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Abstract
In earlier work we defined a qualitative notion of
harm: either harm is caused, or it is not. For
practical applications, we often need to quantify
harm; for example, we may want to choose the least
harmful of a set of possible interventions. We first
present a quantitative definition of harm in a deter-
ministic context involving a single individual, then
we consider the issues involved in dealing with un-
certainty regarding the context and going from a
notion of harm for a single individual to a notion
of “societal harm”, which involves aggregating the
harm to individuals. We show that the “obvious”
way of doing this (just taking the expected harm
for an individual and then summing the expected
harm over all individuals) can lead to counterintu-
itive or inappropriate answers, and discuss alterna-
tives, drawing on work from the decision-theory lit-
erature.

1 Introduction
AI systems are playing an ever-expanding role in making de-
cisions, in applications ranging from hiring and interviewing
to healthcare to autonomous vehicles. Perhaps not surpris-
ingly, this is leading to increasing scrutiny of the harm and
benefit caused by (the decisions made by) such systems. To
take just one example, the new proposal for Europe’s AI act
[European Commission, 2021] contains over 29 references to
“harm” or “harmful”, saying such things as “. . . it is appropri-
ate to classify [AI systems] as high-risk if, in the light of their
intended purpose, they pose a high risk of harm to the health
and safety or the fundamental rights of persons, taking into
account both the severity of the possible harm and its proba-
bility of occurrence . . . ” [European Commission, 2021, Pro-
posal preamble, clause (32)]. Moreover, the European Com-
mission recognized that if harm is to play such a crucial role,
it must be defined carefully, saying “Stakeholders also high-
lighted that . . . it is important to define . . . ‘harm’ [European
Commission, 2021, Part 2, Section 3.1]. Unfortunately, defin-
ing harm appropriately has proved difficult. Indeed, Bradley
[2012] says:

Unfortunately, when we look at attempts to explain the na-
ture of harm, we find a mess. The most widely discussed ac-

count, the comparative account, faces counterexamples that
seem fatal. . . . My diagnosis is that the notion of harm is
a Frankensteinian jumble . . . It should be replaced by other
more well-behaved notions.

In [Beckers et al., 2022a], we defined a qualitative notion
of harm (was there harm or wasn’t there) in deterministic
settings with no uncertainty and only a single agent, which
dealt well with all the difficulties raised in the philosophy
literature (which also focused on qualitative harm in deter-
ministic settings; see [Carlson et al., 2021] for an extensive
overview). The key features of our definition are that it is
based on causal models and the definition of causality given
by Halpern [2015; 2016], assumes that there is a default util-
ity, and takes harm to be caused only if the outcome has utility
lower than the default.

While getting such a definition is an important first step, it
does not address the more quantitative aspects of harm, which
will clearly be critical in comparing, for example, the harm
caused by various options, and for taking into account “both
the severity of the possible harm and its probability of oc-
currence”, as suggested in the European AI Act proposal. In
this paper, we extend our earlier definition so as to provide a
quantitative notion of harm.

The first step is relatively straightforward: we define
a quantitative notion of harm in a deterministic setting.
Roughly speaking, we take the amount of harm to be the dif-
ference between the actual utility and the default utility. Once
we have this, we need to be able to aggregate harm across
different settings. There are two forms of aggregation that we
must consider. The first involves dealing with uncertainty re-
garding the outcome. Here we confront issues that are well
known from the decision-theory literature. There have been
many rules proposed for making decisions in the presence
of uncertainty: maximizing expected utility, if uncertainty
is characterized probabilistically; maximin (maximizing the
worst-case utility) [Wald, 1950] or minimax regret [Niehans,
1948; Savage, 1951] if there is no quantitative characteriza-
tion of uncertainty; maximin expected utility if uncertainty is
described using a set of probability measures [Gärdenfors and
Sahlin, 1982; Gilboa and Schmeidler, 1989]. We consider one
other approach—probability weighting—shortly. All of these
approaches can be applied to harm.

Another issue that has received extensive attention in the
decision-theory literature and applies equally well to harm is

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

363



that of combining utilities or harms of different people. This
issue arises when we must determine the harm caused to so-
ciety of, say, a vaccination treatment, where perhaps some
people will react badly to the vaccine. Even assuming that
we can compute the harm caused to each individual, we must
consider the total harm caused to all individuals. An obvious
approach would be to just sum up the harm caused to each
individual, but this assumes that individuals are somehow
commensurate, that is, that one person’s harm of 1 should
be treated identically to another person’s harm of 1. Even if
we are willing to accept this, there is another issue to con-
sider: fairness. Suppose that we have two policies, each of
which cause 1 unit of harm to 1,000 people in a population of
100,000 (and cause no harm to anyone else). We would feel
quite differently about a policy if the 1,000 people to whom
harm was caused all came from a particular identifiable popu-
lation (say, poor African-Americans) than if the 1,000 people
were effectively chosen at random.

Finally, when different policies result in different probabil-
ities of people being harmed, additional subtleties arise. Hei-
dari et al. [2021] (HBKL from now on) consider a number of
examples of government policies that may cause harm to each
member of a population of n individuals. (For simplicity, they
assume that if harm is caused, there is 1 unit of harm.) Sup-
pose that the harm caused by a policy P is characterized by
the tuple (p1, . . . , pn), where pi is the probability that indi-
vidual i suffers 1 unit of harm. Thus, the total expected harm
of policy P is p1 + · · · + pn. As HBKL point out and is un-
derscored by Example 1, we may feel very differently about
two policies, even if they cause the same amount of expected
harm. For example, we feel differently about a policy that
necessarily harms individual 1 and does not harm anyone else
compared to a policy that gives each individual a probability
1/n of being harmed. Indeed, there is a long line of work
in psychology [Jenni and Loewenstein, 1997] that suggests
that we find it particularly troubling to single out one victim
and concentrate all the risk of harm on him. (This is clearly
related to the issue of unfairness to subpopulations.) HBKL
suggest getting around these issues by aggregating harm us-
ing an approach familiar from the decision theory literature:
probability weighting. The idea is to apply a weight function
w to the probability and to compute the weighted expected
harm. Under the simplifying assumption used above that,
if harm is caused, it is always 1 unit of harm, the weighted
expected harm would be w(p1) + · · · + w(pn) (so we get
back the standard expression for expected harm by taking the
weighting function w to be the identity (cf. [Prelec, 1998;
Quiggin, 1993]).

As HBKL point out, the policies that are often adopted in
practice seem to be the ones that optimize weighted expected
harm if we use the probability weighting functions that em-
pirical work has shown that people use. HBKL take the prob-
ability function to be one that overweights small probabilities
and underweights larger probabilities. While this works well
for their examples, the situation is actually more nuanced. To
quote [Kahneman and Tversky, 1979, p. 283] (who were the
first to raise the issue):

Because people are limited in their ability to
comprehend and evaluate extreme probabilities,

highly unlikely events are either neglected or over-
weighted, and the difference between high prob-
ability and certainty is either neglected or exag-
gerated. Thus, small probabilities generate unpre-
dictable behavior. Indeed, we observe two opposite
reactions to small probabilities.

Indeed, as we shall see, there are examples best explained by
assuming people essentially ignore small probabilities, effec-
tively treating them as 0, and others that are best explained by
people overweighting small probabilities.

Richens, Beard, and Thompson [2022] (RBT from now on)
also proposed a quantitative and causality-based definition of
harm. We already discussed what we take to be problems in
their approach in our paper on qualitative harm; they carry
over to the quantitative setting as well. Consider the follow-
ing example that they use to motivate their approach:

Example 1. Consider two treatments for a disease which,
when left untreated, has a 50% mortality rate. Treatment 1
has a 60% chance of curing a patient, and a 40% chance of
having no effect, in which case the disease progresses as if
untreated (so that there is a 50% mortality rate). Treatment
2 has an 80% chance of curing a patient and a 20% chance
of killing them. Treatments 1 and 2 have identical recovery
rates, yet doctors systematically favor Treatment 1.

We agree with RBT that the explanation for this lies in
the fact that Treatment 1 causes less harm than Treatment 2.
However, we offer a different analysis that results in differ-
ences in the degree of harm. Specifically, for RBT, Treat-
ment 1 never causes harm whereas Treatment 2 harms 10%
of all patients (namely those patients who would have recov-
ered had they not been given Treatment 2). On our analy-
sis, Treatment 1 harms 16% of all patients, compared to 20%
for Treatment 2. These quantitative differences arise due to
our different views on qualitative harm; we leave a detailed
discussion of this example to the full paper [Beckers et al.,
2022b], and return to a discussion of RBT in Section 7.

The rest of the paper is organized as follows. In Section 2
we briefly review causal models and the definition of actual
causality, since these form the basis of our definition. In Sec-
tion 3 we provide the definition of quantitative harm in a sin-
gle context for a single agent; in Sections 4 and 5, we discuss
how to extend this basic definition to situations where there is
uncertainty about the context and there are many individuals,
each of which may potentially suffer harm. In Section 6, we
briefly discuss analogous definitions for benefits. In Section 7
and in the full paper [Beckers et al., 2022b], we compare our
work to that of RBT.

2 Causal Models and Actual Causality
We start with a review of causal models and actual causation,
since they play a critical role in our definition of harm. The
material in this section is largely taken from [Halpern, 2016].

We assume that the world is described in terms of variables
and their values. Some variables may have a causal influence
on others. This influence is modeled by a set of structural
equations. It is conceptually useful to split the variables into
two sets: the exogenous variables, whose values are deter-
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mined by factors outside the model, and the endogenous vari-
ables, whose values are ultimately determined by the exoge-
nous variables. The structural equations describe how these
values are determined.

Formally, a causal model M is a pair (S,F), where S is
a signature, which explicitly lists the endogenous and exoge-
nous variables and characterizes their possible values, and F
defines a set of (modifiable) structural equations, relating the
values of the variables. A signature S is a tuple (U ,V,R),
where U is a set of exogenous variables, V is a set of endoge-
nous variables, and R associates with every variable Y ∈
U ∪ V a nonempty set R(Y ) of possible values for Y (i.e.,
the set of values over which Y ranges). For simplicity, we
assume here that V is finite, as isR(Y ) for every endogenous
variable Y ∈ V . F associates with each endogenous vari-
able X ∈ V a function denoted FX (i.e., FX = F(X)) such
that FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y )) → R(X).
This mathematical notation just makes precise the fact that
FX determines the value of X , given the values of all the
other variables in U ∪ V .

The dependencies between variables in a causal model
M = ((U ,V,R),F) can be described using a causal net-
work (or causal graph), whose nodes are labeled by the en-
dogenous and exogenous variables in M , with one node for
each variable in U ∪ V . The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X; this is the case if there
is some setting of all the variables in U ∪ V other than X and
Y such that varying the value of X in that setting results in
a variation in the value of Y ; that is, there is a setting ~z of
the variables other than X and Y and values x and x′ of X
such that FY (x, ~z) 6= FY (x

′, ~z). A causal model M is re-
cursive (or acyclic) if its causal graph is acyclic. It should be
clear that if M is an acyclic causal model, then given a con-
text, that is, a setting ~u for the exogenous variables in U , the
values of all the other variables are determined (i.e., there is
a unique solution to all the equations). In this paper, follow-
ing the literature, we restrict to recursive models. We call a
pair (M,~u) consisting of a causal model M and a context ~u
a (causal) setting.

A causal formula (over S) is one of the form [Y1 ←
y1, . . . , Yk ← yk]φ, where φ is a Boolean combination of
primitive events, Y1, . . . , Yk are distinct variables in V , and
yi ∈ R(Yi). Such a formula is abbreviated as [~Y ← ~y]φ.
The special case where k = 0 is abbreviated as φ. Intuitively,
[Y1 ← y1, . . . , Yk ← yk]φ says that φ would hold if Yi were
set to yi, for i = 1, . . . , k.

A causal formula ψ is true or false in a setting. We write
(M,~u) |= ψ if the causal formula ψ is true in the setting
(M,~u). The |= relation is defined inductively. (M,~u) |=
X = x if the variable X has value x in the unique (since
we are dealing with acyclic models) solution to the equa-
tions in M in context ~u (that is, the unique vector of values
for the exogenous variables that simultaneously satisfies all
equations in M with the variables in U set to ~u). Finally,
(M,~u) |= [~Y ← ~y]ϕ if (M~Y=~y, ~u) |= ϕ, where M~Y←~y is
the causal model that is identical to M , except that the equa-
tions for variables in ~Y in F are replaced by Y = y for each

Y ∈ ~Y and its corresponding value y ∈ ~y.
A standard use of causal models is to define actual cau-

sation: that is, what it means for some particular event that
occurred to cause another particular event. There have been
a number of definitions of actual causation given for acyclic
models (e.g., [Beckers, 2021; Glymour and Wimberly, 2007;
Hall, 2007; Halpern and Pearl, 2005; Halpern, 2016; Hitch-
cock, 2001; Hitchcock, 2007; Weslake, 2015; Woodward,
2003]). Although most of what we say in the remainder of
the paper applies without change to other definitions of actual
causality in causal models, for definiteness, we focus here on
what [Halpern, 2016] calls the modified Halpern-Pearl defini-
tion, which we briefly review. (See [Halpern, 2016] for more
intuition and motivation.)

The events that can be causes are arbitrary conjunctions of
primitive events (formulas of the form X = x); the events
that can be caused are arbitrary Boolean combinations of
primitive events. To relate the definition of causality to the
(contrastive) definition of harm, we find it useful to give a
contrastive variant of the definition of actual causality; more-
over, we are interested only in whether ~X = ~x causes an
outcome O = o. Thus, rather than defining what it means for
~X = ~x to be an (actual) cause of an arbitrary formula φ, we
restrict ourselves to defining what it means for ~X = ~x rather
than ~X = ~x′ to be a cause of O = o rather than O = o′.
Definition 1. ~X = ~x rather than ~X = ~x′ is an actual cause
of O = o rather than O = o′ in (M,~u) if the following three
conditions hold:

AC1. (M,~u) |= ( ~X = ~x) ∧O = o.

AC2. There is a set ~W of variables in V and a setting ~w of
the variables in ~W such that (M,~u) |= ~W = ~w and
(M,~u) |= [ ~X ← ~x′, ~W ← ~w]O = o′, where o 6= o′.

AC3. ~X is minimal; there is no strict subset ~X ′′ of ~X such
that ~X ′′ = ~x′′ can replace ~X = ~x′ in AC2, where ~x′′ is
the restriction of ~x to the variables in ~X ′′.

AC1 just says that ~X = ~x cannot be considered a cause of
O = o unless both ~X = ~x and O = o actually happen. AC3
is a minimality condition, which says that a cause has no irrel-
evant conjuncts. AC2 captures the standard but-for condition
( ~X = ~x rather than ~X = ~x′ is a cause of O = o if, had ~X
been ~x′ rather than ~x, O = o would not have happened) but
allows us to apply it while keeping fixed some variables to the
value that they had in the actual setting (M,~u). In the spe-
cial case that ~W = ∅, we get the standard but-for definition
of causality: if ~X = ~x had not occurred (because ~X was ~x′
instead) O = o would not have occurred (because it would
have been O = o′).

3 Quantitative Harm in a Single Context for a
Single Agent

In this section, we extend the qualitative notion of harm in a
given context introduced in our previous work [Beckers et al.,
2022a] to a quantitative notion. Both the qualitative and the
quantitative notions are defined relative to a particular context

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

365



in a causal utility model, which is just like a causal model, ex-
cept that there is a default utility d, and it is assumed that there
is a a special endogenous variable O (for outcome), whose
value determines the utility. The fact that harm is defined
relative to a given context (just like causality) means that, im-
plicitly, there is no uncertainty about the context.

Formally, a causal utility model is a tuple M =
((U ,V,R),F ,u, d), where ((U ,V,R),F) is a causal model
one of whose endogenous variables is O, u : R(O) → IR is
a utility function on outcomes, and d ∈ IR is a default utility.
Like causation, harm is assessed relative to a setting (M,~u).

Definition 2. If ~X = ~x rather than ~X = ~x′ causes
O = o rather than O = o′ in (M,~u), where M =
((U ,V,R),F ,u, d), then the (quantitative) harm to agent ag
relative to ( ~X = ~x′, O = o′), denoted QH(M,~u, ~X =
~x′, O = o′), is max(0,min(dh,u(o

′)) − u(o))). The quan-
titative harm to agent ag caused by ~X in (M,~u), denoted
QH(M,~u, ~X), is max~x′,o′ QH(M,~u, ~X = ~x′, O = o′) if
there is some ~x′ and o′ such that ~X = ~x rather than ~X = ~x′

causes O = o rather than O = o′; if there is no such ~x′ and
o′, then the quantitative harm is taken to be 0. (Note that the
values ~x and o are uniquely determined by (M,~u), which is
why they do not need to appear in the parametrization.)

In other words, the quantitative harm caused by ~X = ~x
is the maximum difference between the default utility or the
utility of the contrastive outcome, whichever is lower, and the
utility of the actual outcome (except that we take the harm to
be 0 if this difference is negative or if ~X = ~x did not cause
the actual outcome). Definition 2 is a generalization of our
definition of qualitative harm. Quantitative harm as we have
defined it here is positive iff there is qualitative harm.1

As mentioned in the introduction, decision theory often fo-
cuses on maximizing (expected) utility. In many cases this
corresponds to minimizing the quantitative harm, but as the
following example illustrates, the two approaches can come
apart even if we restrict to a single context and a single agent.

Example 2. Alice has a meal in a restaurant. The bill comes
to $100. Let O = o be the variable representing the tip,
and let the utility be o/100. That is, u($100) = 1, and
u($20) = 0.2. It is customary to give a 20% tip, hence it
seems reasonable to take the default utility to be 0.2. How-
ever, Alice only has $5 in her wallet, the restaurant accepts
only cash tips, and there is no ATM nearby. The outcome that
maximizes the waiter’s utility is thus for Alice to tip $5, cor-
responding to Alice giving the waiter all the cash she has. By
Definition 2, if Alice gives $5, the waiter is not harmed. If,
on the other hand, Alice gives only $1, the waiter is harmed,

1In [Beckers et al., 2022a] we make a distinction between harm
and strict harm: strict harm adds a further requirement, denoted H3,
to the definition of harm. We argued in our companion paper that H3
rarely plays a role, so we have chosen to ignore it here for ease of ex-
position. However, we could define quantitative strict harm as being
identical to quantitative harm, except that we take the quantitative
strict harm to be 0 whenever H3 is not satisfied. (See the full paper
for the formal definition of both qualitative harm and strict harm, as
well as results on the complexity of computing harm.)

and the harm is 0.05 − 0.01 = 0.04, which is the difference
between the maximum utility and the actual utility.

Now suppose that Alice in fact has $30 in her wallet. Then
Alice would maximize the waiter’s utility with a tip of $30. Yet
if our goal is to minimize harm, then any tip of $20 or more
results in a harm of 0.

4 Quantitative Harm When There Is
Uncertainty about Contexts

In general, there may be uncertainty both about the causal
model (i.e., how the world works, as described by the equa-
tions) and the context (what is true in the world). In de-
cision theory, this uncertainty is usually taken into account
by computing the expected utility, where the expectation is
taken with respect to a known probability distribution. Anal-
ogously, we could define the notion of expected quantitative
harm by simply computing the product of the quantitative
harm in each causal setting and the probability of that setting.
The next example illustrates that even using this straightfor-
ward generalization of harm already results in some interest-
ing differences with expected utility.

Example 3. Suppose that a doctor has a choice of either pre-
scribing medication (X = 1) or performing surgery (X = 0)
on a patient. The medication keeps the patient stable, but
does not completely cure the patient. Call this outcome
O = 1, and assume that it has utility .5. On the other hand,
the surgery cures the patient completely with probability 1−p
(O = 0, with utility 1), but has a small probability p of the
patient dying (O = 2, with utility 0), due to factors such as
the patient’s tolerance of anesthesia and the surgeon’s skill.

The expected utility of X = 1 is 0.5, while the expected
utility of X = 0 is 1 − p. Assuming that p < 0.5, X = 0
is the choice that maximizes expected utility. If we take the
default utility to be 1, which is reasonable if the patient views
any deviation from their normal health as unacceptable, then
the harm caused by X = 1 is 0.5, while the expected harm
caused by X = 0 is p, so minimizing expected harm would
again lead to choosingX = 0. However, suppose that the pa-
tient has been taking the medication for some time, and has
gotten used to the treatment. In this case, 0.5 seems like a
reasonable choice for the default. With this choice, X = 1
has expected harm 0, while X = 1 has expected harm 0.5p,
so the choice that minimizes expected harm is X = 1. In-
tuitively, by taking an appropriate choice of default utility, a
harm-based approach allows us to capture the idea that one
should not risk obtaining a bad outcome when there exists an
alternative that is guaranteed to result in an outcome that is
good enough.

While taking expectation is very natural, it sometimes
leads to unreasonable conclusions.

Example 4. Research has shown that the probability of a
fatal accident when driving at the speed limit is 1 in a mil-
lion, and that driving at 80% of the speed limit results in 50%
fewer fatal accidents than driving at the speed limit, so the
probability of a fatal accident when driving at 80% of the
speed limit is 1 in 2,000,000. However, research has also
shown that the majority of people do drive at the speed limit,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

366



and would prefer buying a driverless car that does so as well.
Furthermore, this preference remains even after people have
been informed of these numbers. Based on this research, the
manufacturer of a driverless car company needs to implement
a policy regarding the typical driving speed of their cars. Ei-
ther cars drive at the maximum speed allowed by the speed
limit, X = 1, or cars drive at 80% of the speed limit, X = 0.
(Obviously a more realistic model would here use a continu-
ous variable X .)

For any given trip, there are three outcomes: O = 2 if
the driver arrives safely at its destination in the quickest way
(legally) possible, O = 1 if the driver arrives safely at its
destination but takes a bit more time, or O = 0 if the car
crashes and the driver dies. For each driver, the utilities are
u(O = 2) = 1, u(O = 1) = 0.9, u(O = 0) = −1, 000, 000.

Maximizing expected utility results in a preference forX =
0, but this does not match how people react. Taking the de-
fault utility to be 1, which seems reasonable, and minimizing
expected harm leads to the same preference. Nor does it help
to take the default to be 0.9.

We can deal with this problem by using the idea of prob-
ability weighting from the decision-theory literature. We
assume that agents use a probability weighting function w,
where w : [0, 1] → [0, 1]. In order to make use of this func-
tion, from now on we take a causal utility model to also in-
clude a probability Pr over the exogenous settings ~u ∈ R(U).
(Note that, in general, there might also be uncertainty regard-
ing the causal equations, but for ease of exposition, we ignore
this complication here.)
Definition 3. The weighted quantitative harm (WQH) to
agent ag caused by ~X relative to model M and weighting
function w is

WQH(M, ~X,w) =
∑

~u∈R(U) w(Pr(~u))QH(M,~u, ~X).

Applying Definition 3 to our example, taking M to be a
causal model of the driving situation, we can assume for sim-
plicity that there are three contexts of interest: in u0, the agent
does not have a fatal accident if either X = 0 or X = 1, in
u1 he has a fatal accident if X = 1 but not if X = 0, and in
u2 he has a fatal accident if either X = 0 or X = 1. We can
then take the probabilities to be 999, 999/1, 000, 000 for u0
and 1/2, 000, 000 for both u1 and u2. Deciding on a policy
then amounts to determining the equation for X: either we
choose X = 1, or we choose X = 0. (Of course, in general,
more complicated policies can be considered.)

In practice, people tend to discount the probability of fatal
accidents; they treat it as being essentially 0. We can cap-
ture this by taking, for example, w(1/2, 000, 000) = 0 and
w(999, 999/1, 000, 000) = 1. Sure enough, for this choice of
w, the weighted harm of X = 1 is lower than that of X = 0.

In this case, w underweights the low probabilities. But in
other cases, people overweight probabilities. As Gigerenzer
[2006] observed, after the terrorist attack on September 11,
2001, a lot of Americans decided to reduce their air travel and
drive more, presumably because they were overweighting the
likelihood of another terrorist attack. (As Gigerenzer points
out, the net effect was a significant increase in the number
of deaths.) As mentioned in the introduction, HBKL give

other examples where overweighting gives answers that seem
to match how people feel about issues.

Perhaps the most common explanation for this effect is that
people underweight probabilities when they make “decisions
from experience” (i.e., based on their past experience with the
events of interest), although this can flip due to recent bad ex-
periences (as in the case of a terrorist attack) and overweight
probabilities when they make “decisions from description”
(i.e., the type of situation studied in a lab, where a situation
is described in words) [Hertwig et al., 2004]. In our example,
agents’ experience is that people never have fatal accidents,
so they underweight the probability. On the other hand, if the
agent recently had a death in the family due to a fatal acci-
dent, it is likely that he would use a w that overweights these
probabilities.

As we shall see in the next section, combining probability
weighting with harm also lets us deal with other apparently
paradoxical observations due to Norcross [1998].

5 Aggregating Harm for Different Individuals
Up to now we have considered harm for a single individual.
Further issues arise when we try to aggregate harm across
many individuals, as we will certainly need to do when we
consider societal policies. The most straightforward approach
to determining “societal harm” when there are a number of
individuals involved is to sum the harm done to each indi-
vidual. By using defaults appropriately, this straightforward
approach already lets us avoid some obvious problems with
maximizing expected utility.
Example 5 (Forced organ donation). Suppose that Billy is
a healthy person, strolling by a hospital. In the hospital,
there are 5 patients in need of a heart, liver, kidney, lung,
and pancreas transplant, respectively. Suppose for simplic-
ity that these patients will die without the transplant, and it
is not available elsewhere, while Billy will die if these or-
gans are harvested from him. Expected utility maximization
would suggest that saving five lives is better than saving one,
so the hospital should kidnap Billy. On the other hand, if we
take the default that Billy and each of the patients continue
in their current state of health, then harvesting Billy’s organs
clearly harms Billy, while not harvesting Billy’s organs harms
no one, and is thus the action that minimizes harm.

Combining probability weighting with harm also lets us
deal with other apparently paradoxical observations due to
Norcross [1998] that we mentioned in the previous section.
Norcross considers three events, where it seems that A re-
sults in more harm than B which results in more harm than
C which results in more harm than A, leading to an incon-
sistent cycle. A is the event that one person dies a premature
death; B is the event of 5,000,000 people suffering moder-
ate headaches, and C is the event that 5,000,000 people each
incur a one in a million risk of dying. Norcross claims that
most people would takeA to involve greater harm thanB and
would continue to do so if we replaced the “5,000,000” in B
by any other number. Yet clearly, if we just add up harms,
then as long as the harm of a moderate headache is positive,
there must be some number N of people such that N people
suffering moderate headaches results in greater harm than a
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single premature death. Norcross further offers a scenario to
argue that most people view C as involving greater harm than
A. Finally, Norcross provides a scenario where B seems to
involve greater harm than C.

It is instructive to look more carefully at the precise sce-
narios that Norcross considers. To argue that B involves
greater harm than C, Norcross considers a scenario where
5,000,000 people each drive out to get headache medication
(under the assumption that driving results in a one in a mil-
lion risk of dying). On the other hand, to argue that C in-
volves greater harm than A, Norcross considers a scenario
where 5,000,000 people in a city running some small risk of
dying from some poisonous gas. While both scenarios in-
volve 5,000,000 people incurring a small risk of dying, the
nature of the stories is quite different. In one case, the risk in-
volves something that people do every day—driving—which
their personal experience tells them involves a negligible risk
of death. On the other hand, the second scenario involves a
scary new risk (which presumably people read about, rather
than having personal experience with). The former scenario is
one where people are likely to underweight the probability of
death (essentially treating it as 0), while the second scenario
is one where people overweight the small probability. Thus,
although the actual probabilities are the same, the weighted
probabilities are quite different, and hence the weighted ex-
pected harm is quite different. There is actually no cycle here.
Rather, there are two quite different instances of C, for which
people compute the harm very differently.

But there is a whole set of other issues that arise when deal-
ing with societal harms: there is a concern that we may dis-
proportionately affect certain identifiable groups. For exam-
ple, a policy requiring certain people to work during a pan-
demic may have a disproportionate impact on certain groups.
These groups may be the gender-based or ethnicity-based
groups traditionally considered in the fairness literature, but
in general, they need not be. For example, a new freeway
may lead to a disproportionate harm to people living in a cer-
tain completely integrated middle-class neighborhood. The
“group” might be just an individual. Indeed, we can see Nor-
cross’s scenario A as an instance of this phenomenon, where
the group is the individual that suffers the premature death,
which is intuitively more harmful than any number of people
suffering a moderate headache.

We now briefly sketch a more formal approach to com-
puting harm that takes this type of fairness into account.
We assume that the groups that cannot be disproportionately
harmed by a policy must be identified in advance. A model
would include a list of all such groups.

Definition 4. A collective utility model is a tuple
((U ,V,R),F ,Pr, A,uA, dA,G, α, β), where ((U ,V,R),F)
is a causal model, Pr is a probability on contexts, uA and dA
consist of the utility functions and default utilities for each
agent in A, G is a set of identifiable subsets of A, and α
and β are two additional real-valued parameters, to be ex-
plained shortly. Given ~X , we can compute the (weighted)
harm caused by ~X to each agent a ∈ A, according to Def-
inition 3. We then sum the harms caused to each agent, but
add a penalty α if some group in G ∈ G is disproportionately

harmed, where G is disproportionately harmed if the average
harm caused to the agents in G is β greater than the average
harm caused to the agents in A.

Intuitively, G consists of sets of agents that should not be
disproportionately harmed. G could include, for example, all
“small” sets of agents (say, all sets of size at most 5), since
people may consider it unfair that a small group of agents
should suffer disproportionately. Note that we can take α
large so that if there is a policy that does not harm any identi-
fiable group, it is guaranteed to be preferred to one that does
harm an identifiable group. On the other hand, if every policy
harms some identifiable group, then we are back to compar-
ing policies by just summing the harm caused to individuals.

6 Harm vs. Benefit
In many situations, we need to trade off benefits and harms.
Although many authors view benefit as the opposite of
harm [Carlson et al., 2021; Richens et al., 2022], we here
suggest a definition for which this is not necessarily the case,
while still allowing for the aggregation of benefits and harms.
We replace the default value d by an interval D = [dh, db],
where utility lower than dh is a harm, utility higher than db is
a benefit, and all values withinD are neither harm nor benefit.
To motivate choosing an interval rather than a single value,
we can go back to the tipping example. We can imagine that
there is an acceptable range [dh, db] of tips. Tips below dh are
unacceptable, and viewed as harms; tips above db are particu-
larly generous, and viewed as benefits. We would not expect
dh = db, in general. That said, when doing a cost-benefit
analysis, we quite often do take there to be a baseline, where
anything below the baseline is a cost, and anything above it is
a benefit (which amounts to taking dh = db).

7 Comparison to RBT
As mentioned earlier, RBT also proposed a quantitative and
causality-based definition of harm. Our previous paper out-
lined several objections to their qualitative definition; here we
focus instead on the differences in the quantitative definition.

While both we and RBT distinguish causing harm from
causing a decrease in utility, and we both have a notion of
default, there are several significant differences between our
approach and theirs. Rather than having a default utility, RBT
assume a default action; in a fixed context (i.e., what we con-
sider in Section 3), we could choose to take the default utility
to be the utility of the default action. However, when comput-
ing harm, RBT only do a pairwise comparison of the harm of
a given action to the harm of the default action, and use only
but-for causation rather than the more general definition of
causation given by, say, [Halpern, 2016]. As the analysis of
Example 1 in the supplementary material shows, this can lead
to a significant difference in the calculation of harm. More-
over, assuming a default action (in this case, that of providing
no treatment) seems to lead to an inappropriate conclusion
that is avoided by using a default utility instead.

Going on, rather than minimizing expected harm (and pos-
sibly applying a weighting function to the probability, as we
do), when deciding which action a to perform, RBT maxi-
mize a different utility function, namely U [a]− λh[a], where
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U is the expected utility of a, λ is a user-dependent harm
aversion coefficient, and h[a] is the harm as calculated above,
that is, the decrease in utility caused (in the “but-for” sense)
by doing a rather than the default action. Not surprisingly,
this leads to quite different harms than we would calculate.

Furthermore, RBT do not pay special attention to the issues
that arise when aggregating harm, but instead simply compute
societal harm by summing individual harms. As discussed in
Section 5, this approach can lead to preferences that do not
match those of most people.

Finally, RBT view benefit as the opposite of harm (i.e., in
the notation of Section 6, they take dh = db). As we pointed
out, in general it seems more appropriate not to treat benefit
and harm symmetrically, and allow for a default interval.

8 Discussion and Conclusion
We have given a formal definition of quantitative harm, based
on our earlier definition of qualitative harm. While the defini-
tion of quantitative harm for a single individual in a fixed con-
text, where there is no uncertainty, is fairly straightforward
given our definition of qualitative harm, as we have pointed
out, there are subtleties that arise when we add probability
and when we need to take into account fairness issues. We
have suggested an approach for dealing with fairness issues,
but clearly work needs to be done to understand the extent to
which it captures how people actually deal with these issues.
For people to be comfortable with policies enacted by, for ex-
ample, government agencies (such as the European AI Act),
the formal approach will have to be reasonably close to their
heuristics. The situation with probability overweighting and
underweighting is even more subtle. Research has shown that
people do both overweight and underweight low-probability
events (see, e.g., [Hertwig et al., 2004; Zielonka and Tyszka,
2017]). We suspect that the underweighting that occurs when
people make decisions from experience could itself reflect a
normative preference. Perhaps there are actions (and their
consequences) with which we have experience precisely be-
cause we consider them to be part of our normal lives. As a
result, we are prepared to accept higher risks resulting from
such actions than from actions (or events) which are consid-
ered abnormal or neutral. This seems to fit well with the dis-
tinction between scenariosB and C from the Norcross exam-
ple: people consider the flexibility of being able to drive to the
pharmacy whenever they so choose to be part of a normal life,
whereas presumably they do not particularly value the ability
to live near a factory that produces poisonous gas. In any
case, while we do have some understanding of when over-
weighting and underweighting occurs, a policy-maker will
have to weigh normative and descriptive considerations in
deciding how to compute societal harm; assuming that peo-
ple always overweight low-probability events, as HKBL do,
is clearly not appropriate (although it may well be appropri-
ate for the applications considered by HKBL). Although we
have focused on probabilistic representations of uncertainty,
another direction worth exploring is non-probabilistic repre-
sentations of uncertainty.

In addition to the weighting of probabilities, quantitative
harm is influenced by the default utility: what matters is the

difference between the default utility and the utility of the out-
come (rather than just the utility of the outcome). Although
we have here argued for this view simply by showing that it
accords well with intuition for the examples discussed, recent
empirical research shows that people do seem to take into ac-
count a context-dependent default in precisely this manner.
Indeed, Rigoli et al. [2016] have shown that people make dif-
ferent choices when confronted with two cases that have iden-
tical causal structure and identical probability distributions
over the possible monetary outcomes, but where the first (sec-
ond) case is stipulated to be a low-value (resp., high-value)
context. Crucially, this behaviour is observed despite the fact
that the subjects are informed that the context does not influ-
ence the probabilities of the outcomes. Rigoli et al. explain
their results by assuming that the context changes the util-
ity function itself, but their experiments can just as easily be
explained by assuming that the context changes the default
utility instead: in a low-value context, people take the default
utility to be lower than in a high-value context, and therefore
the same utility results in different amounts of quantitative
harm for each context. It would be interesting to construct
experiments that can distinguish between the two proposals.

Finally, it is worth mentioning complexity considerations.
As with most concepts involving actual causality, deciding
whether harm occurred is intractable even in the single-agent
qualitative case where there is no uncertainty. In fact, we
prove that harm has the same complexity as causality in
the full paper, that is, DP-complete [Beckers et al., 2022b].
Adding quantitative considerations results in completeness in
the matching complexity class of functional problems.

That said, we do not believe that in practice, complex-
ity considerations will be a major impediment to applying
these definitions. In many cases of interest, the set of vari-
ables and their possible values is small. Exhaustive search
is polynomial in the set of combinations of possible values
of the variables, so the problem will be polynomial time in
this case. Furthermore, if we consider but-for causality (i.e.,
take ~W = ∅ in AC2), which often suffices, then the problem
becomes polynomial time in the number of combinations of
possible values of ~X .

This paper (and our previous one) constitute only a first
step towards providing a formal approach for determining
harm in practice. Clearly more work needs to be done, rang-
ing from investigating whether other elements need to be
added to our framework; doing both empirical and philosoph-
ical studies on the concrete factors that determine the default
utility, the weighting function, and the fairness parameters;
and investigating complexity issues more carefully.

Moreover, there is obviously a close connection between
harm and blame, in that one is usually blameworthy for an
outcome only if that outcome constitutes a harm. Yet, un-
like blame, harm does not always contain a moral dimen-
sion, since also natural events can cause harm. Therefore it
is worthwhile to develop an account that integrates both harm
and blame into a full theory of moral responsibility. We be-
lieve that this paper already provides a rich and useful frame-
work, one that will be critical for dealing with the ethical and
regulatory issues of deploying AI systems.
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