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Abstract

Randomized rankings have been of recent interest
to achieve ex-ante fairer exposure and better ro-
bustness than deterministic rankings. We propose
a set of natural axioms for randomized group-fair
rankings and prove that there exists a unique dis-
tribution D that satisfies our axioms and is sup-
ported only over ex-post group-fair rankings, i.e.,
rankings that satisfy given lower and upper bounds
on group-wise representation in the top-k ranks.
Our problem formulation works even when there
is implicit bias, incomplete relevance information,
or only ordinal ranking is available instead of rele-
vance scores or utility values.
We propose two algorithms to sample a random
group-fair ranking from the distribution D men-
tioned above. Our first dynamic programming-
based algorithm samples ex-post group-fair rank-
ings uniformly at random in time O(k2ℓ), where
ℓ is the number of groups. Our second random
walk-based algorithm samples ex-post group-fair
rankings from a distribution δ-close to D in total
variation distance and has expected running time
O∗(k2ℓ2)1, when there is a sufficient gap between
the given upper and lower bounds on the group-
wise representation. The former does exact sam-
pling, but the latter runs significantly faster on real-
world data sets for larger values of k. We give em-
pirical evidence that our algorithms compare favor-
ably against recent baselines for fairness and rank-
ing utility on real-world data sets.

1 Introduction
Ranking individuals using algorithms has become ubiquitous
in many applications such as college admissions [Baswana
et al., 2019], recruitment [Geyik et al., 2019], among oth-
ers. In many such scenarios, individuals who belong to
certain demographic groups based on race, gender, age,
etc., face discrimination due to human and historical biases
[Uhlmann and Cohen, 2005; Okonofua and Eberhardt, 2015;

1O∗ suppresses logarithmic and error terms.

Hassani, 2021]. Algorithms learning from biased data ex-
acerbate representational harms for certain groups in the top
ranks2,3, leading to loss of opportunities. One way to mitigate
representational harms is by imposing explicit representation-
based fairness constraints that the ranking output by the
algorithm must contain a certain minimum and maximum
number of candidates from each group [Geyik et al., 2019;
Celis et al., 2020b]. Many fair processes such as the Rooney
rule [Collins, 2007], the 4/5-th rule [Bobko and Roth, 2004],
and fairness metrics such as demographic parity impose
representation-based constraints.

A large body of work has proposed deterministic post-
processing of rankings to satisfy representation-based group-
fairness constraints [Celis et al., 2018b; Geyik et al., 2019;
Wu et al., 2018; Zehlike et al., 2017; Gorantla et al., 2021].
These methods essentially merge the group-wise ranked lists
to create a common ranking that satisfies representation-
based constraints. However, these methods contain two criti-
cal flaws. First, deterministic rankings cannot create opportu-
nities for all the groups at the top, especially when the num-
ber of groups is large. Second, observations of merit are of-
ten noisy in the real world [Okonofua and Eberhardt, 2015]
and could contain implicit bias towards protected groups
[Uhlmann and Cohen, 2005]. Hence, inter-group compar-
isons of merit while merging the group-wise rankings could
lead to a loss of opportunities for certain groups. For exam-
ple, suppose multiple companies intend to hire for a limited
number of similar open positions and use the same recruit-
ment system to rank a common candidate pool for job inter-
views. In a deterministic top-k ranking based on biased merit
scores, every company would see the same ranking, where
the protected groups could be systematically ranked lower.
Hence, equal representation at the top-k may not translate
into equal opportunities.

We consider randomized group-fair rankings as a way to
create opportunity for every group in the top ranks (or, more
generally, any rank). We assume that we are given only
the ordinal rankings of items within each group (i.e., intra-
group ordering without any scores) and no comparison of

2Jeffrey Dastin, Amazon scraps secret AI recruiting tool that
showed bias against women

3Bogen and Rieke, Help Wanted: An Examination of Hiring Al-
gorithms, Equity, and Bias
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items across different groups (i.e., inter-group comparisons).
This assumption is strong but circumvents implicit bias and
allows us to consider group-fair rankings even under incom-
plete or biased data about pairwise comparisons. Our ran-
domized ranking algorithms output ex-post group-fair rank-
ings, i.e., every sampled ranking output is group-fair and sat-
isfies representation-based fairness constraints as a stronger
ex-post (or actual) guarantee instead of a weaker ex-ante (or
expected) guarantee.

The rest of the paper is organized as follows: In Section 2,
we survey related work and summarize its limitations for our
problem. In Section 3 we describe our axiomatic approach
to define a distribution over ex-post group-fair rankings (Ax-
ioms 3.1-3.3) and show that there is a unique distribution that
satisfies our axioms (Theorem 3.4). The same distribution
satisfies sufficient representation of every group in any con-
secutive ranks in the top-k (Corollary 3.6), a natural charac-
teristic derived from our axioms. In Section 4, we give an ef-
ficient dynamic programming-based algorithm (Algorithm 1)
and a random walk-based algorithm (Algorithm 2) to sam-
ple an ex-post group-fair ranking from the above distribution.
We also extend our algorithms to handle representation-based
constraints on the top prefixes (Section 4.3). In Section 5, we
empirically validate our theoretical and algorithmic guaran-
tees on real-world datasets. Finally, Section 6 contains some
limitations of our work and open problems. All the proofs and
additional experimental results are included in the appendix.

2 Related Work
Representation-based fairness constraints for ranking ℓ
groups in top k ranks are typically given by numbers Lj and
Uj , for each group j ∈ [ℓ], representing the lower and upper
bound on the group representation respectively. They cap-
ture several fairness notions; setting Lj = Uj = k

ℓ , ∀j ∈ [ℓ]
ensures equal representation for all groups (see section 5 of
[Zehlike et al., 2022b]), whereas Lj = Uj = pj · k, ∀j ∈ [ℓ],
ensures proportional representation4, where pj is the propor-
tion of the group j in the population [Gorantla et al., 2021;
Gao and Shah, 2020; Geyik et al., 2019]. These constraints
have also been studied in other problems such as fair subset
selection [Stoyanovich et al., 2018], fair matching [Goto et
al., 2016], and fair clustering [Chierichetti et al., 2017].

Previous work has tried to formalize the general principles
of fair ranking as treating similar items consistently, main-
taining a sufficient presence of items from minority groups,
and proportional representation from every group [Castillo,
2019]. There has been work on quantifying fairness require-
ments [Yang and Stoyanovich, 2017; Geyik et al., 2019;
Beutel et al., 2019; Narasimhan et al., 2020; Kuhlman et al.,
2019], which has predominantly proposed deterministic algo-
rithms for group-fair ranking [Yang and Stoyanovich, 2017;
Geyik et al., 2019; Gorantla et al., 2021; Celis et al., 2018b;
Zehlike et al., 2022b].

Our recruitment example in the previous section shows the
inadequacy of deterministic ranking to improve opportuni-

4It may not always be possible to satisfy equal or proportional
representation constraints exactly. In that case, the algorithms need
to say that the instance is infeasible.

ties. Recent works have also observed this and proposed ran-
domized ranking algorithms to achieve equality or propor-
tionality of expected exposure [Diaz et al., 2020; Singh and
Joachims, 2018; Biega et al., 2018; Memarrast et al., 2021;
Kletti et al., 2022]. All of them require utilities or scores
of the items to be ranked and hence, are susceptible to im-
plicit bias or incomplete information about the true utilities.
Moreover, they do not give ex-post guarantees on the repre-
sentation of each group, which can be a legal or necessary
requirement if the exposure cannot be computed efficiently
and reliably [Heuss et al., 2022].

Another recent workaround is to model the uncertainty in
merit. Assuming access to the true merit distribution, Singh
et al. (2021) give a randomized ranking algorithm for a no-
tion of individual fairness. On the other hand, Celis et al.
(2020b) try to model the systematic bias. Under strong dis-
tributional assumptions, they show that representation con-
straints are sufficient to achieve a fair ranking. However,
their assumptions may not hold in the real world as uncon-
scious human biases are unlikely to be systematic [Uhlmann
and Cohen, 2005; Okonofua and Eberhardt, 2015].

Most aligned to our work is a heuristic randomized rank-
ing algorithm – fair ϵ-greedy – proposed by [Gao and Shah,
2020]. Similar to our setup, they eschew comparing items
across different groups. However, their algorithm does not
come with any theoretical guarantees, and it does not always
sample ex-post group-fair rankings. Moreover, it works only
when no upper-bound constraints exist on the group-wise rep-
resentation. To the best of our knowledge, our work is the
first to propose a distribution over ex-post group-fair rank-
ings, using lower and upper bounds on the group-wise repre-
sentations, and to give provably correct and efficient sampling
algorithms for it.

We note here that previous work has also used random-
ization in ranking, recommendations, and summarization of
ranked results to achieve other benefits such as controlling
polarization [Celis et al., 2019], mitigating data bias [Celis et
al., 2020a], and promoting diversity [Celis et al., 2018a].

3 Group Fairness in Ranking
Given a set N := [n] of items, a top-k ranking is a selection
of k < n items followed by the assignment of each rank in [k]
to exactly one of the selected items. We use index i to refer
to a rank, index j to refer to a group, and a to refer to ele-
ments in the set N . Let a, a′ ∈ N be two different items such
that the item a is assigned to rank i and item a′ is assigned to
rank i′. Whenever i < i′ we say that item a is ranked lower
than item a′. Going by the convention, we assume that being
ranked at lower ranks gives items better visibility [Gorantla et
al., 2021]. Throughout the paper, we refer to a top-k ranking
by just ranking. The set N can be partitioned into ℓ disjoint
groups of items depending on a sensitive attribute. A group-
fair ranking is any ranking that satisfies a set of group fairness
constraints. Our fairness constraints are representation con-
straints; lower and upper bounds, Lj , Uj ∈ [k] respectively,
on the number of top k ranks assigned to group j, for each
group j ∈ [ℓ]. Throughout the paper, we assume that we are
given a ranking of the items within the same group for all
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groups. We call these rankings in-group rankings. We now
take an axiomatic approach to characterize a random group-
fair ranking.

3.1 Random Group-Fair Ranking
The three axioms we state below are natural consistency and
fairness requirements for distribution over all the rankings.

Axiom 3.1 (In-group consistency). For any ranking sampled
from the distribution, for all items a, a′ belonging to the same
group j ∈ [ℓ], item a is ranked lower than item a′ if and only
if item a is ranked lower than item a′ in the in-group ranking
of group j.

Since the intra-group merit comparisons are reliable, their
in-group ranking must remain consistent, which is what the
axiom asks for. Many post-processing algorithms for group-
fairness ranking satisfy this axiom [Gorantla et al., 2021;
Celis et al., 2018b; Zehlike et al., 2022a; Zehlike et al.,
2017]. Once we assign the ranks to groups, Axiom 3.1 de-
termines the corresponding items to be placed there con-
sistent with in-group ranking. Hence, for the next axioms,
we look at the group assignments instead of rankings. A
group assignment assigns each rank in the top k ranking
to exactly one of the ℓ groups. Let Yi be a random vari-
able representing the group ith rank is assigned to. There-
fore Y = (Y1, Y2, . . . , Yk) is a random vector represent-
ing a group assignment. Let y = (y1, y2, . . . , yk) repre-
sent an instance of a group assignment. A group-fair as-
signment is a group assignment that satisfies the representa-
tion constraints. Therefore the set of group-fair assignments
is
{
y ∈ [ℓ]k : Lj ⩽

∑
i∈[k] I[yi = j] ⩽ Uj , ∀j ∈ [ℓ]

}
, where

I[·] is an indicator function. The ranking can then be obtained
by assigning the items within the same group, according to
their in-group ranking, to the ranks assigned to the group. We
use Y0 to represent a dummy group assignment of length 0 for
notational convenience when no group assignment is made to
any group (e.g. in Axiom 3.3).

Let Xj be a random variable representing the number
of ranks assigned to group j in a group assignment for
all j ∈ [ℓ]. Therefore X = (X1, X2, . . . , Xℓ) repre-
sents a random vector for a group representation. Let
x = (x1, x2, . . . , xℓ) represent an instance of a group rep-
resentation. Then the set of group-fair representations is{
x ∈ Zℓ

⩾0 :
∑

j∈[ℓ] xj = k and Lj ⩽ xj ⩽ Uj , ∀j ∈ [ℓ]
}

.
Since the inter-group comparisons are unreliable, any fea-

sible group-fair representation is equally likely to be the
best. That is, the distribution should be maximally non-
committal distribution over the group-fair representations,
which is nothing but a uniform distribution over all feasible
group-fair representations. This is captured by our next ax-
iom as follows,

Axiom 3.2 (Representation Fairness). All the non-group-fair
representations should be sampled with probability zero, and
all the group-fair representations should be sampled uni-
formly at random.

Remark. Any distribution for top k ranking that satisfies Ax-
iom 3.2 is ex-post group fair since the support of the distribu-

tion consists only of rankings that satisfy representation con-
straints. This is important when the fairness constraints are
legal or strict requirements.

Many distributions over rankings could satisfy Axiom 3.1
and Axiom 3.2. Consider a distribution that samples a group
representation x uniformly at random. Let x1 ∈ [L1, U1] be
the representation corresponding to group 1. Let us assume
that this distribution always assigns ranks k − x1 + 1 to k to
group 1. Due to in-group consistency, the best x1 items in
group 1 get assigned to these ranks. However, always being
at the bottom of the ranking is not fair to group 1, since it gets
low visibility. Therefore, we introduce a third axiom that asks
for fairness in the second step of ranking – assigning the top
k ranks to the groups in a rank-aware manner.

Axiom 3.3 (Ranking Fairness). For any two groups j, j′ ∈
[ℓ], for all i ∈ {0, . . . , k − 2}, conditioned on the top i ranks
and a group representation x, the (i+ 1)-th and the (i+ 2)-
th ranks are assigned to j and j′ interchangeably with equal
probability. That is, ∀j, j′ ∈ [ℓ], ∀i ∈ {0, . . . , k − 2},

Pr [Yi+1 = j, Yi+2 = j′ | Y0, Y1, . . . , Yi,X]

= Pr [Yi+1 = j′, Yi+2 = j | Y0, Y1, . . . , Yi,X] .

Let U represent a uniform distribution. In the result be-
low, we prove that there exists a unique distribution over the
rankings that satisfies all three axioms.

Theorem 3.4. Let D be a distribution from which a ranking
is sampled as follows,

1. Sample an x from,

U

{
x ∈ Zℓ

⩾0 :
∑
j∈[ℓ]

xj = k ∧ Lj ⩽ xj ⩽ Uj , ∀j ∈ [ℓ]

}
.

2. Sample a y, given x, from

U
{
y ∈ [ℓ]k :

∑
i∈k

I[yi = j] = xj , ∀j ∈ [ℓ]

}
.

3. Rank the items within the same group in the order consis-
tent with their in-group ranking in the ranks assigned to
the groups in the group assignment y.

Then D is the unique distribution that satisfies all three ax-
ioms.

We also have the following additional characteristic of the
distribution in Theorem 3.4. It guarantees that every rank in
a randomly sampled group assignment is assigned to group
j with probability at least Lj

k and at most Uj

k . Hence, every
rank gets a sufficient representation of each group. Note that
no deterministic group-fair ranking can achieve this.

Let Dδ be a distribution that differs from D as follows: X
is sampled from a distribution δ-close to a uniform distribu-
tion in Step 1 of D, in the total-variation distance, Y |x is
sampled as in Step 2 of D. The items are also assigned as in
Step 3 of D. Then it is easy to show that Dδ is δ-close to D in
total-variation distance. We then prove the following theorem
and its corollary.

Theorem 3.5. For any δ > 0 and group assignment Y sam-
pled from Dδ , for every group j ∈ [ℓ] and for every rank
i ∈ [k], Lj

k ⩽ PrDδ
[Yi = j] ⩽ Uj

k .
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Corollary 3.6. For any δ > 0, let i, i′ ∈ [k] be such that i ⩽
i′ and let Zj

i,i′ be a random variable representing the number
of ranks assigned to group j in ranks i to i′, for a ranking
sampled from Dδ . Then, for every group j ∈ [ℓ] and for every

rank i ∈ [k],
(

i′−i+1
k

)
· Lj ⩽ EDδ

[
Zj
i,i′

]
⩽

(
i′−i+1

k

)
· Uj .

Two comments are in order. First, fixing i = 0 in Corol-
lary 3.6 gives us that every prefix of the ranking sampled from
Dδ will have sufficient representation from the groups, in
expectation. Such fairness requirements are consistent with
those studied in the ranking literature [Celis et al., 2018b].
Second, let k′ := i′ − i for some i, i′ ∈ [k] such that i ⩽ i′.
Then Corollary 3.6 also gives us that any consecutive k′ ranks
of the ranking sampled from Dδ also satisfy representation
constraints. Such fairness requirements are consistent with
those studied in [Gorantla et al., 2021].

In the ranking, one might ask for different representation
requirements for different prefixes of the ranking. We extend
our algorithms to handle prefix fairness constraints in the next
section (see Section 4.3).
Time taken to sample from D (in Theorem 3.4). Given a
group representation x, one can find a uniform random y, for
a given x, by sampling a random binary string of length at
most log k!. Since x is fixed, this gives us a uniform random
sample of y conditioned on x. This takes time O(k log k).
This sampling takes care of Step 2. Step 3 simply takes O(k)
time, given in-group rankings of all the groups. The main
challenge is to provide an efficient algorithm to perform Step
1. Therefore, in the next section, we focus on sampling a
uniform random group-fair representation in Step 1.

4 Sampling a Uniform Random Group-Fair
Representation

We first note that each group-fair representation corresponds
to a unique integral point in the convex polytope K defined
below,

K =
{
x ∈ Rℓ

∣∣∣ ∑
j∈[ℓ]

xj = k, Lj ⩽ xj ⩽ Uj , ∀j ∈ [ℓ]
}
. (1)

Therefore, sampling a uniform random group-fair represen-
tation is equivalent to sampling an integral or a lattice point
uniformly at random from the convex set K.

4.1 Dynamic Programming for Exact Sampling
In this section, we give a dynamic programming-based algo-
rithm (see Algorithm 1) for uniform random sampling of in-
teger points from the polytope K. Each entry D[k′, i], ∀k′ =
{0, 1, . . . , k} and ∀i ∈ {0, 1, . . . , ℓ} in Algorithm 1 cor-
responds to the number of integer points in Ki,k′ ={
x ∈ Ri |

∑
h∈[i] xh = k′, Lh ⩽ xh ⩽ Uh, ∀h ∈ [i]

}
. That

is, the DP table keeps track of the number of feasible solu-
tions that sum to k′ with the first i groups. Therefore, D[k, ℓ]
contains all feasible integer points of Kℓ,k, which is nothing
but K defined in Equation (1). The reader should note that the
entry D[0, i] = 1 if assigning 0 to the first i groups is feasible
with respect to the fairness constraints and 0 otherwise. How-
ever, the entry D[k′, 0] is always 0 for k′ > 0, since we can

Algorithm 1 Sampling a uniform random group-fair repre-
sentation
Require: Fairness constraints Lj , Uj for all the groups j ∈

[ℓ], a number k ∈ Z⩾0

1: Initialize: Set D[k′, i] := 0, ∀k′ = {0, 1, . . . , k} and
∀i ∈ {0, 1, . . . , ℓ}, and D[0, 0] := 1
// Counting

2: for k′ = 0 to k do
3: for i = 1 to ℓ do
4: D[k′, i] =

∑
Li⩽xi⩽Ui

D[k′ − xi, i− 1]
5: end for
6: end for

// Sampling
7: Set k′ := k and i := ℓ
8: while i ̸= 0 do
9: Sample xi from the categorical distribution on

Li, Li+1, . . . , Ui with corresponding probabilities
D[k′−Li,i−1]

D[k′,i] , D[k′−Li+1,i−1]
D[k′,i] , . . . , D[k′−Ui,i−1]

D[k′,i]

// by convention D[t, i] = 0 for t < 0.
10: Update k′ := k′ − xi and i := i− 1
11: end while

not construct a ranking of non-zero length without assigning
the ranks to any of the groups. In Step 1, we initialize all the
entries of the DP to 0 except for the entry D[0, 0], which is
set to 1. Steps 2 to 6 then count the number of feasible so-
lutions for D[k′, i] by recursively summing over all feasible
values for xi. We note that this DP is similar to the DP, given
by Štefankovič et al. (2012), for counting 0/1 knapsack so-
lutions where the feasible values of an item are 0 (including
it) and 1 (not including it). Now, let us assume that we have
sampled the value of xi for all i + 1, i + 2, . . . , ℓ for some
0 < i < ℓ, and let k′ := k−xi+1−xi+2−· · ·−xℓ. Then for
any xi ∈ [Li, Ui] the probability that we sample xi is given by
the number of feasible solutions after fixing xi, divided by the
total number of solutions for xi ∈ [Li, Ui], which is nothing
but D[k′−xi,i−1]

D[k′,i] (see Step 9). Therefore, expanding the prob-
ability of sampling a feasible solution (x1, x2, . . . , xℓ) gives
us a telescoping product that evaluates to 1/D[k, ℓ]. Hence,
we have the following theorem, whose proof appears in Ap-
pendix B.

Theorem 4.1. Algorithm 1 samples a uniform random group-
fair representation in time O(k2ℓ).

4.2 Approximate Uniform Sampling
Our second algorithm outputs an integral point from K, de-
fined in Equation (1), from a density that is close to the uni-
form distribution over the set of integral points in K, with
respect to the total variation distance (see Algorithm 2).

There is a long line of work on polynomial-time algo-
rithms to sample a point approximately uniformly from a
given convex polytope or a convex body [Dyer et al., 1991;
Lovász and Vempala, 2006; Cousins and Vempala, 2018].
We use the algorithm by [Cousins and Vempala, 2018] as
SAMPLING-ORACLE in Algorithm 2. We get an algorithm
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Algorithm 2 Sampling an approximately uniform random
group-fair representation

Require: Fairness constraints Lj , Uj , ∀j ∈ [ℓ], k ∈ Z+, δ.

1: H :=
{
x ∈ Rℓ

∣∣∣ ∑
j∈[ℓ] xj = k

}
.

2: P :=
{
x ∈ Rℓ

∣∣ Lj ⩽ xj ⩽ Uj , ∀j ∈ [ℓ]
}

.

3: ∆ := min

{⌊
k−(

∑
j∈[ℓ] Lj)
ℓ

⌋
,

⌊
(
∑

j∈[ℓ] Uj)−k

ℓ

⌋
,

minj∈[ℓ]

⌊
Uj−Lj

2

⌋}
.

4: x∗
j := Lj +∆, ∀j ∈ [ℓ]

5: for j := 1, 2, . . . , ℓ do
6: if

∑
j′∈[ℓ] x

∗
j′ < k then

7: x∗
j := min

{
k −

∑
j′ ̸=j x

∗
j′ , Uj −∆

}
.

8: end if
9: end for

10: K ′ := K − x∗.
11: z := SAMPLING-ORACLE

((
1 +

√
ℓ

∆

)
K ′, δ

)
.

12: if j ∈
[∣∣∣∑j ⌊zj⌋

∣∣∣] , xj := ⌈zj⌉ ; else xj := ⌊zj⌋.
13: if x ∈ K ′, return x+ x∗; else reject x, go to Step 11.

with expected running time O∗(k2ℓ2) to sample a close to
uniform random group-fair representation (Theorem 4.2).

Theorem 4.2. Let Lj , Uj ∈ Z⩾0, ∀j ∈ [ℓ] be the fair-
ness constraints and k ∈ Z⩾0 be the size of the ranking.
Let ∆ be as defined in Algorithm 2. Then for any non-
negative number δ < e−2 ℓ

√
ℓ

∆ , Algorithm 2 samples a random
point from a density that is within total variation distance δ
from the uniform distribution on the integral points in K by
making 1/

(
e−2 ℓ

√
ℓ

∆ − δ
)

calls to the oracle in expectation.

When δ is a non-negative constant, such that δ < e−2 and
∆ = Ω

(
ℓ1.5

)
, Algorithm 2 calls the oracle only a constant

number of times in expectation, and each oracle call takes
time O∗ (k2ℓ2).

Overview of Algorithm 2 and the proof of Theorem 4.2
Let H,P, and ∆ be as defined in Steps 1, 2 and 3 respec-
tively. Clearly, K = H ∩ P . We first find an integral cen-
ter in x∗ ∈ H ∩ P (Steps 4 to 7) such that there is a ball
of radius ∆ in P (see Lemma B.1) and translate the ori-
gin to this point x∗ (Step 10). This ensures that there ex-
ists a bijection between the set of integral points in the trans-
lated polytope K ′ and the original polytope K (see proof of
Theorem 4.2). We now sample a rational point z uniformly
at random from the expanded polytope

(
1 +

√
ℓ

∆

)
K ′, using

SAMPLING-ORACLE (Step 11). We then round the point z to
an integer point on H ′ (Step 12). We prove that our determin-
istic rounding algorithm ensures that the set of points in the
expanded polytope that get rounded to an integral point on H ′

is contained inside a cube of side length 2 around this point
(Lemma B.2) and that this cube is fully contained in this ex-

panded polytope (Lemma B.3). Lemma B.5 gives us that for
any two integral points x and x′, there is a bijection between
the set of points that get rounded to these points. Therefore,
every integral point is sampled from a distribution close to
uniform, given the SAMPLING-ORACLE samples any ratio-
nal point in the expanded polytope from a distribution δ = 0.1
close to uniform. If the rounded point belongs to K ′, we ac-
cept, else we reject and go to Step 11. We then lower bound
the probability of acceptance. The algorithm is run until a
point is accepted. Hence, the expected running time poly-
nomial is inversely proportional to the probability of accep-
tance, which is exponential in ℓ in expectation. However, if
∆ = Ω

(
ℓ1.5

)
and δ < e−2 the probability of acceptance is at

least a constant. Note that the value of R2 in Theorem B.1 for
the polytope K ′ is k2. Therefore, the algorithm by Cousins
and Vempala (2018) gives a rational point from K ′, from a
distribution close to uniform, in time O∗ (k2ℓ2). Therefore
each oracle call in Theorem 4.2 takes time O∗(k2ℓ2) when
we use Theorem B.1 as the SAMPLING-ORACLE.
Comparison with Kannan and Vempala (1997). Algo-
rithm 2 is inspired by the algorithm by Kannan and Vem-
pala (1997) to sample integral points from a convex polytope
from a distribution close to uniform. On a high level, their
algorithm on polytope K ′ works slightly differently when
compared to our algorithm on K ′. They first expand K ′

by O
(√

ℓ log ℓ
)
, sample a rational point from a distribution

close to uniform over this expanded polytope (similar to Step
11), and use a probabilistic rounding method to round it to an
integral point. Their algorithm requires that a ball of radius
Ω
(
ℓ1.5

√
log ℓ

)
lies entirely inside K ′. We expand the poly-

tope K ′ by O(
√
ℓ), sample a rational point from this polytope

from a distribution close to uniform, and then deterministi-
cally round it to an integral point. Our algorithm only requires
that a ball of radius Ω

(
ℓ1.5

)
lies inside P −x∗ with center on

H − x∗, where P , H and x∗ are as defined in Algorithm 2.
As a result, we get an expected polynomial time algorithm for
a larger set of fairness constraints. We also note here that the
analysis of the success probability of Algorithm 2 is the same
as that of the algorithm by Kannan and Vempala (1997).

In Appendix B.1, we give our third exact sampling algo-
rithm, which runs faster than our DP for small values of ℓ.

4.3 Prefix Fairness Constraints
Prefix fairness constraints are represented by the numbers Lij

and Uij , for all j ∈ [ℓ] and i ∈ M , where M ⊆ [k], which
give lower and upper bounds on the representation of group
j in the top i ranks, i.e., the top i prefix of the top k ranking.
When M = {k}, this gives us the setup we started with. This
model has been first studied by [Celis et al., 2018b; Yang and
Stoyanovich, 2017], who give a deterministic algorithm to get
a utility-maximizing ranking while satisfying prefix fairness
constraints. To overcome the limitations of a deterministic
ranking, we propose to use our algorithm5 as a heuristic to
output randomized rankings under prefix fairness constraints.
It inductively finds a group-fair assignment in blocks between
two ranks (ranks i + 1 to i′ such that i, i′ ∈ M and i′′ ̸∈
M, ∀i′′ ∈ [i+ 1, i′ − 1]), as follows:

5We use Algorithm 2 as it is faster than Algorithm 1 in practice.
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1. Let us assume we have a random sample of the top i rank-
ing for some i ∈ M . Let wij be the counts of groups
j ∈ [ℓ] in this top-i ranking.

2. Let i′ ∈ M be the smallest rank larger than i in the set
M . Use Algorithm 2 to find an integer solution x

(i′)
j in

K = {x ∈ Rℓ|
∑

j∈[ℓ] xj = i′ − i + 1, max{0, Li′j −
wij} ⩽ xj ⩽ min{i′− i+1, Ui′j −wij}, ∀j ∈ [ℓ]} to get
a group-fair representation for ranks i+ 1 to i′.

3. Find a uniform random permutation of x(i′)
j similar to Step

2 in Theorem 3.4 to get a group-fair assignment for ranks
i+ 1 to i′, and go to Step 1 with i = i′.

We call this algorithm ‘Prefix Random Walk’.

5 Experimental Results
In this section, we run our algorithms on various real-world
datasets. We implement Algorithm 2 (called ‘Random walk’
in plots) using the tool called PolytopeSampler6 to sample
a point from a distribution close to uniform, on the convex
rational polytope K. This tool implements a constrained Rie-
mannian Hamiltonian Monte Carlo for sampling from high
dimensional distributions on polytopes [Kook et al., 2022].

Datasets. We evaluate our results on the German Credit
Risk dataset comprising credit risk scoring of 1000 adult Ger-
man residents [Dua and Graff, 2017], along with their de-
mographic information (e.g., gender, age, etc.). We use the
Schufa scores of these individuals to get the in-group rank-
ings; grouping based on age < 25 (see Figure 1) similar to
[Zehlike et al., 2017; Gorantla et al., 2021; Castillo, 2019],
who observed that Schufa scores are biased against the adults
of age < 25. Their representation in the top 100 ranks is 10%
even though their true representation in the whole dataset is
15%. We also evaluate our algorithm on the IIT-JEE 2009
dataset, also used in Celis et al. (2020b). The dataset con-
sists of the student test scores of the joint entrance examina-
tion (JEE) conducted for undergrad admissions at the Indian
Institutes of Technology (IITs). Information about the stu-
dents includes gender details (25% women and 75% men)7.
Students’ test scores give score-based in-group rankings. We
evaluate our algorithm with female as the protected group,
as they are consistently underrepresented (0.04% in top 100
[Celis et al., 2020b]), in a score-based ranking on the entire
dataset, despite 25% female representation in the dataset.

Baselines. (i) We compare our experimental results with
fair ϵ-greedy [Gao and Shah, 2020], which is a greedy al-
gorithm with ϵ as a parameter (explained in detail in Sec-
tion 5.1). To the best of our knowledge, this algorithm is the
closest state-of-the-art baseline to our setting, as it does not
rely on comparing the scores of two candidates from different
groups. (ii) We also compare our results with a recent deter-
ministic re-ranking algorithm (GDL21) given by Gorantla et
al. (2021), which achieves the best balance of both group fair-
ness and underranking of individual items compared to their
original ranks in top-k.

6PolytopeSamplerMatlab (License: GNU GPL v3.0)
7Only binary gender information was annotated in the dataset.

Plots. We plot our results for the protected groups in each
dataset (see Figures 1 and 2). We use the representation con-
straints Lj =

⌈
(p∗j − η)k

⌉
and Uj =

⌊
(p∗j + η)k

⌋
for group

j where p∗j is the total fraction of items from group j in the
dataset and η = 0.1. For “prefix random walk” we put con-
straints at every b ranks, i.e., Lij =

⌈(
p∗j −

ηb
max{b,k−i}

)
k
⌉

and Uij =
⌊(

p∗j +
ηb

max{b,k−i}

)
k
⌋

with i ∈ {b, 2b, . . .}.
We use k = 100 and b = 50 in the experiments. With
these, the representation constraints are stronger in the top
50 ranks than in the top 100 ranks. The “representation” (on
the y-axis) plot shows the fraction of ranks assigned to the
protected group in the top i ranks (on the x-axis). We sam-
ple 1000 rankings for randomized algorithms and output the
mean and standard deviation. The dashed red line is the true
representation of the protected group in the dataset, which we
call p∗, dropping the subscript. The “fraction of rankings”
plot for randomized ranking algorithms represents the frac-
tion of 1000 rankings that assign rank i to the protected group.
For completeness, we plot the results for the ranking util-
ity metric, normalized discounted cumulative gain, defined
as nDCG@i =

(∑
i′∈[i]

(2ŝi′−1)
log2(i

′+1)

)/(∑
i′∈[i]

(2si′−1)
log2(i

′+1)

)
,

where ŝi′ and si′ are the scores of the items assigned to rank
i′ in the group-fair and the score-based ranking, respectively.

5.1 Observations
The rankings sampled by our algorithms have the follow-
ing property: for any rank i, rank i is assigned to the pro-
tected group in a sufficient fraction of rankings (see plots with
“fraction of rankings” on the y-axis). This experimentally
validates our Theorem 3.5. Moreover, this fraction is stable
across the ranks. Whereas fair ϵ-greedy fluctuates a lot, which
can be explained as follows. For each rank k′ = 1 to k, with ϵ
probability, it assigns a group uniformly at random, and with
1 − ϵ probability, it assigns group G1 := (age⩾ 25) if the
number of ranks assigned to G1 is less than (L1k

′

k ) in the top
k′ ranks, and to G2 := (age < 25) otherwise. Consider Fig-
ure 1 top row where L1 = 80, L2 = 10, and k = 100, and the
plot on the right shows the fraction of rankings (y-axis) as-
signing rank i (x-axis) to G1. Note that if ϵ = 0 (no random-
ization), this algorithm gives a deterministic ranking where
the first four ranks are assigned to G2, and the fifth to G1,
and this pattern repeats after every five ranks. Hence, there
would be a peak in the plot at ranks k′ = 5, 10, 15, 20, . . ..
Now, when ϵ = 0.3, fair-ϵ-greedy introduces randomness in
group assignment at each rank and, as a result, smoothens out
the peaks as k′ increases, which is exactly what is observed.
Therefore, the first four ranks will have very low representa-
tion, even in expectation. Similarly, the ranks 6 to 9. Clearly,
fair-ϵ-greedy does not satisfy fairness for any k′ < k con-
secutive ranks. But our algorithm satisfies this property, as is
also confirmed by Corollary 3.6.

Our algorithms satisfy representation constraints for the
protected group in the top k′ ranks in expectation (see plots
with “representation” on the y-axis). Fair ϵ-greedy overcom-
pensates for representing the protected group. The determin-
istic algorithm GDL21 achieves very high nDCG but very low
representation for smaller values of k′, although all run with
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Figure 1: Results on the German Credit Risk dataset with age < 25 as the protected group. For Fair ϵ-greedy we use ϵ = 0.3 (see Figures 5
and 7 for other values of ϵ). In the plots, the means of the DP and the random walk algorithms are almost coinciding.

Figure 2: Results on the JEE 2009 dataset with gender as the protected group. For Fair ϵ-greedy we use ϵ = 0.3 (see Figures 6 and 8 for
other values of ϵ). In the plots, the means of the DP and the random walk algorithms are almost coinciding.

similar representation constraints. This is because the de-
terministic algorithm uses comparisons based on the scores,
hence putting most of the protected group items in higher
ranks (towards k). With a larger value of ϵ, fair ϵ-greedy
gets a much higher “representation” of the protected group
than necessary (see Figures 7 and 8), whereas, with a smaller
value of ϵ, it fluctuates a lot in the “fraction of rankings” (see
see Figures 5 and 6). Our “Prefix Random Walk” algorithm is
run with stronger fairness requirements than “Random Walk”
and “DP” in the top 50 ranks, which can be observed by its
smaller deviation from the line y = p∗ in the left-most plots.
The random walk runs very fast, even for a large number of
groups (Figure 3). We also run experiments on the JEE 2009
dataset with birth category defining 5 groups (see Appendix
C). The experiments were run on a Quad-Core Intel Core i5
processor consisting of 4 cores, with a clock speed of 2.3 GHz
and DRAM of 8GB. Implementation of our algorithms and
the baselines has been made available for reproducibility8.

6 Conclusion
We take an axiomatic approach to define randomized group-
fair rankings and show that it leads to a unique distribution
over all feasible rankings that satisfy lower and upper bounds
on the group-wise representation in the top ranks. We pro-
pose practical and efficient algorithms to exactly and approx-
imately sample a random group-fair ranking from this distri-

8github.com/sruthigorantla/SamplingExPostGroupFairRankings.

Figure 3: Average running time in seconds of the algorithms,
over 5 runs, to sample a ranking. For prefix random walk,
we add prefix constraints with b = 50, 200, 400, 400 for k =
100, 1000, 10000, 20000 respectively.

bution. Our approach requires merging a given set of ranked
lists, one for each group, and can help circumvent implicit
bias or incomplete comparison data across groups.

The natural open problem is to extend our method to work
even for noisy, uncertain inputs about rankings within each
group. Even though our heuristic algorithm does output ex-
post group-fair rankings under prefix constraints, it is impor-
tant to investigate the possibility of polynomial-time algo-
rithms to sample from the distribution that satisfies natural
extensions of our axioms for prefix group-fair rankings.
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Ethical Statement
A limitation of our work as a post-processing method is that it
cannot fix all sources of bias, e.g., bias in data collection and
labeling. Randomized rankings can be risky and opaque in
high-risk, one-time ranking applications. Our guarantees for
group fairness may not necessarily reflect the right fairness
metrics for all downstream applications for reasons including
biased, noisy, incomplete data and legal or ethical considera-
tions in quantifying the eventual adverse impact on individu-
als and groups.
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Baeza-Yates, Francesco Bonchi, Carlos Castillo, and Sara
Hajian. Fair top-k ranking with multiple protected groups.
Information Processing and Management, 59(1):102707,
2022.

[Zehlike et al., 2022b] Meike Zehlike, Ke Yang, and Julia
Stoyanovich. Fairness in ranking, part i: Score-based rank-
ing. ACM Comput. Surv., apr 2022. Just Accepted.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

417


	Introduction
	Related Work
	Group Fairness in Ranking
	Random Group-Fair Ranking

	Sampling a Uniform Random Group-Fair Representation
	Dynamic Programming for Exact Sampling
	Approximate Uniform Sampling
	Overview of alg:randomwalk and the proof of thm:main

	Prefix Fairness Constraints

	Experimental Results
	Observations

	Conclusion

