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Abstract

Decentralized multi-agent cooperative learning is
a practical task due to the partially observed set-
ting both in training and execution. Every agent
learns to cooperate without access to the obser-
vations and policies of others. However, the de-
centralized training of multi-agent is of great diffi-
culty due to non-stationarity, especially when other
agents’ policies are also in learning during training.
To overcome this, we propose to learn a dynamic
policy belief for each agent to predict the current
policies of other agents and accordingly condition
the policy of its own. To quickly adapt to the devel-
opment of others’ policies, we introduce a histori-
cal context to learn the belief inference according
to a few recent action histories of other agents and
a latent variational inference to model their poli-
cies by a learned distribution. We evaluate our
method on the StarCraft II micro management task
(SMAC) and demonstrate its superior performance
in the decentralized training settings and compara-
ble results with the state-of-the-art CTDE methods.

1

Many complex sequential decision-making problems [Chen
et al., 2017; Foerster et al., 2018] require all agents to
achieve a unified goal or the largest team utility in a de-
centralized way, where all agents coordinate their behaviors
conditioned only on their own observation history. Due to
the high-dimensional dynamic state space and unknown en-
vironment model, deep multi-agent reinforcement learning
(MARL) shows great potential and has attracted a lot of in-
terest in these years.

To learn decentralized policies, a typical baseline [Tan,
1993; de Witt er al., 2020] is to develop an independent
learner for each agent and regard the collective (or global)
rewards as the individual rewards directly. This paradigm
may be faced with the non-stationarity [Bowling and Veloso,
2002] problem: the dynamics of its environment effectively
changes as allies (or teammates) change their behaviors
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Figure 1: (a) Static belief learning used by previous works assum-
ing fixed policies of other agents cannot apply to the decentralized
learning systems where other-policy is updating simultaneously. (b)
Our proposed dynamic belief learning tackles the decentralized sce-
narios by learning to model other agents over their changing policies
dynamically from only a few recent historical steps.

through learning and agents may receive spurious reward sig-
nals that originate from their allies’ behavior. To make the
learning stable, most of the existing methods typically adopt
the paradigm of centralized training and decentralized execu-
tion (CTDE) [Rashid et al., 2018], which assume the learning
occurs in a laboratory or a simulator where the extra global
state and communication are available. Despite the great
progress it has made, the CTDE paradigm still may be limited
in some realistic multi-agent systems due to the difficulty of
developing enough real simulators and the inaccessibility of
the global states or agents’ communication for training. Take
the autonomous vehicles [Cao et al., 2012] for example. Even
though RL models have been deployed on vehicles in the
factory before delivery, they still require further learning in
the real road environment where every vehicle is independent
without centralized scheduling. Therefore, it calls for a more
practical decentralized approach with partially observed set-
ting both in training and execution, where every agent learns
to cooperate only by its own observation without global in-
formation as well as the observation and policies of others.

To develop a stable decentralized training method, existing
independent learning handles the non-stationarity by elabo-
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rating training practices like clipping PPO policy ratio [Sun
et al., 2022] and repeating Q-learning updates[Abdallah and
Kaisers, 2016], or improving experience replays[Palmer et
al., 2018][Lyu and Amato, 2018] . Different from them, our
method handle the problem in an other-agent-modeling man-
ner, in which latent behaviors of the other agents is considered
for learning. Related to our work, some methods of agent
modeling [Hernandez-Leal et al., 2019] [Hong et al., 2017]
learn a static policy belief model to predict and respond to the
actions of other agents. However, they assume fixed policies
of other agents and fail to apply on the decentralized multi-
agent learning in which the policies of other agents continue
updating by learning itself, as illustrated in Fig. 1. In this
situation, a desirable capability of agents is to dynamically
change their policy beliefs over the development of others’
policies. A naive way for the purpose is to fine-tune the pol-
icy belief model only utilizing the most recent action histo-
ries, considering that the histories in more previous episodes
are out-of-date to the current policies of others. However,
such approaches may suffer a lot from the lack of data and
insufficient training and thus prevent the policy belief from
modeling others effectively. In the subsequent part of this pa-
per, belief refers to policy belief for clarity.

In this paper, we propose to learn a dynamic belief for dy-
namically modeling other agents over their changing policies
in learning and accordingly condition its policy. To deal with
the developing policies of other agents, we meta-train the dy-
namic belief to learn to model other agents by only a few ac-
tion histories in the most recent episodes, as illustrated in Fig.
1(b). Our learned belief model of each agent takes as input:
(i) the current observation, and (ii) a set of recent observa-
tions and observed actions of other agents. Then it outputs
an embedding of belief to be used by prediction of the fu-
ture actions of others. Specifically, we introduce a historical
context to dynamically process the recent histories relevant
to the current state by essential use of soft attention. And
then, we present a latent variational inference to produce the
belief embedding by modeling policies of others as a distribu-
tion with VAE [Pu er al., 2016]. Our method is implemented
based on the Proximal Policy Optimization (PPO) [Schulman
et al., 2017] structure, which has shown impressive success
in many reinforcement learning tasks. Trained by predicting
actions of other agents, the belief embedding of an agent then
conditions both the policy decision and the value computation
in the training as well as the execution stages. Note that our
method is not to seek the optimal policy of an agent based on
the policies of other agents, but to learn effective policies of
all agents simultaneously under decentralized learning frame-
work. We take belief as an additional input when optimizing
the policy function, which avoids the instability caused by
recursive predictions.

In summary, our contribution is as follows: (i) We pro-
posed a novel dynamic belief learning to alleviate the non-
stationarity of decentralized multi-agent learning by model-
ing the changing policies of teammate agents and condition-
ing the policy of its own. (ii) It introduces a historical con-
text and a latent variational inference which learn to dynami-
cally model other agents by only a few action histories in the
most recent episodes. (iii) Experiment results on two cooper-
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ative environments demonstrate that our approach improves
the performance over other independent learning methods in
decentralized settings and even achieves a comparable perfor-
mance to CTDE.

2 Related Work

Multi-agent cooperative learning. Although deep RL has
been well explored using centralized controllers, those meth-
ods designed for single agents cannot be applied for multi-
agent RL tasks since the joint action space grows expo-
nentially with agent numbers. Hence, centralized training
and decentralized execution (CTDE) was proposed as a pop-
ular paradigm for MARL [Kraemer and Banerjee, 2016].
Typically, value-based approaches learn the global state-
action values as the aggregation of individual state-action val-
ues. For instance, VDN [Sunehag et al., 2017] and QMIX
[Rashid et al., 2018] produce the global Q-values by an
arithmetic summation or a non-linear monotonic factoriza-
tion. Other works further extend the class of value functions,
i.e., QTRAN [Son et al., 2019]. Another typical approach,
Actor-Critic MARL, learns independent actors by a central-
ized critic using policy gradients, such as MAPPO[Chao et
al., 20211[Sun et al., 2022], COMA [Foerster et al., 2018],
MADDPG [Lowe et al., 2017] and so on. Despite the sig-
nificant progress that has been made, CTDE may still be lim-
ited in some realistic multi-agent tasks due to the requirement
of centralized training. Therefore, the practical application
calls for a decentralized approach with partially observed set-
tings both in training and execution. Under this limit, inde-
pendent learning (IL) like IPPO[de Witt et al., 2020], IQL
[Tan, 1993] and IAC [Foerster et al., 2018] decompose an n-
agent MARL problem into n decentralised single-agent prob-
lems and directly learn decentralized policies for each agent.
However, they often suffer from the non-stationarity of the
environment induced by agents simultaneously learning and
exploring, making them unable to learn optimal policies in
some environments. In this paper, we explore a different po-
tential to alleviate non-stationary by learning and exploiting
a dynamic belief of others.

Other agent modeling. Modeling and adapting to un-
known other agents is crucial for multi-agent environments,
where agents interact simultaneously. With access to oppo-
nents’ trajectories, learning other agent adaptively is widely
used in multi-agent competitive tasks [He er al., 2016] or
human-ai coordination [Carroll et al., 2019]. ToM [Rabi-
nowitz et al., 2018], ToMoP [Yang et al., 2019] consider a
purely observational setting and predicted other agents’ de-
sires, beliefs, and intentions from the observed state and ac-
tion. InAC[Ma et al., 2021a] learns interactions in a cen-
tralized manner. Furthermore, several methods [Papoudakis
and Albrecht, 2020] [Zintgraf et al., 2021] model others’ po-
lices as a latent distribution by variational autoencoder (VAE)
[Pu er al., 2016]. Differently, our work assumes partially
observed training settings with only access to the observa-
tion of its own. PR2[Wen et al., 2019], GR2[Wen et al.,
2021] learn recursive reasoning of others to seek optimal re-
sponding while our method is to learn effective policies of
all agents simultaneously. NRBS[Moreno ef al., 2021] learns
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recursive belief for policy training but ignores relative histor-
ical observations. OP[Ma et al., 2021b] collects and matches
the behavioral graph of opponents directly as policy inputs,
whereas our work mines historical samples to learn belief
by action prediction. Related to our work, previous meth-
ods [Hernandez-Leal et al., 2019] [Hong et al., 2017] model
other agents by learning a static belief to predict their future
actions assuming fixed policies of other agents, similar to im-
itation learning [Duan et al., 2017]. However, such meth-
ods fail to apply to the decentralized learning setting in this
work, where agents change their policies by learning simulta-
neously. MeLIBA [Zintgraf et al., 2021] assumes a prior dis-
tribution over others’ policies but still can’t tackle our settings
without prior distributions. For this situation, our method dy-
namically changes the belief over the development of others’
policies by the recent historical observations and effectively
helps the learning of policy.

Transformer in RL. Transformer [Vaswani et al., 2017]
has been employed in many recent RL methods [Janner et
al., 2021] [Parisotto et al., 2020] [Banino et al., 2021] [Meng
et al., 2021]. A typical line of methods used a transformer to
replace GRU/LSTM for modeling temporal information over
the sequence of states [Chen et al., 2021] [Parisotto et al.,
2020] [Banino et al., 2021], while another line of methods
employed the architecture among multiple agents to exploit
the inherent relation across agents for multi-agent scenarios
[Meng et al., 2021] [Hu et al., 2020] [Inala et al., 2020]. Dif-
ferent from them employing transformers to choose actions,
our work introduces it to learn the belief about other agents
by mining historical samples. Significantly, the attention in
our work is applied to different objects from them, neither
between different states in the same episode for temporal re-
lations nor between different agents in the same state for in-
herent interactive impacts. It is between the current state and
those in historical episodes to explore the relative samples as
references for dynamic belief inference.

3 Background

Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs). [Oliehoek and Amato, 2016] Con-
sider a fully cooperative multi-agent task that can be de-
scribed as a stochastic game G, defined by a tuple G =<
S,U,P,r,Z,0,n,v >. s € S describes the true state of
the environment. At each time step, each agent a € A =
{1,...,n} chooses an action u® € U, forming a joint action
u € U = U", which induces a transition in the environ-
ment according to the state transition function P(s'|s,u) :
SxUxS — [0,1]. All agents share the same reward function
r(s,u): SxU — Rand v € [0, 1) is a discount factor. This
paper considers a decentralized multi-agent learning setting
in both training and execution. Every agent is trained individ-
ually without sharing policy model or replay buffer with each
other. We consider a partially observable scenario in which
each agent draws individual observations z € Z according to
observation function O(s,a) : S x A — Z. Each agent has
an action-observation history 7* € T'= (Z x U)*, on which
it conditions a stochastic policy 7 (u®|7%) : T x U — [0, 1].
MARL agents aim to maximize the discounted return Rz,
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ooy 4'r¢4. Throughout this paper, we omit the superscript
a to represent the current agent for clarity. Quantities in bold
represent joint quantities over agents, i.e., u, and bold quanti-
ties with a tilde such as u denote joint quantities over agents
other than the current one.

Action-observable Setting. Our work assumes that actions
of the observed other agents are observable, which is practical
and reasonable in realistic applications. Taking autonomous
vehicles for example, the moving and steering actions of other
vehicles can be easily observed.

Proximal Policy Optimization (PPO). The PPO algorithm
[Schulman ez al., 2017] is one of the most popular single-
agent RL methods due to its advanced performance, stable
training, and easy implementation. PPO learns a policy func-
tion g with parameter 6 and a value function V(s) with pa-
rameter ¢, where Vy(s) is used for variance reduction and
only utilized during training. To optimize my, PPO imposes
the policy constraint through a clipped surrogate objective
function:

LEHP(9) = B [min(rg A, clip(rg,1 — e, 1+ €)A)], (1)
where 7y = %, 6,14 is the previous parameter in roll-
old

out. and e is the clipping bound. Noting that PPO is an actor-
critic algorithm, the policy 7 is the actor and the advantage
function A is the critic. The advantage function represents
how good a state-action pair is compared with the average
value of current state, i.e., A(s,u) = Q(s,u) — V(s), where
Q(s, u) is the action-value function estimated by samples and
V(s) is the approximation of the state-value function. PPO
uses the generalized advantage estimation (GAE) to compute
the advantage, which uses the linear combination of n-step
bootstrapping to obtain low bias and low variance.

Independent PPO (IPPO). In MARL settings Independent
PPO (IPPO) [Chao er al., 2021] decomposes a multi-agent
problem into a collection of simultaneous single-agent prob-
lems that share the same environment. Each agent learns
policy 7y and state-value function V4 of itself independently
without sharing information such as observations or replay
buffers. This approach considers other agents as a part of
the environment and thus suffers from the non-stationarity of
training,

P(s'|s,u, ) # P(s'|s,u, @), )

due to the changing policies of other learning agents, i #
@’'. Therefore, it could not guarantee convergence even in the
limit of infinite exploration.

4 Methods

Since each agent receives the joint reward responding to
the actions of all agents, it is hard to learn 7(u;o;) from
(8¢, us, Uy) directly because the uncertainty of other agents’
actions ;. To handle this challenge, we introduce belief d;
as an embedding vector corresponding to iz, and aim to learn
7(ut|ot, d¢) alternatively. Note the state transition relies on all
agents’ actions in Dec-POMDP, and the observation of each
agent belongs to the global state. Hence, the agent’s observa-
tion history 7, is related with other agents’ actions, especially
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Figure 2: The framework of the proposed dynamic belief learning. (Left) The dynamic belief network consists of two components: historical
context which dynamically learn policies of other agents by utilizing soft attention over the observation(Obs.) and others’ actions of a few
time steps in the most recent episodes, and latent variational inference which produces an embedding of belief by VAE and uses it for
the prediction of the future actions of the teammates. (Right) The policy and the value networks are then conditioned on both the belief

embedding and the current observation to learn optimal policies.

which are close with current agent. Hence, d; could be gen-
erated by 7, and further be used to predict ;. To effectively
learn §; where other agents learn simultaneously, we first in-
troduce the dynamic belief learning for dynamically model-
ing other agents over their changing policies, and then present
how to extend the single agent RL method PPO to Belief PPO
for decentralized multi-agent cooperative learning.

4.1 Dynamic Belief Learning

In principle, with the progress of learning, the previous inter-
action history can no longer reflect the policy information of
other agents, except the most recent ones because of the con-
tinuity of learning. To this end, we propose dynamic belief
learning, which meta-trains a model to learn to predict belief
only by the action histories of other agents in the most recent
episodes. In each step, our dynamic belief network receives
as input (i) the current observation, and (ii) historical obser-
vations and the observed actions of other agents in the recent
episodes. Then the dynamic belief network produces an em-
bedding of belief to be used by predicting the future actions
of the teammates and the policy of itself. Asillustrated in Fig.
2, the proposed architecture is composed of two modules: the
historical context and the latent variational inference, where
the former is used to learn context embedding from historical
steps in the recent episodes and the latter presents the belief
0¢ by sampling from a learnt latent distribution.

Historical Context

Historical context utilizes soft attention over the most recent
historical steps to dynamically learn belief. Firstly, an ob-
servation embedding network f, and an action embedding
network f, are introduced. They receive an observation or
a one-hot encoded action as input and produce an embedding
of the observation or the action. In each step ¢, the current ob-
servation o; and the historical observations {6;, % = 1, ..., T}, }
are encoded by embedding network f, to produce a current
observation embedding f,(0;) and a sequence of historical

observation embedding {f,(6;), = 1,..., T}, } respectively,
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where # is the time step in the history and T}, is the length of
the used history. For dynamic belief inference, the input his-
tory can span hundreds to thousands of time steps, and train-
ing with such long sequences for every current step can be
demanding in both time and memory usage. Considering that
most historical steps are far irrelevant to the current states,
we use an adaptive dropout operation to discard a subset of
irrelevant time steps during both training and execution. The
adaptive dropout depends on the cosine similarity S between
the sequence of historical observation embedding and the cur-
rent observation embedding,

Ny,

arg min Zs(fo(ot), fo(éfi))v

~ N
{6}, CIL.Th] i=1

Ko, 3)

where K, represents the subset of top-IV}, historical steps
selected specifically for the current observation o;. We denote
p as the proportion of time steps that are preserved, and Ny, =
pTh.

After downsampling the historical steps, the historical con-
text processes embedding of both the current state and his-
torical states, including observations as well as the observed
others’ actions, and outputs a context embedding. Hence, it is
forced to capture only the relevant information, which will be
used to produce the belief embedding and predict the actions
of others. To this end, we make use of soft attention between
the current state and historical states. The module starts by
computing a query vector q(o;) as a function of the current
state embedding f,(o;), which is then used to attend over the
different states in the most recent histories. To capture suffi-
cient information of the historical states, we compute the state
embedding of historical steps as the aggregation of the obser-
vation embedding and the action embedding by element-wise
adding f(3;) = fo(0;) + fa(ii;). The action embedding is
produced by a linear layer on the one-hot encoded action ﬁf
of other agents. Then the key vector k(§;) and the value vec-
tor v(§;) are computed for every historical state as different
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functions of the historical state embedding. The context em-
bedding is aggregated by adding the current state embedding
and the weighted summary of the value vectors over different
historical states,

Np,

fctw(ot) = fo(ot) + Z wiv(él(:ot [z])

=1

“

where w; is the attention weight computed by the scaled inner
product between the query vector and the key vectors: w; =<

a(or), k(3,,[1) >

Latent Variational Inference

Since the policies of other agents are not fixed, we assume
other agents’ policies as a Gauss distribution N (p,, o)
where p, and o, represent the mean and variance respec-
tively. Therefore, an encoder function is introduced follow-
ing the soft attention over observation module to predict g,
and o, respectively, and then the belief is sampled from
N(py, 01). To make the sampling derivable to u, and o,
the re-parameter trick [Kingma and Welling, 2013] is used:

&)

where d; is sampled from the standard normal distribution.

Based on §;, a decoder function composed by a linear
layer is used to predict teammates’ actions. Consider the ob-
served teammate’s actions 4, as the sampled datapoints and
the learning objective could be formulated as maximizing the
likelihood function maxlog(p(Q;)). However, log(p(uy))
could not be optimized directly. Similar to ELBO [Kingma
and Welling, 2013], its lower bound is:

log(p(e)) = Es,n(u,,00) [P(0e]00)] — DKL(P(5t|fcm)||Q(5t()6)),

0 = py + 0 X 65,

where Dy is the KL-divergence and p(d:|fe)
N(py,01). Q(0:) is the prior probability distribution and
defined as the standard normal distribution in our method.
Hence, maximizing log(p(1i;)) could be translated to max-
imizing the lower bound. Specifically, maximizing p(ti|d;)
is equal to minimizing the mean square error:

(N

where 0} is the predicted actions of other agents and v; €
{0,1}"~1 is the visibility for other agents obtained from the
environment for ignoring the prediction error of the invisible
teammates.

4.2 Belief PPO

Here, we introduce how the proposed dynamic belief learn-
ing can be incorporated into the PPO algorithm and achieve
effective decentralized multi-agent cooperative learning. We
follow the algorithmic structure of PPO by learning a policy
network 7y and a state-value function network Vy(s) for each
agent. Since making decisions only by the individual obser-
vation of an agent will lead to non-stationarity of training, we
make the policy and the value function condition on both the
observation and the learned belief embedding about others.
The policy and the value function share the same belief em-
bedding within each agent for information reuse and robust

[[ve (@ —af)ll2,
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training. Specifically, in each step ¢, the policy network starts
by processing the current observation o; with a base network
and then combines the information of the current state and
the inferred belief through a belief fusion module. In our ex-
periments, the belief fusion is implemented by concatenating
the belief embedding from the dynamic belief network and
the state embedding from the base network and then applying
to it a linear transformation. After that, the final policy with
the size of action space is produced by another linear layer.
The state-value function network is of the same structure as
the policy but has a different output size of 1. During train-
ing, the policy network, the value function network, and the
dynamic belief network are optimized simultaneously by the
PPO loss and belief loss according to Eq. 1 and Eq. 6,

L= 0) + allve(fe — &)ll2 + BDKL(p(5t|fctm)||Q(5t()8))7

where o« and [ are the weight factors of MSE and KL-
divergence, respectively.

5 Experiments

We evaluate our approach on a fully cooperative environment
SMAC [Samvelyan et al., 2019], a standardized decentral-
ized StarCraft II micromanagement environment. In each
scenario, algorithm-controlled independent ally units fight
against enemy units controlled by the built-in game Al. And
an episode of game is declared a victory only if all enemy
units are eliminated. In the decentralized setting, each agent
can only achieve partial observation within its sight range, in-
cluding location, health, and actions taken by visible agents.
Any global information used by CTDE methods is unused.

Details. During training, 8 paralleled episodes are rolled
out independently to generate data. The most recent 800 steps
before last optimization are used for reference histories in dy-
namic belief network. And p is set to 0.05 for the adaptive
dropout. The loss weights o = 0.5 and 5 = 0.005.

5.1 Comparison with Other Methods

Comparison with Decentralized Methods. We compare
the overall results of our approach with three independent
learning approaches: IPPO, IQL, and IAC in the same de-
centralized settings. Note that our implementation of IPPO
is equivalent to SOTA independent method PG-ind[Fu et al.,
2022] in ICML2022. The results in three maps are illus-
trated in Fig. 3(a-c). Independent learning methods like
IPPO, IQL, and IAC fail to learn policies that consistently
defeat the enemy, especially in the map of 3s_vs_5z. More-
over, the performance over training steps is volatile due to
the non-stationarity of the environment as other agents learn
to change their policies during training. However, our ap-
proach achieves far higher performance than those methods
in the same decentralized settings without sharing informa-
tion. The superior results demonstrate that our approach al-
leviates the disadvantages of non-stationarity by the dynamic
belief, which effectively anticipates the actions of others.

Comparison with CTDE Methods. The state-of-the-art
CTDE methods that train agents in a centralized way are also
compared, including MAPPO, QMix, COMA, RODE[Wang
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Figure 3: (a-c) Results on the decentralized settings. Win rates of our method and other independent learning approaches on a range of SC
mini-games including one hard and two super-hard maps. (d) Comparison with agent modeling methods on corridor. * denotes that the
method is implemented based on the better PPO algorithm. Best viewed in color.

Maps Ours MAPPO QMix COMA RODE QPLEX
2cvs. 64zg  100.0 100.0 100.0 10.0 100.0 90.6
3svs. 5z 100.0 100.0 100.0 0.0 78.9 98.4
3s5z 96.9 96.9 88.3 6.25 93.75 96.8
6h vs. 8z 484 88.3 84.0 0.0 78.1 1.5
corridor 100.0 100.0 100.0 0.0 90.6 0.0

Table 1: Comparison of Win Rate with state-of-the-art CTDE meth-
ods. Our method achieves comparable performance with most of
them. Since our method is under decentralized learning, the com-
parison is only for reference. The best results are highlighted with
bold fonts.

Method Success (%)
Baseline 73.44
Static Belief 71.87
Belief with LVI 75.00
Dynamic Belief 85.94

Table 2: Ablation studies on a non-fully cooperative environment:
Traffic Junction (medium level) in the decentralized setting. LVI
denotes the latent variational inference.

et al., 2020b] and QPLEX[Wang er al., 2020al. Among them,
MAPPO with feature-pruned global states and the fine-tuned
QMix [Hu et al., 2021] with elaborate optimizations per-
form the best in SMAC. As shown in Table 1, these meth-
ods perform well due to extra global state information and
centralized training to address non-stationarity. Nevertheless,
our approach achieves comparable and even superior perfor-
mance with them in most scenarios, which indicates its ca-
pability to effectively utilize the limited partial information.
However, our method performs not well in 6h vs. 8z for
two reasons: 1) Global states are significant for such com-
plex scenario while our method dose not use them. Specifi-
cally, the controlled units in 6h_vs_8z are much weaker (with
lower armor and slower speed) than enemies compared with
other maps, which is difficult and demands more coopera-
tion among agents. With the help of the extra global state
and agents’ communication (i.e., the share of model and re-
play buffer), MAPPO learns better cooperation and outper-
forms our method. Under the decentralized setting, MAPPO
is equivalent to IPPO and is outperformed by us with a large
margin as shown in Fig. 3, which demonstrates that the supe-
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Figure 4: Training curves of CTDE methods and ours on SMAC.
The comparison is only for reference due to our different decen-
tralized settings. Our method needs more training steps in hard-to-
explore scenarios like 6h_vs_8z due to the lower data efficiency of
the decentralized setting.

riority of MAPPO to our method is heavily attributed to the
global states and agent’s communication. 2) Since the sce-
nario is hard to explore[Hu et al., 2021], our decentralized
setting is limited by lower data efficiency, about only 1/6 of
CTDE, because only the trajectories of an agent’s own are
used for training. As shown in Fig. 4, our method achieves
comparable performance eventually as the training steps in-
crease. And for other easy-to-explore scenarios such as corri-
dor, our method achieves faster improvement, demonstrating
its superiority in learning ability without the limitation of ex-
ploration. Moreover, the approach is more practical without
centralized restriction.

Comparison with Agent Modeling. We compare our
method with related agent modeling methods: DRPIQN
[Hong et al., 2017] and AMF-A3C[Hernandez-Leal et al.,
2019], which also learn networks to predict and respond to
teammates’ actions. Specifically, we re-implemented AMF-
A3C based on a better baseline structure of PPO. As shown
in Fig. 3(d), both the methods perform not well because they
learn a static belief designed for fixed teammates and thus fail
to tackle the decentralized learning where other agents also
change their policies during training. Our dynamic belief out-
performs them by large margins, thanks to quickly adapting
to the development of teammate policies.

5.2 Ablation Studies

Component effects. To validate the effect of each compo-
nent, ablations are studied in detail on the environment of the
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Figure 5: (a) Ablation studies on SMAC corridor map demonstrating the effect of components of the dynamic belief learning. LVI denotes the
latent variational inference. (b) Comparison of using raw observation and embedding observation for the dropout approach. (c-d) Parameter
analysis for the history length and ratio p of the Top-N. (e) The ratio of sum of weights for belief to all weights in the belief fusion network.

SMAC corridor map, as shown in Fig. 5(a). With IPPO as
baseline, we first evaluate the static belief by directly learn-
ing an embedding that predicts the actions of others and then
conditions the policy. As shown in Fig. 5(a), the performance
drops distinctly compared to the baseline due to it being in-
capable of predicting the changing policies of other agents.
Then we evaluate the latent variational inference (LVI) by
applying it to learn a distribution of latent variables for the
belief, denoted as Belief with LVI. The experiment improves
the performance of static belief and surpasses the baseline,
demonstrating the effect of LVI to process the uncertainty
of others’ policies and alleviate adverse effects of mispredic-
tions. Furthermore, we validate the effectiveness of the his-
torical context. With the context module, the overall dynamic
belief achieves a rapidly growing win rate and outperforms
the Belief with LVI by large margins. The improvements can
be explained by the soft attention, which helps dynamically
predict the updating policies of others. It effectively learns
to infer their policies only from a few historical steps in the
most recent episodes. We also validate the embedding ob-
servation for dropout by replacing it using raw observation
as shown in Fig. 5(b), which fails to learn effective policy.
Our method calculates the distance of historical observations
on their embedding because the raw observation space is not
discriminative, which directly contains the values of health,
position and ignores importance of every element. And the
embedding network automatically learns to project the raw
observation into a latent space, where semantically similar
observations have smaller distance. Since the embedding net-
work is only a 2-layer MLP, the additional computational cost
is low and affordable.

Generalization. To validate the generalization of the
method, we evaluate it on a non-fully cooperative environ-
ment traffic junction [Sukhbaatar er al., 2016], where each
agent needs to maximize independent rewards by coordinat-
ing with others. In the traffic junction, cars enter a junction
from all entry points with a probability of p,,,.. Every car can
take two actions at each time-step, gas and brake respectively.
For traffic junction, an episode is considered a failure if a col-
lision happens. The success rate refers to the percentage of
episodes without failure. We adopt the medium level of dif-
ficulty as described in [Sukhbaatar er al., 2016]. As shown in
Table 2, consistently improved results can also be observed in
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the traffic junction environment. It demonstrates the general
effectiveness of the proposed methods for different environ-
ments in decentralized settings.

Parameter analysis. Ablations of history length 7} in his-
torical context and preservation ratio p in the adaptive dropout
are evaluated in Fig. 5(c-d). The results show that a larger 7},
is likely to converge faster and perform better, while smaller
T}, can still achieve comparable results eventually with less
computation. We use 7}, = 800 for both performance and
complexity. Ablations of p (for Top-N) show that the method
cannot learn effective policies when p is too small which
abandons useful histories, while it may converge slowly when
p is too large. The method performs best when p = 0.05.

Importance of belief over training. To validate the impor-
tance of belief over training steps, we evaluate the sum of
weights in the belief fusion network, which takes as inputs
both the belief embeddings and current observation. The sum
ratio of weights for belief to all weights (for both belief and
current observation) is shown in Fig. 5(e). The ratio increases
after an initial decrease, indicating that the belief has less in-
fluence on policy at the beginning and becomes more impor-
tant to it over training. Specifically, when the teammates take
random actions in the initial learning, the dropout approach is
hard to preserve valuable historical observations, since even
similar observations may have different teammates’ actions.
Hence, their actions cannot be accurately predicted for pro-
ducing belief embeddings. Hence, the policy may pay more
attention to the current observation than the belief to learn
general actions without relation to others. As training goes
on, since the teammates’ actions are relatively deterministic
and predictable, the belief embeddings will learn valuable in-
formation and play a more important role in the policy.

6 Conclusion

In this paper, we introduced dynamic belief learning for de-
centralized multi-agent cooperation, which relieves the non-
stationarity by dynamically modeling the changing policies
of other agents. Extensive experimental results demon-
strate that our method outperforms independent learning ap-
proaches and even achieves comparable performance with
CTDE methods.
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