, which we present in the following two subsections,
respectively. The subsection after that describes how those
two algorithms are combined in ELIXIR.

4.1 CSS Search Algorithm (CSSA)

The CSS Search Algorithm (CSSA) is based on our compact
solution subspace graph representation of the space of
possible coalition structures. Using this representation,
CSSA starts by computing upper bounds for the values of the
best coalition structures that can be found in each subspace
group. These upper bounds are calculated by identifying
the highest value of the coalitions of each size, denoted
as Max,, and then summing them for each subspace,
UBs = > scrntegers(s) Mazs, where Integers(S) is the
set of integers that form the integer partition of the subspace
S. For example, for S = [1, 2, 3, 4], the upper bound would
be UB1,2,34 = Maz1 + Mazxs + Mazs + Maxy. By
computing the upper bound for every subspace, CSSA
is able to compute the group upper bound of each sub-
space group: GUP; =Maxgc;cUBs. For example,
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Figure 1: A ten-agent Compact Solution Subspace (CSS) graph of
degree 2. This graph has 10 levels of nodes: £1 to L19

for G [1,2,v5, 0], 19
and GUPg;  =Maxseq[1,2,3,4],[1,2,2,53UBs
(UBp,2,3,4),UBp12,2,5))-

With the knowledge of the upper bounds of each subspace
and subspace group, the CSSA algorithm is able to priori-
tize and explore the most promising groups first. It does this
by sorting the subspace groups according to their group up-
per bounds. To keep track of the best solution found so far,
CSSA maintains a record of the current best coalition struc-
ture found CS™ and its value v(CS™). To optimize the search,
CSSA uses a pruning strategy. As it explores the subspace
groups, it prunes away those that have a group upper bound
GUB < v(CS™). This is because these subspace groups
cannot contain an optimal solution. Furthermore, within each
subspace group that has a group upper bound greater than
v(CS™), CSSA identifies subspaces that have an upper bound
UB < v(CS™) and eliminates them from further considera-
tion, further reducing the number of subspaces to be explored.
By eliminating these subspaces, they will not be evaluated
when searching the subspace group, which helps to decrease
the number of elements of the groups during execution. This
process allows CSSA to focus its search on the most promis-
ing subspaces and reduces the overall search time. The order
of subspace and subspace group exploration is always based
on their upper bounds, with the group with the highest group

{[1,2,3,4],[1,2,2,5]}

max
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upper bound being searched first, and within a group, the sub-
space with the highest upper bound is considered first.

To search the subspace groups, CSSA employs a combi-
nation of a depth-first search and a branch-and-bound tech-
nique. For each subspace group that has a remaining sub-
space with an upper bound greater than v(CS™), CSSA builds
search trees, with each node representing a coalition, and
each path from the root to a leaf representing a coalition
structure (Figure 2). During the depth-first search, CSSA ex-
plores coalitions of increasing size, ensuring that the coali-
tions considered do not overlap. To explore a node G =
[£1, %2, ..., Tp, V1, .., Vq], CSSA iterates over the coalitions of
size w1 and, for every coalition C{?, it iterates over the coali-
tions of size x5 that do not overlap with C{*. Likewise, for ev-
ery coalition C; 2 it iterates over the coalitions of size x5 that
do not overlap with C* U C52, and so on up to v,. For v; to
vq, CSSA iterates over the coalitions of the sizes that can cor-
respond to each variable and that have not been pruned out.
This way, each time CSSA iterates over the coalitions of the
sizes vq, it constructs coalition structures composed of p + ¢
coalitions. This process is repeated until every coalition struc-
ture of the group is examined. To improve the efficiency of
the search process, CSSA applies a branch-and-bound tech-
nique to identify and prune search branches that have no
chance of leading to an optimal solution. Specifically, at each
depth d of the search, CSSA evaluates the current set of coali-
tions C7*, ..,C;* and checks if they have the potential to lead
to a coalition structure with a value greater than the current
best solution v(CS™). This is done by comparing the cur-

rent accumulated value of the coalitions 3% v(Ci) plus the
upper bound of the remaining coalitions, "7~ 1 Maz,,, to

the value of the current best solution v(CS™). If the com-
parison shows that the current search path cannot lead to a
better solution (37, v(C;) + S Maz,, < v(CSY)),
then it is pruned and the search process continues with other
branches, meaning that all the coalition structures that con-
tain C{*,..,C;* can be skipped because their values cannot
be greater than v(CS™). Figure 2 provides an illustration of
how CSSA proceeds on an example with ten agents and a
four-part subspace group [1, 2, vs, v§] of a degree 2 CSS.

We refer to every non-empty collection of coalitions within
a coalition structure as a coalition structure part. For-
mally, for a coalition structure CS = {C1,Ca,...,Cr},
any collection {Ci,Cs,...,C;}, where j < k, is a coali-
tion structure part of CS. For example, {{az}} and
{{az2}, {a1,as}} are coalition structure parts of the coalition
structure {{az}, {a1, a5}, {as, as, ag}}. With this definition,
the following theorem quantifies the reduction in the number
of coalition structure parts that are evaluated by CSSA.

Theorem 2. Let q be the degree of a CSS graph for a prob-
lem size n, and let N (x;) denote the number of coalitions of
size x;. For every subspace group G = [x1, ..., Tp, V1, .., Um),
CSSA avoids evaluating (d—1)x[[5_, N (z;) coalition struc-
ture parts, where d is the number of integer partitions of the
subspace group.

Proof. Fix a number of agents n, a CSS graph degree ¢
and a subspace group G = [z1,...,ZTp, V1, .., Up]. All inte-
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ger partitions gathered in G have the same coalition struc-
ture parts. The number of the common coalition structure
parts is [[?_, N(z;). When searching the subspace group
as a whole, these parts are considered only once. However,
if each integer partition is searched apart from the others,
these coalition structure parts will be evaluated for each in-
teger partition, which makes the number of evaluated parts in
this case d x [[}_, N(x;). Hence, CSSA avoids evaluating
(d—1) x [T?_, N(z;) coalition structure parts. O

In other words, CSSA evaluates only one coalition struc-
ture part for each possible combination of coalitions of sizes
T1 to xp, and avoids evaluating the same part for each of
the d — 1 remaining integer partitions of the subspace group.
This unique approach sets our algorithm, ELIXIR, apart from
other methods such as ODP-IP and BOSS, which rely on
commonly used representations.

4.2 Refined Dynamic Programming (RDP)

Our RDP algorithm is based on dynamic programming.
Given n agents, to find an optimal coalition structure, RDP
computes for every selected coalition C C A the best parti-
tion of C and stores it in a partition table P; as P;(C). RDP
also stores the value of the best partition of C in a value table
V; as V,(C). When the best partitions of each coalition are
obtained, the optimal coalition structure corresponds to the
best partition of the grand coalition .A. An example is given
in Section D of the appendix.

To select the coalitions to evaluate (for which we compute
the best partitions), we use a preprocessor that returns a set
of coalition sizes to consider for evaluating the coalitions.
This set of coalition sizes S identifies all coalitions of size
IC| € S. We now introduce the fundamental principle of the
preprocessing phase. Given n agents, to guarantee finding an
optimal solution, not all coalitions need to be evaluated. In
fact, several different sets of coalitions can be considered for
evaluation to search all the subspaces and guarantee finding
an optimal solution. This can be visualized in the CSS graph
of degree 2 by unfolding the nodes, that is, by showing the
partitions that a node gathers (see Figure 3 for an example
with 4 agents). Each node in the graph on the left represents
an integer partition (a subspace), and each edge connects two
adjacent nodes if and only if the integer partition in level 7
can be obtained from the one in level ¢ — 1 by splitting only
one integer.

Starting from the bottom node, each edge that connects
two nodes represents the splitting of a coalition size into two
smaller sizes, meaning that all coalitions of that original size
are evaluated. For example, the red edge that connects the
node [1, 3] to the node [1,1,2] reflects a split of the coali-
tion size 3 into the sizes 1 and 2 (3 = 1 + 2), meaning that
all coalitions of size 3 are evaluated (they are divided into
two coalitions of sizes 1 and 2 to obtain their best partitions).
Hence, dividing a coalition into two corresponds to an up-
ward movement in the graph (e.g. from [1, 3] to [1, 1, 2] with
a coalition of size 3, or from [2, 2] to [1, 1, 2] and from [1, 1, 2]
to [1,1, 1, 1] with a coalition of size 2). The following theo-
rem proves that to fully search a subspace of solutions, it is
not necessary to consider all coalition sizes.
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v(Cy) + Maxs + Maxs + Mazxs < v(CST)
and
v(Cy) + Maxs + Maxs + Mazxy < v(CST)

A
0

v(Cy) + v(C;) + Mazxs + Maxs < v(CS™)

and

v(Cy) + v(C5) + Maxs + Max, < v(CST)

ions Coalitions
of size 2 of size §

tions
of size 1 of size 2
(’v w(C) + v(C)) + v(Cp) + Maxs < v(CST)
S : ¢ X 8
Gy Ci : x : :
i RGN — B X
1)((7,/_) + 7 > o(CST) ! — C, c,
0(Cy) + b (OS5 *) : ) \\- 3
- ') +v(C;) + Maxs + Maxs = v(CST)

4@+

N -

A

Cr) + Maxs + Maxs <

—x

S v
v(Cy) + v(Cy) + Maxs + Maxy = v(CST)

w(os+) V(@) + (&) + 0(Cy) T Mams = v(C'S™)

+ Max, < v(CST)

Coalitions
of size 4

0(Cy) + u(Ck) + v(Crm)

Coalitions
of size 3 !
. '
'
e iy

Chn

. o .
v(Cy) + v(Cr) + v(Cp) + Maxy = v(CST)

Figure 2: Tllustration of the branch-and-bound technique when searching the subspace group [1, 2, vs, v5] of a graph with 10 agents and 2
variables as in Figure 1. In this example, the algorithm recognizes that the coalition structures containing the coalition C, (resp. the coalitions
Cy, Cx and C,) because v(Cz) + Mazs + Mazs + Mazxs < v(CS1) and v(Cy) + Maza + Mazs + Mazs < v(CS™) (resp. because
v(Cy) + v(Ck) +v(Cm) + Mazs < v(CS™T)), cannot be optimal. Thus, CSSA does not search further in the tree. With this, CSSA searches

several integer partitions of coalition structures simultaneously.

CSS graph
of degree 2

/
1,1,00,05 [H
r'

CSS graph
of degree O

S d) ¢ [1,1,1,1]

Split 2
2=1+1
1,v1, 0] . ~ SRS (1, 1, 2]
7Y £ |
Split3 Split 2
3=1+2' =141
v, V) . 'H[vo,vél = [1,3] b [2,2]
s
Split 4 Split 4
4=1+3 4=242
1+ ~Egg (4]

Figure 3: A four-agent CSS graph with two variables that compacts
4 levels of nodes. The left part of this figure is a CSS graph of degree
2 unfolded in the right part into a CSS graph of degree 0, which is
equivalent to the representation presented in [Rahwan et al., 2009].

Theorem 3. By considering only a subset of the edges in a
CSS graph, if there is a path in the graph between every node
and the bottom node, the optimal solution will be found.

Proof. An edge in the CSS graph represents a splitting of a
coalition into two coalitions. A path between the bottom node
and another node N represents the possibility of obtaining
any coalition structure of that node through a series of recur-
sive splittings of the coalitions starting from the grand coali-
tion. Thus, if there is a path between the bottom node and
N, all the coalition structures of N will be generated, and
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hence N will be fully searched. Therefore, if there are paths
between the bottom node and all other nodes, the optimal so-
lution will be found. O

Now, as there are several sets of edges that we can con-
sider to connect all the nodes to the bottom node, and since
an edge reflects a splitting of a coalition size, we can choose
which coalition sizes (and hence which coalitions) to split to
achieve this. For instance, in the graph of Figure 3, removing
the red edge still keeps all the nodes connected to the bottom
node. This means that, by only splitting and evaluating coali-
tions of sizes 2 and 4, the optimal solution can still be found.
Thus, to find the optimal solution, several sets of coalition
sizes can be considered ({2,4} and {2, 3,4} in our example).
Howeyver, each set of sizes has a different run time, which cor-
responds to the time it takes to evaluate all the coalitions of
those sizes. Thus there is an optimal set of sizes using which
we can achieve the shortest run time.

To find this optimal set of sizes for a CSG problem size n,
our preprocessor starts by determining the estimated run time
for evaluating the coalitions of each size (i.e., the cost of con-
sidering each size). It corresponds to the evaluation time of
all the different ways of splitting the coalitions of each size.
The estimated time of a splitting is the computational cost as-
sociated with this hardware operation which is a fixed value
like any other operation, such as an addition or a subtraction.
Hence, the estimated time for a set of sizes is the sum of the
evaluation times of the coalitions of the size set. Then, it
computes the optimal set of sizes that minimizes the total run
time by considering all possible sets of sizes. For each set, it
verifies that all nodes in the CSS graph are connected to the
bottom node by only considering the edges that result from
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splitting the sizes in the set. If a set satisfies this condition,
the preprocessor compares its run time to the current best set
and updates the best set if necessary. Once all possible sets
have been considered, the preprocessor has identified the op-
timal set of sizes. For example, with n = 4, the preprocessor
finds 2,4 and 2, 3,4 as the only sets that guarantee to find an
optimal solution, and 2,4 as the optimal one. With n = 10,
it finds 2,4, 6,8,10. Note that the preprocessor is executed
independently of the process of finding an optimal solution,
as its output is unique and serves as a configuration for the
RDP algorithm. Therefore, it is executed only once to obtain
the optimal set of sizes and not to solve CSG problems. The
pseudocode of the algorithm used by the preprocessor is in
the appendix.

Now, the search process in RDP is carried out on the
coalitions of sizes that belong to the optimal set of sizes
S = {s1, 52, ..., s, } obtained by the preprocessor. RDP starts
by evaluating the coalitions of size s;, and for every coalition
Cs, of size s; that the algorithm encounters, it evaluates all
possible ways of splitting C,, into two coalitions and checks
whether it is beneficial to split Cs, or not. The best results are
then stored in P;(Cs, ) and V;(Cs, ). Similarly, RDP evaluates
the coalitions of size so, and so on. This process is repeated
until the last size si. This way, by the time RDP evaluates the
coalitions of size s, which is always equal to n (because we
always need to compute the best partition for the coalition of
size n to find the optimal solution), the best partition of each
coalition is obtained, and also that of the grand coalition that
corresponds to the optimal solution. The pseudocode of RDP
is in the appendix.

4.3 Hybridization: ELIXIR

In ELIXIR, we combine the CSSA and RDP algorithms to
assist one another during the search process. The two algo-
rithms work in parallel and share a CSS graph. CSSA starts
by sorting the subspace groups and the subspaces within each
group by their upper bounds and begins the search with the
group that has the highest upper bound. As it explores the
subspaces, it prunes out those that do not have a better up-
per bound than the best solution found so far. At the same
time, RDP evaluates the coalitions starting with the smallest
ones. The two algorithms share a CSS graph and work to-
gether as follows: once RDP finishes evaluating all the coali-
tions of size s;, the edges resulting from splitting s; into two
are added to the CSS graph. The following theorem shows the
relationship between the two algorithms (the proof is similar
to that of Theorem 3, and can be found in the appendix):

Theorem 4. If any node in the CSS graph is connected to
the bottom node with a series of edges, it is fully searched by
RDP.

The newly added edges by RDP make certain subspaces
reachable from the bottom node, and hence, they are fully
searched by RDP, which finds the optimal coalition struc-
ture among them. This means that CSSA does not need to
search them anymore, thereby pruning them out. As the size
s; increases, more subspaces become reachable from the bot-
tom node and are pruned out. Once all subspaces have been
searched or pruned out by either algorithm, ELIXIR finishes
and returns the optimal solution.
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Updating the Group Upper Bounds

We have shown that RDP can help CSSA prune out subspaces
that are already searched by RDP. We now show how this can
also help improve the CSSA search process. As stated ear-
lier, CSSA computes the group upper bound of each subspace
group and then searches the groups considering this bound.
The group upper bound of a subspace group corresponds to
the upper bound of the highest upper bound subspace of the
group. In case the highest upper bound subspace of a group is
pruned by RDP and the group still has a chance of containing
an optimal solution, the group upper bound of this subspace
group is recalculated as the upper bound of the subspace with
the highest upper bound among those remaining. Hence, the
bound is lowered. Thus, the order of the groups that are yet
to be searched can change during the execution, thus favor-
ing the subspaces with the highest chances of containing an
optimal solution.

The pseudocode of ELIXIR is in the appendix.

Theorem 5. ELIXIR always finds an optimal solution.

Proof. Each node in the CSS graph is searched using ELIXIR
by CSSA or RDP. A node represents a subspace of solutions,
which contains a number of coalition structures that match the
parts of the subspace. Fix the node P that contains the opti-
mal solution. The optimal solution is found if RDP reaches
P from the bottom node or if CSSA finishes searching the
subspace group that contains P. ELIXIR finishes when all
subspaces are searched by RDP or CSSA. Hence, the sub-
space P that contains the optimal solution is always searched
by ELIXIR using RDP or CSSA. O

In Theorems 6 and 7, we show the time complexity of the
ELIXIR algorithm and the preprocessor. Recall that the pre-
processor is run only once for each problem size n to con-
figure the RDP algorithm of ELIXIR. Hence, ELIXIR is the
only algorithm we run to search for the optimal solutions. The
proof of theorem 7 can be found in the appendix.

Theorem 6. Given n agents, ELIXIR runs in O(3™) time.

Proof. In ELIXIR, CSSA and RDP run in parallel in two
processes, and when any of them finds the optimal solution,
ELIXIR terminates. The worst-case run time of dynamic pro-
gramming, and hence of RDP, on this problem is O(3™) [Yeh,
1986]. CSSA, which requires in the worst case searching all
coalition structures, has run time O(n'""). Thus, the time com-
plexity of ELIXIR is min(O(3™), O(n™)) = O(3™). O

Theorem 7. For all CSG problem sizes n, the preprocessor

VI

. . . 2 7
of RDP computes the optimal size set in O(2" xn® x “—-

5 Experiments

The main goals of our experiments are to investigate how
different input sizes and value distributions affect our search
method, and how our algorithm compares to the prior state of
the art. In accordance with established practices in coalition
structure generation, we benchmark on the following coali-
tion value distributions: Normal [Rahwan ez al., 2007], Mod-
ified Normal [Rahwan et al., 2012], Uniform [Larson and
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Sandholm, 2000], Modified Uniform [Service and Adams,
2010], Beta, Exponential, Gamma [Michalak et al., 2016],
Pascal and Weibull [Changder et al., 2020]. We implemented
ELIXIR in Java and used the codes provided by the authors
of ODP-IP [Michalak er al., 2016] and BOSS [Changder et
al., 2021], which are also written in Java. The experiments
were conducted on an Intel Xeon 2.30GHz E5-2650 CPU
with 256GB of RAM.

ELIXIR uses a hyperparameter for the number of variables
that it considers in CSSA. This hyperparameter is optimized
using 9000 problem instances by varying the number of vari-
ables. Our hyperparameter search and the final hyperparame-
ter are presented in the appendix.

Figure 4 shows how our algorithm performs against the
prior state-of-the-art algorithms ODP-IP and BOSS. The al-
gorithms behave differently depending on the value distribu-
tions. Each result was produced by computing the average
result from 50 generated problem instances per value distri-
bution. Overall, ELIXIR outperforms ODP-IP and BOSS on
some value distributions (Normal, Uniform, Modified Uni-
form, Modified Normal, Weibull and Pascal) and on par on
the other value distributions (Gamma and Exponential). A
notable exception is the Beta distribution, for which there is
essentially a perfect tie. There are also some points in Fig-
ure 4 where ODP-IP and BOSS outperform ELIXIR (e.g.,
for 23 agents on the Normal distribution). A potential rea-
son for this is that the sets of sizes that RDP uses do not help
the algorithm prune the subspaces faster than the other algo-
rithms for these points. An important observation is that there
are only three points in Figure 4 where the other algorithms
are faster than ELIXIR and there is no distribution for which
ELIXIR performs meaningfully worse than the other algo-
rithms. This indicates that our algorithm is suitable for many
different problem instance distributions, including easy ones
such as Pascal and Modified Uniform, and hard ones such as
Normal and Gamma.

To see how the preprocessing phase affects the perfor-
mance of our algorithm, we benchmark RDP against the dy-
namic programming algorithm IDP [Rahwan and Jennings,
2008] used in both ODP-IP and BOSS. In these experiments,
we show the run time of RDP and IDP, which is not influ-
enced by the value distribution, but only by the number of
agents. We also show the time gain achieved by RDP com-
pared to IDP. Table 1 clearly shows that RDP provides opti-
mal solutions faster than IDP. For example, after 388 seconds,
for 24 agents, RDP returns optimal solutions roughly 139 sec-
onds faster than IDP.

6 Conclusions

In this paper, we presented a new method for optimally
solving the coalition structure generation problem—a well-
studied challenge in AIl. We presented a novel compact repre-
sentation of the search space that gathers solution subspaces
in a new way and we developed a new method for finding the
optimal solution to the problem based on this representation.
The algorithm combines two new techniques: one that uses
the new representation along with a branch-and-bound tech-
nique, and one that uses a preprocessor to select the best sets
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Figure 4: Run time of ELIXIR, ODP-IP, and BOSS in log scale. The
percentages represent the time gain achieved by ELIXIR compared
to the best performing algorithm between ODP-IP and BOSS. They
are computed by dividing the run time difference by the run time of
best performing algorithm between ODP-IP and BOSS.

Number of Agents | Execution Time Time
RDP IDP Difference
20 3.2 3.7 0.5
21 12.8 15.9 3.1
22 22 24.7 2.7
23 108 131 23
24 368 507 139
25 847 887 40
26 3515 3659 144
27 5612 7078 1466

Table 1: Run time in seconds of RDP compared to the run time of
IDP. The ‘Time Difference’ column shows the time gain achieved
by RDP compared to IDP.

of coalitions to evaluate. We analyzed how parts of the solu-
tion space can be gathered into groups to avoid their redun-
dant re-evaluation. We also investigated the computational
gain achieved by avoiding this redundancy. We conducted ex-
periments on a variety of common benchmark value distribu-
tions. The experiments show that our algorithm performs bet-
ter than, or on par with, the prior state-of-the-art algorithms
on all the value distributions and all numbers of agents.
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