
Group Fairness in Set Packing Problems

Sharmila Duppala , Juan Luque , John Dickerson and Aravind Srinivasan
University of Maryland, College Park

{sduppala, jluque, johnd, asriniv1}@umd.edu

Abstract
Kidney exchange programs (KEPs) typically seek
to match incompatible patient-donor pairs based on
a utilitarian objective where the number or overall
quality of transplants is maximized—implicitly pe-
nalizing certain classes of difficult to match (e.g.,
highly-sensitized) patients. Prioritizing the wel-
fare of highly-sensitized (hard-to-match) patients
has been studied as a natural fairness criterion. We
formulate the KEP problem as k-set packing with a
probabilistic group fairness notion of proportional-
ity fairness—namely, fair k-set packing (FAIRSP).
In this work we propose algorithms that take arbi-
trary proportionality vectors (i.e., policy-informed
demands of how to prioritize different groups) and
return a probabilistically fair solution with provable
guarantees. Our main contributions are randomized
algorithms as well as hardness results for FAIRSP
variants. Additionally, the tools we introduce serve
to audit the price of fairness involved in prioritiz-
ing different groups in realistic KEPs and other k-
set packing applications. We conclude with exper-
iments on synthetic and realistic kidney exchange
FAIRSP instances.

1 Introduction
Fielded kidney exchange programs (KEPs) often employ a
utilitarian objective, where the overall utility of success-
ful transplants is maximized. This approach, however,
can penalize certain classes of hard-to-match patients (e.g.,
highly-sensitized, older, O-type blood, and others), as high-
lighted by many studies from the AI/ML [Dickerson et al.,
2014; Li et al., 2014; Farnadi et al., 2021; Sun et al.,
2021], economics [Roth et al., 2005; Ashlagi et al., 2019],
and medical communities [Ashlagi et al., 2011]. Subse-
quent research by [McElfresh and Dickerson, 2018] ex-
plored two group-fairness criteria—lexicographical fairness
and weighted fairness—under random-graph models, and de-
termined that the tradeoff between efficiency and fairness,
known as the “price of fairness,” is relatively small. How-
ever, it should be noted that these guarantees apply only
under the assumption of stochastic models in kidney ex-
change and there is currently a lack of fair algorithms with

provable guarantees for the general problem—directed cy-
cle packing—as originally defined [Abraham et al., 2007;
Biro et al., 2009]. Several works studied approximation
algorithms for KEPs under this model [Biro et al., 2009;
Lin et al., 2019; Xiao and Wang, 2018] but none of those
algorithms consider fairness; therefore the problem of group
fairness in kidney exchange on arbitrary patient-donor graphs
presents a unique and intriguing challenge, which can be ap-
proached from both theoretical computer science and eco-
nomics perspectives.

KEPs are often formulated as cycle-packing problems with
bounded length cycles, say cycle length at most k. This, in
turn, can be reduced to k-set packing1 by naively enumerating
the cycles in O(nk) worst-case time [Blum et al., 2015]; each
cycle, which has l (less than or equal to k) vertices, represents
a subset of l elements in the k-set packing formulation.

For the rest of the paper, we lean into kidney exchange to
illustrate the need for fairness in the well-known k-set pack-
ing problem, though other suitable applications exist such as
crew scheduling and barter exchanges. We conduct experi-
ments over a realistic kidney-exchange dataset.

We study here the notion of group-fairness in k-set pack-
ing problems. In our model, each of the n elements in the
universe U is assigned a color (category), and our goal is to
compute a valid packing such that (i) each group is fairly rep-
resented satisfying exogenous proportionality constraints and
(ii), subject to (i), the overall weight of the packing is maxi-
mized. On the flip side, our work is not solely meant to cor-
rect so-called unfair algorithms. Rather, the tools we develop
also serve as a basis to understand and audit the group-level
behavior of algorithms. That is to say, the lack of studies
of group-level fairness in k-set packing is representative of
missing, but necessary, work towards understanding group
outcomes in kidney exchange, equitable crew scheduling, and
k-set packing’s other applications. Thus, we view our work as
an important step towards understanding group-level fairness
in kidney exchange.

Let [t] denote the set {1, 2, . . . , t}. In fair k-set packing,
denoted FAIRSP, we are given a set of elements U = [n]
and a collection S = {S1, . . . , Sm} of subsets of U where

1The k-set packing problem is set packing over a universe U and
collection of subsets S of U restricted to each S ∈ S having at most
k elements. For k ≥ 3, it is NP-hard [Karp, 1972].
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|Si| ≤ k for each Si. Each subset Si ∈ S has weight wi ≥ 0.
Moreover, each u ∈ U is assigned one of c colors by C : U →
[c]; i.e., each u belongs to one of c groups. We are also given
a proportionality vector p⃗ ∈ [0, 1]c such that

∑
ℓ∈[c] pℓ = 1.

The objective of FAIRSP is to select a packing2 of maximum
weight subject to a pℓ fraction of the packing consisting of
elements with color ℓ: i.e., letting yi = 1 if Si is selected and
yi = 0 otherwise, we aim to maximize

∑
i∈[m] wiyi subject

to the proportionality constraint.
However, many instances become immediately infeasi-

ble under these additional constraints. For example, let us
consider an instance with U = {r, b1, b2, g1, g2}, S1 =
{r, b1, b2}, S2 = {r, g1, g2}, and p⃗ = [1/3, 1/3, 1/3]; here
r, bi’s, and gi’s are colored red, blue, and green, respectively.
Clearly, there does not exist a feasible (non-empty) fair pack-
ing. Instead, the fairness constraints can be satisfied in expec-
tation by switching our target to a distribution over packings
(say, pick each set with probability 1/2).
Observation 1. The integrality gap of the LP corresponding
to FAIRSP is unbounded.

Therefore, we shift our attention to randomized notions of
fairness. Such probabilistic fairness guarantees have been
previously studied by [Asudeh et al., 2022; Bastani et al.,
2019]. This motivates our work’s exploration of randomized
algorithms and probabilistic fairness.

Any randomized packing algorithm ALG is captured by a
distribution D over the set of all packings; i.e., running ALG
is akin to sampling from the distribution D. Let Zi = 1,
i ∈ [m], indicate that Si is selected in the packing returned
by ALG (Zi = 0 otherwise). Letting viℓ be the number
of elements of color ℓ in Si, we have Nℓ :=

∑
i∈[m] viℓZi

and N :=
∑

ℓ∈[c] Nℓ. We focus our study on FAIRSP, de-
fined as follows: Given U , S , wi ≥ 0, C : U → [c] (as
defined in FAIRSP), FAIRSP seeks a distribution D such
that EZ∼D[

∑
i∈[m] wiZi] is maximized while satisfying the

proportional constraints in expectation i.e., for any color ℓ,
E[Nℓ] = pℓE[N ] holds. We require E[N ] > 0 to rule out the
distribution with support only over the empty set.

In this paper, we study randomized algorithms for FAIRSP,
with a focus on two specific randomized fairness notions out-
lined in Section 3. We drop the word probabilistic while
referring to the proportionality constraints of FAIRSP for
brevity.

2 Related Work
k-set packing is a well-studied problem in combinatorial opti-
mization. For k = 2 the problem is maximum-weight match-
ing, which can be solved in polynomial time, and for k = 3
the problem becomes APX-hard [Hazan et al., 2006]. To the
best of our knowledge, the problem closest to our formula-
tion is k-set packing. In the past, the best algorithms for
both the weighted and unweighted variants depend on local-
search techniques with an approximation ratio of (k+1

2 + ϵ)
[Berman, 2000] and (k+1

3 + ϵ) [Fürer and Yu, 2014] respec-
tively. However, recently, [Neuwohner, 2021] improved upon

2A packing is a collection of pairwise disjoint subsets of S.

the weighted variant, achieving an approximation ratio of
k+ϵk

2
3. KEPs were formulated as instances of k-set packing

in [Biro et al., 2009] for the study of approximation algo-
rithms. Specifically, [Biro et al., 2009] developed a k− 1+ ϵ
approximation algorithm based on the local search technique
utilizing augmenting paths.

It is known that the natural LP-relaxation for k-set packing
has an integrality gap at least k− 1 + 1

k
[Füredi et al., 1993].

[Brubach et al., 2019] gives a k + ϵk–approximate algorithm
based on LP rounding that almost matches this lower bound.
[Anegg et al., 2021] simplified the analysis of [Brubach et
al., 2019] and improved the approximation factor to k − ϵk.
The problem is Ω( k

log k )-hard to approximate [Hazan et al.,
2006] (i.e., even an efficient O( k

log k )–approximation seems
unlikely).

To our knowledge, fair k-set packing has not been studied
before for a general k, although the special case of k = 2 (i.e.,
maximum-weight matching) has been explored extensively
under both group—[Sankar et al., 2021; Ma et al., 2022;
Nanda et al., 2020] and individual– [Garcı́a-Soriano and
Bonchi, 2020] fairness. Fair Matching has been studied under
various group-fairness notions such as lexicographical fair-
ness [Garcı́a-Soriano and Bonchi, 2020] and Rawlsian (max-
min) group fairness [Ma et al., 2022; Esmaeili et al., 2023];
both have been studied in online and offline settings.

A great deal of work in fair algorithm design uses the
framework of modeling the problem as an optimization prob-
lem with precisely defined fairness constraints and vice-versa
[Sankar et al., 2021]. Group-level fairness has been studied
in various settings [Diana et al., 2021; Tsang et al., 2019;
Ma et al., 2022]. [Asudeh et al., 2022] considered group-level
proportionality fairness (both deterministic and randomized)
for the fair maximum coverage problem which is closely re-
lated to the set packing problem.

3 Preliminaries and Main Contributions
Throughout this paper, we denote [n] = {1, . . . , n} for any
positive integer n; we use OPT to denote both an optimal
algorithm and its objective value; and analogously ALG for
both a generic algorithm and its objective value. We use
ϵn to denote a vanishing term i.e., limn→0 ϵn = 0. We
use either {Yi} or {Yi}i∈[m] to refer to the set of variables
{Y1, Y2, . . . , Ym} interchangeably.

Approximation Factor. For NP-hard combinatorial opti-
mization problems, we utilize the powerful framework of ap-
proximation algorithms, where the aim is to design efficient
algorithms (polynomial running time) with provably near-
optimal objectives values.

We say ALG achieves an approximation factor of α ≥ 1 if
αE[ALG] ≥ OPT across all feasible FAIRSP instances.

Parameters. The complexity of FAIRSP can depend on the
following parameters; number of colors c; maximum element
frequency f ∈ [m], where the frequency of an element is the
number of sets it belongs to; and k ∈ [n]. The k-restrained
variant is necessary in applications such as crew scheduling

3We use ϵn to denote a vanishing term i.e., limn→0 ϵn = 0.
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and kidney exchange, as motivated by prior work [Biró et al.,
2019]. Moreover, the natural LP for k-set packing (LP (3)
without the constraints (3c)) has integrality gap of at least
k − 1 + 1

k and there exists a (k − ϵk)-approximate algorithm
by [Anegg et al., 2021]. Note our algorithmic results are pa-
rameterized on k, c and f .

We study algorithms with approximation guarantees on the
packing objective and fairness of FAIRSP. We make this pre-
cise via two related fairness guarantees for randomized algo-
rithms of FAIRSP.
Randomized approximate Fairness (RF). For any two
colors ℓ, q ∈ [c],

E[Nℓ]/E[Nq] ≤ γ
( pℓ
pq

)
. (1)

The guarantee above is fair only in expectation. It is possi-
ble for a single realized packing to be very unfair itself. We
address this next via a stronger notion of randomized propor-
tional fairness.
Strongly Randomized approximate Fairness (SRF).

Pr
[ ∧
ℓ,q∈[c]

(
Nℓ

Nq
≤ γ

( pℓ
pq

))]
≥ 0.99 (2)

If a randomized algorithm ALG, satisfies the inequalities
(1) and (2), then it is said to have a fairness factor γ with re-
spect to RF and SRF respectively. RF and SRF, respectively,
are ex-ante and ex-post fairness guarantees for FAIRSP algo-
rithms with respect to the proportionality vector and under-
lying groups (colors). In Section 4 we give algorithms for
FAIRSP with varied approximation guarantees on the pack-
ing objective and RF or SRF guarantees with fairness factor
γ.
Connections to existing works. For k ≥ 3, the prob-
lem of k-set packing is well-studied, and several previous
works (such as [Bansal et al., 2010; Brubach et al., 2019;
Anegg et al., 2021]) have focused on developing algorithms
based on the natural LP relaxation of k-set packing. The
primary motivation for using LP rounding techniques is the
ease of incorporating proportionality constraints as additional
constraints in the LP, as demonstrated in LP (3). Our main
technical challenge is to adapt these rounding algorithms in
such a way that they produce packings with a small approxi-
mation factor and fairness ratio γ simultaneously.
Choosing a proportionality vector. Previous studies such
as [Chierichetti et al., 2017; Bei et al., 2022] have exam-
ined a concept of proportional fairness that is broader than
the one used in our work. They apply upper and lower bound
constraints on the desired proportional representation of each
group in the solution. In contrast, we use a special case where
the upper and lower bounds coincide, meaning we insist on
the final packing solution exactly preserving the proportional
constraints.

Our algorithms take an input parameter p⃗ and output a cor-
responding fair solution, assuming that the given instance is
feasible. Determining an appropriate p⃗ is intentionally de-
ferred to stakeholders and policymakers. The question of how
to fairly allocate resources to groups is an ongoing topic of

Figure 1: p⃗ = [p1, p2] vs. packing objective achieved by Algo-
rithm 1. Full description in Section 5.

debate which we make no attempt to conclude (e.g. see [Roth,
2015]). Nevertheless, we view our work as progress toward
formalizing and facilitating discussion of group-level fairness
in kidney exchange [McElfresh and Dickerson, 2018] and
other k-set packing applications. For example, the p⃗ corre-
sponding to an optimal packing has optimal Price of Fairness
(PoF); i.e., there is no cost to the objective. On the other hand,
other choices of p⃗ may come at a great PoF. For a policymaker
to advocate for proportional group fairness, it is imperative
they be able to articulate this trade-off. Our work is a step to-
wards formalizing these necessary tools. Indeed, we explic-
itly view our work as descriptive, not prescriptive—we can
map out a form of Pareto frontier (as in Figure 1) balancing
the “tightness” imposed by the proportionality vector (x-axis)
against the overall utility of the solution (y-axis). Then, a do-
main expert could use this for decision support when choos-
ing the proper balance.

3.1 Main Contributions
We study the problem of FAIRSP, a probabilistic fair variant
of the k-set packing problem. We motivate the probabilistic
fairness notions (RF and SRF as defined in (1) and (2) resp.)
by first showing that the deterministic fair variant FAIRSP has
unbounded integrality gap for the natural LP relaxation of the
problem.

We provide two algorithms FAIRSAMPLE and FAIRELIM-
INATE that respectively guarantee RF (with γ ≈ 1 w.h.p. and
approximation factor α ≤ k + ϵn) and SRF (with γ = O(1)
and α = O(ck2) where c is the number of colors). We say
sufficiently large packing size to mean the fractional num-
ber of elements selected in the optimal LP (3) solution, i.e.,∑

i∈[m]

∑
ℓ∈[c] viℓy

∗
i , is sufficiently large.

Theorem 1. For any instance of FAIRSP, FAIRSAMPLE is
a randomized, polynomial-time algorithm with an approxi-
mation factor (k + ϵk) on the packing objective. Moreover,
with probability 1 − ϵL, FAIRSAMPLE guarantees RF with
γ = 1 + ϵL where L is a tunable parameter.

Theorem 2. For any instance of FAIRSP satisfying f =
o(
√
n) and pℓ = Θ(1/c) for all ℓ ∈ [c], FAIRELIMINATE
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is a randomized, polynomial-time algorithm with an approx-
imation factor O(ck2) on the packing objective. Moreover,
for instances with sufficiently large packing size, FAIRELIM-
INATE guarantees SRF with γ = O(1) .

Theorem 3. For any instance of FAIRSP satisfying f =
o(n/k6c4) and pℓ = Θ(1/c) for all ℓ ∈ [c], FAIRELIMINATE
is a randomized, polynomial-time algorithm with an approxi-
mation factor of O(ck2) on the packing objective. Moreover,
for instances with sufficiently large packing size, FAIRELIM-
INATE guarantees SRF with γ = O(1).
Remark 1. Theorem 3 is a stronger result than Theorem 1
since the former allows for instances with f (maximum fre-
quency of any element) asymptotically larger than that of the
latter.

Note that stronger fairness guarantees of FAIRELIMINATE
holds for the family of FAIRSP instances satisfying: (i) the
frequency of any element is bounded by n1−o(1), e.g., f =
o(n) for k = O(log n) and c = O(log n), (ii) the propor-
tionality vector satisfies pℓ = Θ(1/c) for all ℓ, and (iii) the
packing size is sufficiently large.

The input parameter a to FAIRELIMINATE is carefully cho-
sen to balance both γ and α. For the family of instances with
constant number of colors c, and sufficiently large packing
size we prove that γ = O(1) and α = O(k2). For many
practical real-world applications, like kidney-exchange mar-
kets, k is a very small number, say 2 or 3, thus resulting in
a reasonable (constant) approximation factor for both FAIR-
SAMPLE and FAIRELIMINATE, along with the desired fair-
ness guarantees.

Notice that k-set packing is a special case of FAIRSP with
c = 1, hence the integrality gap of LP (3) is at least k−1+1/k
[Füredi et al., 1993]. Therefore, our approximation factor for
FAIRSAMPLE almost matches the lower bound and further
guarantees RF with γ arbitrarily close to optimal i.e., 1.

Whereas, FAIRSAMPLE only guarantees fairness in
expectation—with no promises on the ex-post fairness of the
allocation—FAIRELIMINATE guarantees the stronger SRF
with γ = O(1) and approximation factor α = O(ck2).

Finally, in Section 5, we support these theoretical results
with experiments on synthetic datasets, including a realistic
dataset drawn from a real-world kidney exchange.

4 Randomized Algorithms
In this section we focus on randomized algorithms for
FAIRSP with RF and SRF guarantees. Our algorithms are
based on rounding optimal Linear Program (LP) solutions.
The LP formulation for FAIRSP, found in LP (3), is the stan-
dard LP formulation of set packing with added fairness con-
straints. Due to space constraints, we omit the proofs from
this section.

max
∑
i∈[m]

wiyi (3a)

subject to
∑

i:uj∈Si

yi ≤ 1, j ∈ [n] (3b)

∑
i∈[m]

viℓyi = pℓ
∑
t∈[c]

∑
i∈[m]

vityi, ℓ ∈ [c] (3c)

yi ∈ [0, 1], i ∈ [m]. (3d)

Theorem 4. The optimal value of LP (3) is an upper bound
on the objective of FAIRSP.

Proof. Consider an optimal randomized algorithm OPT4 for
FAIRSP. For each i ∈ [m], let yi be the probability that Si

is packed by the randomized algorithm OPT. We can verify
that the LP objective (3a) captures the exact value of OPT
(i.e., the max expected weight of the packing). Therefore, to
prove our claim it suffices to show that {yi}i∈[m] is a feasible
point of LP (3). For each i ∈ [m], let Yi denote the indicator
random variable that set Si is selected by OPT. OPT can be
viewed as a distribution over all feasible deterministic algo-
rithms, any realization {Yi} satifsies

∑
j∈Si

Yi ≤ 1 for each
j ∈ [n]. Therefore, E[

∑
j∈Si

Yi] ≤ 1 which satisfies (3b).
Since OPT is optimal for FAIRSP, for each color ℓ ∈ [c],
{Yi} must satisfy proportional constraints in expectation i.e.,
E[Nℓ] = pℓE[N ], so (3c) is satisfied. Lastly, since {yi} are
probabilities, (3d) is satisfied.
Lemma 1. An instance of FAIRSP is feasible if and only if
its corresponding LP (3) has a non-zero feasible solution.

By Lemma 1 we can efficiently verify whether the under-
lying FAIRSP instance is feasible. Moreover, this implies our
algorithms abort only when the underlying FAIRSP instance
is infeasible.
Algorithmic challenges and techniques. As highlighted
in the introduction, randomized algorithms can be substan-
tially more powerful than deterministic ones on the objec-
tive studied here; however, the design and analysis of a ran-
domized algorithm can be technically challenging mainly
due to the craft involved in using randomness and analy-
sis of such random variables. Several existing dependent
rounding methods [Bansal et al., 2010; Brubach et al., 2019;
Anegg et al., 2021] for k-set packing are based on random-
ized rounding (which samples subsets based on an LP so-
lution) followed by suitable alterations (which drops some
sets to ensure a packing is returned) that lead to a feasible
packing with good approximation guarantees. However, the
packing returned by these algorithms is far from satisfying
any fairness constraints. Thus the main challenge we address
is designing packing algorithms guaranteeing RF and SRF.
Our primary contribution is the two algorithms, FAIRSAM-
PLE and FAIRELIMINATE, which are tailored to guarantee
RF and SRF, respectively. Our algorithms utilize a random-
ized dependent rounding method, drawing inspiration from
the works of [Bansal et al., 2010] and [Brubach et al., 2019],
to optimize the packing objective function. Additionally, we
modify existing algorithms to further provide probabilistic
fairness guarantees (minimizing γ). In rest of the paper we
use simulation to refer to Monte Carlo simulation.

1. We augment the rounding method of [Brubach et al.,
2019] with a simulation based method to tightly bound
the probability of selecting any subset Si, i ∈ [m]. Thus,
guaranteeing RF with near-optimal γ (i.e., γ = 1+ ϵL

5).
(See Theorem 1)

4We use OPT for both the optimal algorithm and the optimal
objective value interchangeably.

5L is the number of simulations in FAIRSAMPLE.
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2. Although FAIRSAMPLE provides a better approximation
on the packing objective than FAIRELIMINATE, it is hard
to provide a useful lowertail bound of Nℓ since the ran-
dom variables {Zi}i∈[m] are highly dependent. We use
a much more intricate analysis on the simpler FAIRE-
LIMINATE using concentration bounds from [Janson and
Ruciński, 2002] which guarantee SRF with γ = O(1) (a
small constant), under reasonable assumptions on the in-
put instances (See Theorems 2 and 3).

4.1 FAIRSAMPLE for RF Guarantees

We obtain FAIRSAMPLE, Algorithm 1, by augmenting the
rounding algorithm from [Brubach et al., 2019] with an ad-
ditional simulation step (step 13). The purpose behind the
simulation-based sampling is to “tightly” bound E[Nℓ] for
each color ℓ; the importance of this step is discussed in the
“Intuition behind the analysis of FAIRSAMPLE”. The proba-
bility of satisfying RF with γ = 1+ϵL depends on the number
of simulations L. Nevertheless, L needs only be polynomial
in the problem size for high-quality results. For more details
on the simulation-based sampling method see the works of
[Ma, 2014; Adamczyk et al., 2015].

Steps 1-4 FAIRSAMPLE solves the LP of the given FAIRSP
instance or aborts if the LP is infeasible. Steps 7-10 Next, it
runs randomized rounding on each variable using a carefully
chosen function f(y∗i ) on the optimal LP solution {y∗i }. In
the alteration step, the variables rounded to 1 are dropped
based on a randomly ordered permutation generated in the
previous step. These steps are repeated for L rounds. Steps
13- 15 Finally, with the previous L simulations, we have esti-
mated q′i ≈ Pr(Si ∈ F2) for each i ∈ [m]. This ensures that
Pr(Si ∈ F) ≈ y∗

i

k+ k
exp k

, which is crucial to the analysis. The-

orem 1 formalizes the approximation guarantees provided by
FAIRSAMPLE for the objective and RF fairness ratio.

Intuition behind the analysis of FAIRSAMPLE. The first
part of FAIRSAMPLE, steps 1-11, is similar to that of
[Brubach et al., 2019], thus leading to k + ϵk approximation
on packing objective. The remaining steps of FAIRSAMPLE
ensure a tight upper bound on E[Nℓ] for each color ℓ. This
is crucial to upper bounding E[Nℓ]/E[Nℓ′ ] for each pair of
colors ℓ and ℓ′, thus giving a suitable γ.

Theorem 1 demonstrates that FAIRSAMPLE has an approx-
imation factor of (k + k

exp(k) ) for the packing objective, and
it guarantees RF with a γ = 1 + ϵL, which can be made
arbitrarily close to optimal (γ = 1) with more simulations.
However, it should be noted that the fairness guarantees of
FAIRSAMPLE only hold with high probability, as they depend
on the simulation step. Nevertheless, the experimental results
in Section 5 show FAIRSAMPLE consistently achieves γ ≈ 1
even with only a few simulations.

Note that Theorem 1 only guarantees fairness in
expectation—there are no guarantees on the ex-post fairness
of the allocation. This shifts our attention to FAIRELIMI-
NATE.

Algorithm 1 FAIRSAMPLE

Require: Number of Monte Carlo simulations L.
1: Solve LP (3) to get an optimal fractional solution {y∗

i }i∈[m].
2: if LP (3) is infeasible then
3: return “Infeasible”
4: end if
5: For all i ∈ [m], set Li = 0.
6: for j = 1, . . . , L do
7: ConstructF1 by sampling each set Si with probability f(y∗

i )
where f(x) = x

(
1− x

2

)
.

8: For each Si ∈ F1, sample xi ∼ U(0, 1).
9: Build the valid packing F2 as follows. In increasing order of

xi, pack Si if it does not intersect a previously selected set.
10: For each Si ∈ F2, increment Li by 1.
11: end for
12: Keep the packing F2 from the last run of the above loop.
13: Set q′i = Li/L for each i ∈ [m].
14: Shrink F2 into F as follows. For each Si ∈ F2, keep Si with

probability y∗
i

(q′i+ϵ)
(
k+ k

exp (k)

) .

15: return The packing F .

4.2 FAIRELIMINATE for SRF Guarantees
FAIRELIMINATE, Algorithm 2, incorporates randomized
rounding followed by alterations, similar to [Bansal et al.,
2010]. In the randomized rounding step, we select each Si

independently based on a attenuation function ay∗
i

k where a is
a small constant. The main difference between FAIRELIMI-
NATE and existing algorithms is allowing for an appropriate
parameter a that results in a collection of sets with accept-
able “expected packing weight” and “expected cardinality6”.
The alteration step ensures a packing is returned by discard-
ing intersecting sets while maintaining good expected weight
and not losing too many elements of any color.

To guarantee SRF, we need concentration bounds on the
upper and lower tails of Nℓ. Our randomized rounding proce-
dure lets us upper bound Nℓ as a sum of independent random
variables, making it easy to apply Hoeffding bounds on the
upper tail. However, the critical part of the analysis is estab-
lishing a concentration on the lowerbound of Nℓ. We solve
this problem by a clever application of the Deletion Method
by [Janson and Ruciński, 2002].

Steps 1-4 are common between FAIRSAMPLE and FAIRE-
LIMINATE. Steps 5-6 Each variable Yi is rounded w.r.t func-
tion ay∗

i

k for a small constant a > 0; let F denote the set of all
subsets that are sampled in this step. Steps 7-12 Then, in the
alteration step, the algorithm removes any sets that intersect
with other sets in F , and returns the remaining sets as the final
packing. Theorems 2 and 3 state the approximation guaran-
tees provided by FAIRELIMINATE on both the objective and
SRF.
Intuition behind the analysis of FAIRELIMINATE. The
key idea behind FAIRELIMINATE is to choose an appropri-
ate value for a7 such that randomized rounding results in a
set of variables {Yi} with an acceptable “expected weight”.

6Expected cardinality refers to the expected number of elements
selected in this step i.e., E[

∑
i∈[m] |Si|Yi].

7The value of a > 0 is selected via the analysis of the algorithm.
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Algorithm 2 FAIRELIMINATE

Require: a < p∗ 1−δ
6k

where δ= 1
n0.25 and p∗=minℓ∈[c] pℓ

1: Solve LP (3) to get an optimal fractional solution {y∗
i }

2: if LP (3) is infeasible then
3: return return “Infeasible”
4: end if
5: For each i ∈ [m] sample Yi ∼ Ber(

ay∗
i

k
) for a small constant

a > 0
6: F = {Si ∈ S | Yi = 1}
7: F1 ← ∅
8: for Si and Sj such that Si ∩ Sj ̸= ∅ do
9: if Yi = 1 and Yj = 1 then

10: F1 ← F1 ∪ {Si, Sj}
11: end if
12: end for
13: return F − F1

We then prove that the expected number of variables dropped
in the alteration step is minimal, resulting in a high-quality
approximation of the packing objective.

It’s important to note the {Zi} are dependent random vari-
ables with both negative and positive correlations. As a re-
sult, we cannot directly use the Chernoff-Hoeffding bounds
that are applied to sums of negatively correlated random
variables, as outlined in [Panconesi and Srinivasan, 1997].
This creates a challenge in achieving concentration on the
desired value of Nℓ. Instead we express Zi as a function
of the independent {Yi}, allowing us to utilize various re-
sults on the polynomials of independent random variables
such as [Kim and Vu, 2000; Janson and Ruciński, 2002;
Schudy and Sviridenko, 2011]. We know that the random
variable Zi takes the value either 1 or 0 based on two events:
(i) the random variable Yi = 1 in the randomized rounding
step, and (ii) none of its neighbors j ∈ N(i)8 have Yj = 1.
Therefore, Zi = Yi(1 − maxj∈N(i) Yj), allowing us to ex-
press Nℓ as follows:

Nℓ =
∑
i∈[m]

viℓ(Yi − Yi max
j∈N(i)

Yj) (4)

≥
∑
i∈[m]

viℓ(Yi − Yi

∑
j∈N(i)

Yj) (5)

≥
∑
i∈[m]

viℓYi︸ ︷︷ ︸
Aℓ

−2k
∑

1≤i<j≤m
Si∩Sj ̸=∅

YiYj

︸ ︷︷ ︸
B

. (6)

By applying the Hoeffding bound [Hoeffding, 1994], we
can show that Aℓ =

∑
i∈[m] viℓYi is concentrated around its

mean with probability p. Additionally, we can use the Dele-
tion method by [Janson and Ruciński, 2002] to prove that B
is also concentrated around its mean with probability q. The
crucial step in applying the Deletion Method is the construc-
tion of a hypergraph on the random variables {Yi}, which can
be challenging. Finally, by a union bound and suitable p and
q, we find concentration on the lower bound of Aℓ − 2kB.

Theorem 2 is a direct outcome of this approach. Theo-
rem 3 is an enhancement of Theorem 2 resulting from a more

8N(i) = {Sj : Si ∩ Sj ̸= ∅}.

refined analysis of the concentration of B in the Deletion
Method. The complete justification for these theorems can
be found in the full version of the paper.

5 Experiments
Our experiments run on commodity hardware using Python
3.6 with NumPy [Harris et al., 2020] as well as IP and LP
solvers in Gurobi 9.1.2. The empirical evaluation of our al-
gorithms uses both purely synthetic and realistic kidney ex-
change FAIRSP instances. To benchmark our algorithms, we
include i) ALG-BLIND, the LP-rounding (fairness agnostic)
k-set packing randomized algorithm from [Brubach et al.,
2019] as well as ii) IP-FSP and iii) IP-BLIND, which solve
the integer restrictions of LP (3) with and without fairness
constraints, respectively. The integer restrictions of IP-FSP
and IP-BLIND make the fairness guarantee be satisfied deter-
ministically as opposed to in expectation like RF.

Evaluation of randomized algorithms. FAIRSAMPLE and
ALG-BLIND provide objective guarantees in expectation
thus their reported objective values are the mean objectives of
300 independent LP solution roundings. FAIRSAMPLE uses
L = 300 to estimate q′i values. Since FAIRELIMINATE pro-
vides ex-post fairness guarantees the reported objective val-
ues correspond to a single LP rounding per FAIRSP instance.

Kidney exchange datasets. We use realistic kidney ex-
change instances drawn from the US-based United Network
for Organ Sharing (UNOS) fielded exchange program; our
synthetic instances are generated from this data in the stan-
dard way [Dickerson et al., 2019]. In real programs,9 both
blood type and patient sensitization, a measure that is high
when a patient’s body has built up many antibodies to po-
tential donor organs, are taken into account when deciding
what type of participant to prioritize. Thus, in our experi-
ments, we treat sensitization as a binary sensitive attribute
(taking value 1 if the patient is sensitized and 0 otherwise),
and separately treat patient blood type as a different binary
sensitive attribute (taking value 1 if the patient is a hard-
to-match O-type blood, and 0 otherwise). These binary at-
tributes give rise to two datasets, each with c = 2, which we
call the blood group and sensitization datasets. We gener-
ate graphs of size 64, 128, 256, and 512 from that real data,
noting that the largest exchanges in the world hover at or
slightly below 256.11Recall as mentioned in the introduction,

9For example, the OPTN/UNOS10exchange transparently reports
its prioritization points in Table 13-2; high values for the sensitiza-
tion metric CPRA are prioritized extensively, and O-type candidates
are prioritized as well. For summaries of countries’ exchanges in
the European Union and the United Kingdom, we refer the reader
to [Biró et al., 2019].

10https://optn.transplant.hrsa.gov/media/3390/
optn-policies-effective-as-of-dec-4-2019-board-adoptions.pdf

11As examples, we direct the reader to [Biró et al., 2019], a recent
survey of 17 European countries’ national exchange programs, stat-
ing that the UK “has become the largest operating [kidney exchange
program] in Europe, with 250 recipient-donor pairs registered per
matching run,” followed by the Netherlands and then Spain, with
110 recipient-donor pairs registered per run, and a long tail of coun-
tries afterward. In the US, programs tend to match at a faster cadence
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Figure 2: Plots for the sensitization dataset. Left (right) y-axes and solid (dashed) lines correspond to packing objectives (RF γ values).

the FAIRSP instances have S consisting of all 2- and 3-cycles
in said graphs. As a result, the largest FAIRSP instances have
n = 512 and m ≈ 28000. We omit IP solutions for these
largest instances as solving them takes too long and they only
serve to motivate probabilistic fairness. Each graph size has
32 instances for which we create fair instances with propor-
tionality vector p⃗ ∈ {(0.25, 0.75), (0.5, 0.5), (0.75, 0.25)}.
wi = |Si| for all Si ∈ S , and k = 3.

Experiments on kidney exchange datasets. Altogether,
the experiments solve a total of 864 IPs with fairness con-
straints, 960 LPs with fairness constraints, 96 IPs without
fairness constraints and 128 LPs without fairness constraints.
Both FAIRSAMPLE and FAIRELIMINATE produce solutions
swiftly, taking up to 7 minutes for the largest instances. In
both cases the bottleneck is solving the LP. Given there are
multiple FAIRSP instances per graph size, the plots report the
mean over all instances and the shaded regions capture 95%
of the instances.

Figure 1 uses all 32 instances with n = 256 from the blood
group dataset over each of 40 choices of p⃗; hence running
FAIRSAMPLE 1280 times in 9 hours. Figure 2 shows FAIR-
SAMPLE achieves remarkably improved fairness at little cost
to the objective compared to its fairness agnostic counterparts
ALG-BLIND and IP-BLIND. IP-FSP also ran into several
infeasible instances while this was never an issue for FAIR-
SAMPLE, further making the case for probabilistic fairness.

Experiments in Figure 3 use FAIRELIMINATE to round
the 960 LPs with fairness constraints with 25 evenly spaced
choices of the parameter a ∈ [0.1, 0.99]. Both the approx-
imation and fairness factors improve as a increases. Al-
though the worst-case guarantees in Theorem 3 are valid for
a < (1− δ)p∗/6k (for any δ > 0), in this real-world example
the fairness guarantees continue to improve as a approaches
1. One explanation is that as a increases, the number of ini-
tially sampled sets increases but so does the number of sets
dropped in the alterations step; however, since our instances
are sparse the number of sets dropped is not too high. For

which can keep pool sizes low; for example, arguably the most suc-
cessful program in the US, which is run by the National Kidney Reg-
istry (NKR), had a pool size hovering around 150 recipient-donor
pairs in Q1 2022 [National Kidney Registry, 2022].

comparison, we include the approximation and fairness fac-
tors from a single rounding of FAIRSAMPLE. Interestingly,
here FAIRSAMPLE outperforms FAIRELIMINATE in ex-post
fairness. One possible explanation is that the realistic in-
stances are far from worst-case.

Figure 3: Blue (green) lines show approximation (fairness) factors
and correspond to the left (right) y-axes. For comparison, we plot the
average approximation factor (= 1.12) and γ (= 1.04) achieved by
FAIRSAMPLE. Approximation factors are the LP objective divided
by the rounded solution’s objective.

DatasetMaxK. We generate 200 purely synthetic FAIRSP
instances with n = 50, m = 1000, c ∈ {2, 3}, and p⃗ gen-
erated uniformly at random. Each instance has a parame-
ter max k ∈ {3, 8, 13, . . . , 49}. For each parameter con-
figuration above, we independently generate 10 instances.
Then this parameter max k is used to sample sets. For each
i ∈ [m], Si ∈ S is a random subset of U with cardinal-
ity ki ∼ N (max k, 2) (while ensuring ki stays in between
2 and 50). For each Si ∈ S , wi is an integer drawn uni-
formly between 5 and 35. Element colors are chosen uni-
formly at random. As expected, the objectives decrease as
k increases, thus the approximation factor of FAIRSAMPLE
increases alongside k.
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