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Abstract
Fairness issues in Deep Learning models have re-
cently received increasing attention due to their
significant societal impact. Although methods for
mitigating unfairness are constantly proposed, lit-
tle research has been conducted to understand how
discrimination and bias develop during the standard
training process. In this study, we propose analyzing
the contribution of each subgroup (i.e., a group of
data with the same sensitive attribute) in the training
process to understand the cause of such bias develop-
ment process. We propose a gradient-based metric
to assess training subgroup contribution disparity,
showing that unequal contributions from different
subgroups are one source of such unfairness. One
way to balance the contribution of each subgroup is
through oversampling, which ensures that an equal
number of samples are drawn from each subgroup
during each training iteration. However, we find that
even with a balanced number of samples, the con-
tribution of each group remains unequal, resulting
in unfairness under such a strategy. To address the
above issues, we propose an easy but effective group
contribution matching (GCM) method to match the
contribution of each subgroup. Our experiments
show that our GCM effectively improves fairness
and outperforms other methods significantly.

1 Introduction
Deep learning has been increasingly adopted in more and more
social applications, such as image classification [Deng et al.,
2009], speech recognition [Deng et al., 2013], and natural lan-
guage processing [Goldberg, 2016]. However, deep learning
models often exhibit discriminatory behaviors (e.g., distinct
accuracy differences) towards certain groups (e.g., African
Americans and females), which are against people’s desperate
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desire for social fairness. For example, when constructing a
recidivism predictor using the dataset COMPAS, it is likely
to predict African-American offenders with higher risk scores
compared with Caucasians [ProPublica, 2016], which might
threaten social stability and cause harm to individuals.

To alleviate model discrimination, various mitigation meth-
ods have been proposed [Donini et al., 2018; Wu et al., 2019;
Bahng et al., 2020; Du et al., 2021]. However, those meth-
ods might build sub-optimal models which fail to produce
fair solutions [Lohaus et al., 2020]. In addition, it appears to
any practitioner that the unfairness is dynamically changing
during training. Existing methods neglect the dynamic and
fail to provide insights into how unfairness develops in the
training process. Understanding the unfairness development is
vital as it can help prevent unfair growth in training iterations
and enable better fairness guarantees. To this end, our work
aims to interpret how unfairness develops gradually during
the training process and thereby mitigate the unfairness.

We investigate the training process from the perspective of
data contribution which estimates the contribution of training
examples to the prediction, based on the following observa-
tions. First, when the training dataset is highly imbalanced,
the model is prone to catch certain spurious correlations be-
tween target labels and protected attributes, and exhibits unfair
behaviors. Second, the contributions of highly imbalanced
training subgroups should be disparate intuitively, which has
also been showcased in our experimental results in Sec. 3.1.
To measure data contributions, existing methods evaluating
individual sample contribution through techniques such as the
Shapley value or influence functions incur large computational
overhead. To this end, we propose a gradient-based method
to investigate the contribution of each subgroup rather than
each individual sample to avoid the heavy calculation. Specif-
ically, we quantify the group contribution disparity metric
through the gradient-based method, and use it to measure the
contribution discrepancy between different subgroups.

Thus, the discrimination problem can be alleviated by bal-
ancing the contributions of different subgroups. Oversampling
appears to be an effective strategy for equalizing the contribu-
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Figure 1: The decision boundary under different training strategies. (a) Under the standard training, the final decision boundary is trained to get
close to the gender boundary due to the severely imbalanced data which generates a highly unfair model. (b) With the oversampling strategy,
the skewed training process is mitigated. However, the actual contributions are still not matched. Compared with the standard training, the final
decision boundary is less correlated to the gender boundary and gets closer to the ground-truth fair boundary, which means the fairness could
be improved to some extent. (c) Our method matches the actual contributions of different subgroups, which leads to a fairer decision boundary
(i.e., the final boundary is close to the ground-truth fair boundary and almost orthogonal to the gender boundary).

tion of different subgroups in the training process. However,
our preliminary experiments show that even when the sample
sizes of different subgroups are the same during the training
process, the contributions of different sub-groups remain dis-
parate. Due to the disparity, fairness cannot be achieved even
with an oversampling strategy. Furthermore, calculating the
contribution of a sample is computationally prohibitive, so it
is difficult to equalize the contribution of each subgroup by
adjusting the subgroup size. To address these challenges, we
propose an easy but effective Group Contribution Matching
(GCM) method for aligning the contribution of each subgroup
through a gradient-based strategy as shown in Fig. 1. Specifi-
cally, we integrate the gradient matching method into a gradi-
ent reweighing framework, which could adaptively adjust the
contribution of each subgroup to achieve group contribution
matching. Moreover, our layer-wise analysis shows that the
cause of unfairness might mainly lie in the “bias” parameters
in the model rather than the “weight” parameters.

In summary, we make the following contributions:

• We propose the group contribution disparity metric to
evaluate the discrepancy among training subgroup contri-
butions. With this metric, we analyze the training process
and reveal that the unequal contributions of different sub-
groups are a source of unfairness.

• Based on the metric, we propose an easy but effective
group contribution matching (GCM) method to improve
fairness. Specifically, we design a gradient reweighing
strategy to adaptively adjust the subgroup contribution.

• Extensive experiments on three public datasets show that
our GCM method could effectively improve fairness and
outperform other baseline methods significantly.

2 Preliminaries
In this section, we will first give the notations used in this work,
followed by a detailed introduction to the fairness metrics.

2.1 Notation
We consider the task of learning a predictive model parame-
terized by a weight vector θ ∈ Rp with p parameter elements,

that maps an input space X to an output space Y . Specifically,
given a dataset D = {z1, z2, · · · , zn} with n training samples,
where z = (xi, yi) ∈ X × Y , for a sample z = (x, y) and pa-
rameters θ, let l(z, θ) denote the loss function and ŷ = F (x)
be the prediction result. The standard model training aims
to select parameters in order to minimize an empirical risk
θ̂ = argminθ

1
n

∑n
i=1 l(zi, θ). Training samples can be di-

vided into subgroups based on some sensitive or protected
attributes A ∈ A such as gender, age, and race. Without
loss of generality, we consider the binary classification task,
i.e., Y ∈ {0, 1} and binary protected attribute settings, i.e.,
A ∈ {0, 1}, where A = 0 represents unprivileged groups,
while A = 1 represents privileged groups, respectively.

2.2 Fairness Evaluation Metrics
In this work, we follow the existing work [Wang et al., 2022a]
to consider two metrics to evaluate fairness: Equality of Oppor-
tunity [Verma and Rubin, 2018; Hardt et al., 2016] and Equal-
ized Odds [Romano et al., 2020; Verma and Rubin, 2018]. The
measures of the two metrics are based on the true positive rate
TPRA=a = P (Ŷ = 1|A = a, Y = 1) and the false positive
rate FPRA=a = P (Ŷ = 1|A = a, Y = 0) for a ∈ A.

Equality of Opportunity expects both the privileged group
(A = 1) and unprivileged group (A = 0) to have an equal
probability of assigning a positive outcome to an instance from
the positive class, which can be formulated as P (Ŷ = 1|A =

0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1). Here we apply EOP
given as follows to evaluate Equality of Opportunity,

EOP =
TPRA=0

TPRA=1
=

P (Ŷ = 1|A = 0, Y = 1)

P (Ŷ = 1|A = 1, Y = 1)
. (1)

Equalized Odds considers the ground truth label y, and
requires favorable outcomes to be conditionally indepen-
dent of the sensitive attributes, which can be defined as
P (Ŷ = 1|A = 0, Y = y) = P (Ŷ = 1|A = 1, Y = y)
for y ∈ Y . To evaluate Equalized Odds, ∆EO combines
the difference of TPR and FPR across two sensitive groups
as where ∆TPR = |TPRA=0 − TPRA=1| and ∆FPR =
|FPRA=0 − FPRA=1|.
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∆EO = ∆TPR+∆FPR. (2)

Under the above definitions, EOP close to 1 and ∆EO close
to 0 indicate fair classification results.

3 Methodology
In this section, we first introduce our proposed fairness met-
ric, named group contribution disparity, for evaluating the
contribution discrepancy during the training process, and illus-
trate its utility through various data-driven analyses (Sec. 3.1).
Then, we propose our group contribution matching method
based on the group contribution disparity metric to efficiently
and adaptively improve fairness (Sec. 3.2).

3.1 Group Contribution Disparity
Intuitively, the building of spurious correlations between pre-
dictions and sensitive attributes indicates that the various train-
ing subgroups do not contribute equally to the training pro-
cess. For example, if males in the test data are predicted with
higher scores, the cause might be that the males with higher
scores in the training data contribute more to the model train-
ing. To explore the contributions of various subgroups, we
propose to estimate the subgroup-wise contribution through
tracing gradient descent inspired by [Pruthi et al., 2020;
Paul et al., 2021], which calculates individual data contri-
bution via tracing the training process. It helps to understand
the connection between the disparate contributions among
different subgroups and the unfair prediction in the training
process.

Formally, we define the idealized contribution of the train-
ing batch Z as the total reduction in loss on the test data
Z ′, that is induced in the training process iteration t, i.e.,
C(Z,Z ′) =

∑
t L(Z ′, θt)−L(Z ′, θt+1). Since the step sizes

used in updating the parameters in the training process are
typically quite small, we can approximate the change in the
loss of the test data at t via a simple first-order approximation:

L(Z′, θt+1) = L(Z′, θt)+∇L(Z′, θt)·(θt+1−θt)+O(||θt+1−θt||2).
(3)

As we utilize the gradient descent method to optimize,
the change in parameters can be calculated as θt+1 − θt =
−ηt∇L(Z, θt). Substituting the item θt+1 − θt in the first-
order approximation, and ignoring the higher-order term, we
obtain the approximation for the contribution of the training
batch Z regarding the test data Z ′:

C(Z,Z ′) =
∑
t

L(Z ′, θt)− L(Z ′, θt+1)

≈
∑
t

ηt∇L(Z ′, θt) · ∇L(Z, θt) (4)

Noted that we here follow previous works to calculate a
scalar to evaluate the contribution and focus on comparing
the contribution magnitudes of different subgroups. We first
think about the contribution of each subgroup ZA=a (i.e., the
subgroup with attribute A = a). The contribution of ZA=a in
the training batch Z to the test data Z ′ could be approximated

as:
C(ZA=a, Z

′) ≈
∑
t

ηt∇L(Z ′, θt) · ∇L(ZA=a, θ
t), a ∈ A.

(5)
We then consider the subgroup ZA=0 and its counterpart

ZA=1 with a greedy strategy in which we examine each indi-
vidual parameter w in the model parameters θ one by one. The
equal contributions in terms of w made by ZA=0 and ZA=1

are highly related to the difference between |∇L(ZA=0, w)|2
and |∇L(ZA=1, w)|2 under the independent and identically
distributed training and test setting 1. Inspired by this, we here
separately consider when Y = 0 and Y = 1, and define the
group contribution disparity for w as:

r̂t,Y =y
w =

|gA=0,Y =y
w |

|gA=1,Y =y
w |

=
|Z0y| · |gA=0,Y =y

w |
|Z1y| · |gA=1,Y =y

w |
, (6)

gA=a,Y=y
w =

∂LA=a,Y=y

∂w
, ∀a ∈ A, ∀y ∈ Y, ∀w ∈ θ, (7)

where |Zay| represents the average group size of Zay for a ∈
{0, 1}, y ∈ {0, 1}, LA=a,Y=y is the cross entropy regarding
the training group Zay, and gA=a,Y=y

w denotes the average
gradient derived by individual example zay ∈ Zay in terms of
the parameter w. We see that the group contribution disparity
score r̂t,Y=y

w close to 1 indicates equal contribution, and the
score is largely influenced by the group size disparity |Z0y|

|Z1y| in
the training batch Z. Then the group contribution disparity
score of Y = y for all p parameters in θ could be defined as:

r̂t,Y=y
θ =

1

p

∑
w∈θ

r̂t,Y=y
w =

1

p

∑
w∈θ

|Z0y| · |gA=0,Y=y
w |

|Z1y| · |gA=1,Y=y
w |

. (8)

In this way, our metric has the following advantages: ❶ The
calculation of r̂t,Y=y

θ avoids the heavy gradient computation
regarding the loss on the test data, which makes the estimation
of the contribution disparity score in each training iteration
possible. ❷ Noted that, compared with previous methods
computationally prohibitive to calculate each training sample’s
importance, our calculation process splits the training data
into several subgroups and calculates the gradient for each
subgroup, which largely lessens the computation.

Moreover, we can also calculate the group contribution
disparity for a particular layer l at the iteration t as follows:

r̂t,Y=y
θl

=
1

pl

∑
w∈θl

|Z0y| · |gA=0,Y=y
w |

|Z1y| · |gA=1,Y=y
w |

, ∀y ∈ Y, ∀l ∈ L. (9)

where θl is the model parameters in layer l, pl is the param-
eter size in layer l, and L contains all parameter layers in the
model.

In the following sections, we empirically analyze the con-
nection between group contribution disparity and fairness,
which helps us to understand how unfairness develops.

1When we assume the identical distribution be-
tween Z and Z′, and ∇L(Z′, w) ≈ ∇L(Z,w) ≈
∇L(ZA=0, w) + ∇L(ZA=1, w) [Goodfellow et al., 2016],
if we expect C(ZA=0, Z

′) = C(ZA=1, Z
′), we can

have (∇L(ZA=0, w) + ∇L(ZA=1, w)) · ∇L(ZA=0, w) ≈
(∇L(ZA=0, w) + ∇L(ZA=1, w)) · ∇L(ZA=1, w), i.e.,
|∇L(ZA=0, w))|2 ≈ |∇L(ZA=1, w))|2.
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Analyses and Observations

CelebA |Z00| |Z01| |Z10| |Z11| Adult |Z00| |Z01| |Z10| |Z11|
Standard Training 34 51 35 16 Standard Training 78 10 125 57

OverSampling 32 32 32 32 OverSampling 100 100 100 100

Table 1: Averaged data sizes of different subgroups in one iteration.

We conduct analyses to explore the relationship between
fairness and the group contribution disparity score. We used
the well-known tabular dataset Adult [Dua and Graff, 2017]
and ResNet-18 [Liu et al., 2015]. We train an MLP [Bishop,
1996] and a residual network [He et al., 2016] as the classifica-
tion models, respectively. For the CelebA dataset, we train the
ResNet-18 for classifying the attractive attribute as adopted in
[Chuang and Mroueh, 2021]. We mainly conduct our analyses
on the −∆EO metric. More details about the datasets, the
models, the metric, and the training methods are introduced
in Sec. 4.1. We train models both under the standard training
setting and the oversampling setting. The final fairness scores
of trained models are reported as follows. On the CelebA
dataset, the fairness score (−∆EO) is escalated from -0.480
to -0.049 with the oversampling strategy (i.e., fairness is im-
proved significantly). On the Adult dataset, the fairness score
(−∆EO) changes from -0.096 to -0.140 after oversampling.
The sizes of training subgroups in each training iteration are
shown in Table 1. We can see that the size of Z01 (i.e., 51)
is far larger than the size of Z11 (i.e., 16) under the standard
training on the CelebA dataset. And the training subgroup size
discrepancy is even larger on the Adult dataset.

(a) CelebA Dataset (Y=0) (b) CelebA Dataset (Y=1)

(c) Adult Dataset (Y=0) (d) Adult Dataset (Y=1)

Figure 2: The Group Contribution Disparity score on the CelebA ((a),
(b)) and Adult dataset ((c), (d)). The red line represents the standard
training process. The blue line represents the training process when
oversampling is used. The plot is smoothed for better observation.

Fig. 2 shows the group disparity score varying in the training
process of the CelebA dataset and the Adult dataset. We can
make the following key observations: ❶ From subfigures (a)
and (b), we can see that the oversampling strategy reduces
the group contribution disparity both when Y=0 and Y=1 on
the CelebA dataset. The fairness improvement is salient with

OverSampling

Fair 
Boundary

Gender 
Boundary

Final 
BoundaryInitial 

Boundary

The Original gradient of Goup 0

The gradient of Goup 0 after our method GCM

The Original gradient of Goup 1

The gradient of Goup 1 after our method GCM

Group 0

Group 1

The gradient of Goup 0 after direct aligning
The gradient of Goup 1 after direct aligning

Figure 3: The relation of different gradient strategies. We here only
consider two subgroups with the same targets and different genders
to demonstrate our method.

an 89.8% improvement (−∆EO score from -0.480 to -0.049).
There is a positive correlation between the reduction in the
contribution disparity score and fairness. ❷ From subfigures
(a) and (b), we can see that the disparity score when Y=0 is
smaller than that of Y=1 (1.76 vs. 3.0) in the standard training
process. We think this is because the data sizes of Z00 and
Z10 are closer (34 vs. 35) while the data size of Z01 and Z11

are disparate (51 vs. 16). ❸ From From subfigures (c) and
(d), we can see that on the Adult dataset, the oversampling
strategy only reduces the group contribution disparity when
Y=0 and the contribution disparity score increases when Y=1.
The −∆EO score even decreases to -0.140 compared with
the standard training method (-0.096), which indicated the
fairness even dropped with the oversampling strategy. The
results show that oversampling cannot consistently reduce
the disparity score and improve fairness. ❹ The contribution
disparity still exists after oversampling even on the CelebA
dataset (i.e., the group contribution disparity score is around
1.5 for both Y = 0 and Y = 1).

The experimental results show that fairness and group con-
tribution disparity scores are highly related: higher group
contribution disparity means worse fairness. We conclude that
the unfairness gradually develops in the training process due
to the existing training group contribution disparity. Moreover,
these observations motivate us to explore further reducing
group contribution disparity to improve fairness.

3.2 Proposed Group Contribution Matching
Motivated by the phenomenon that unequal contributions
brought by different subgroups in the learning process cause
unfairness, we propose the Group Contribution Matching
(GCM) framework to mitigate the bias via equalizing the con-
tribution of different sub-groups. As the sample reweighing
paradigm could not easily match the group contribution due to
the large computation overhead to calculate the contribution
of each individual sample, here we consider equalizing the
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contributions through an in-processing method (i.e., designing
a new loss item). One straightforward way to optimize Eq. (6)
close to 1 is to directly align the gradient of Z0y and Z1y

( i.e., minimize ∇L(Z0y, θ) − ∇L(Z1y, θ). This method is
referred as direct gradient aligning). However, it might still
result in a biased optimization as shown in Fig. 3 (i.e., the
two blue lines are aligned but the directions are still biased to
group 1). Under such an optimization, the unprivileged group
also be optimized to make contributions toward the privileged
group, which will still lead to an unfair model. Experiments
to showcase the biased optimization are deferred to Sec. 4.3.

To address this issue, we propose to minimize the magnitude
variance in the gradients of two subgroups. In this way, we can
keep the original direction of the unprivileged group and match
the gradient magnitudes of the unprivileged and privileged
groups. We propose the gradient matching method as follows.

Gradient Matching
To achieve equal contributions, we design a new loss item:

Lfair =
∑
w∈θ

∑
y∈{0,1}

(|gA=0,Y=y
w | − |gA=1,Y=y

w |). (10)

Then the final loss item can be revised as

L = E(x,y)∼P (Lcls(F(x), y)) + λLfair. (11)

Furthermore, from the training process in Fig. 2, we can
observe that the group contribution disparity and unfairness
exist in each single training iteration. We expect that the
unprivileged group could contribute more to the model in
the following training iterations instead of keeping an equal
contribution with its counterpart subgroup.

Gradient Reweighing
To distinguish which group is privileged in each training itera-
tion, normally we have to evaluate the model via the fairness
metrics introduced in Sec. 2.2. However, the evaluation in each
training iteration is time-consuming. To address such an issue,
we design a group confidence score as the privilege indicator.
Specifically, we get inspired from [Madras et al., 2018] and
regard a subgroup with a higher confidence score as the privi-
leged group. For example, when Y = 1, males are privileged
if they get higher prediction scores compared with females.
The confidence score of the subgroup (A = a, Y = y) can be
calculated by the average output of the data group which is
denoted as yA=a,Y=y:

cA=a,Y=y = (yA=a,Y=y∗y+(1−yA=a,Y=y)∗(1−y)). (12)

As we expect the unprivileged group (of lower confidence
score) to be optimized to contribute more (i.e., own higher
gradient magnitude), we assign the unprivileged group a lower
weight. Thus, we here set the weight as WA=a,Y=y =
(cA=a,Y=y)T , where T is the temperature scale. Specifically,
the loss item is as follows:

Lfair =
∑
w∈θ

∑
Y ∈{0,1}

(WA=0,Y=y ∗ |gA=0,Y=y
w |−

WA=1,Y=y ∗ |gA=1,Y=y
w |). (13)

In this way, Eq. (10) can be reformulated as a case of the
gradient reweighing loss item when T = 0. In our paper, we
mainly set the T value in the range {0, 2}.

4 Experiments
4.1 Experimental Settings
Datasets. In our experiments, we use two tabular bench-
marks (Adult and COMPAS) and one image dataset (CelebA)
that are all for binary classification tasks: ❶ Adult [Dua and
Graff, 2017]. The original aim of the dataset Adult is to de-
termine whether a person makes salaries over 50K a year.
We consider gender as the sensitive attribute, and the vanilla
training will lead the model to predict females to earn fewer
salaries. ❷ CelebA [Liu et al., 2015]. The CelebFaces At-
tributes dataset is to predict the attributes of faces. We split
into two subgroups according to the attribute gender. Here
we consider two attributes classification tasks. For the task
to predict whether the hair in an image is wavy or not, the
standard training will show discrimination towards the male
group; when predicting whether the face is attractive, the stan-
dard training will result in a model prone to predict males
as less attractive. ❸ COMPAS [Mele and many others, 2017
2021]. COMPAS (Correctional Offender Management Pro-
filing for Alternative Sanctions) is a well-known commercial
algorithm that judges and parole authorities use to determine
whether a criminal defendant is likely to commit another crime
(recidivism). It has been demonstrated that the algorithm is
biased against black inmates and in favor of white defendants
(i.e., who actually committed crimes or violent crimes after 2
years).

Metrics. For fairness evaluation, we take two group fairness
metrics ∆EO and EOP as we introduced in the Sec. 2.2 and
define −∆EO and EOP as fairness scores since higher −∆EO
and EOP mean better fairness. We use the average precision
(AP) for classification accuracy evaluation. Our method could
also be extended to more fairness metrics.

Models. For tabular benchmarks, we use the MLP (multi-
layer perception) as the classification model, which is com-
monly adopted in classifying tabular data. For the CelebA
dataset, we use AlexNet [Krizhevsky et al., 2012] and ResNet-
18 [He et al., 2016], both of which are popular in classifying
image data [Alom et al., 2018]. We mainly show the experi-
mental results of predicting wavy hair using AlexNet.

Mitigation Baselines. Following the common setups in
[Chuang and Mroueh, 2021], we compare our method with
several baselines: ❶ Standard training (i.e., Vanilla). The
training is based on the empirical risk minimization (ERM)
principle. DNNs are trained only with the cross entropy loss.
❷ Oversample (i.e., OverSampling) [Wang et al., 2022a]. This
method samples from the subgroup with rare examples more
often, making a balanced sampling in each epoch. ❸ Equal-
ized Odds Regularization (i.e.,EOR) [Madras et al., 2018].
This method is to directly regularize the fairness metrics. ❹
Adversarial debiasing. (i.e., Adversarial) [Zhang et al., 2018].
This method minimizes the adversary’s ability to predict sen-
sitive attributes.

Implementation Details. For the adult dataset, we follow
the settings in [Chuang and Mroueh, 2021] for data prepro-
cessing. The hidden size of MLP is 200. We use Adam as the
learning optimizer and the batch size is set as 2000 following
the setting in [Chuang and Mroueh, 2021]. The learning rate
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(a) Adult (b) CelebA (c) COMPAS

Figure 4: Comparing different methods on AP vs. (-∆EO/EOP). We train networks with the compared methods for 10 times and the averaging
results are reported. We here show the results of our method GCM when T is set as 0 and 2.

is set as 0.001. For the CelebA dataset, We follow the settings
in [Chuang and Mroueh, 2021] for data preprocessing. We
use Adam as the learning optimizer and the batch size is set
as 128. The learning rate is set as 0.0001. For the COMPAS
dataset, we use Adam as the learning optimizer, and the batch
size is set as 2000. The learning rate is set as 0.001.

4.2 Experimental Results
As shown in Fig. 4, we have the following observations: ❶
Although fairness improvement methods could generate fairer
networks with high fairness scores, the corresponding accu-
racies of all methods decrease significantly. From the figure,
we can see that when using the EOR method on the Adult
dataset, the −∆EO score increases from -0.108 to -0.051 and
the accuracy decreases from 0.766 to 0.747. Our method (i.e.,
GCM (T=2)) also increases the −∆EO score from -0.078 to
-0.033, and the accuracy is reduced from 0.763 to 0.751. ❷
Oversampling could improve fairness under most settings. For
example, on the CelebA dataset, the −∆EO score is escalated
from -0.359 to -0.040. Also, on the COMPAS dataset, the
−∆EO score is improved 90.1% (-0.383 to -0.038). However,
as we introduced in Sec. 3.1, oversampling fails to improve
fairness due to the large group contribution disparity on the
Adult dataset. Furthermore, we can see that oversampling is
less effective than some other methods. For example, on the
CelebA dataset, EOR method could achieve -0.031 −∆EO
score and maintain the AP score as 0.809, both of the metrics
are better than those of oversampling. ❸ Our method GCM

(T=0) and GCM (T=2) achieve higher fairness (i.e., higher
-∆EO and EOP scores) than all baseline methods when they
have similar accuracy. In particular, on the Adult dataset,
GCM (T=2) arrives at -0.033 −∆EO score when the accuracy
decreases to 0.751. The best method among baselines (EOR)
arrives at -0.051 −∆EO score when the accuracy decreases
to 0.747. GCM (T=2) gains a relative 35.3% improvement
compared with the best baseline method while maintaining a
higher accuracy score. Moreover, on the Adult dataset, GCM
(T=2) outperforms GCM (T=0) when using −∆EO metric,
which shows the superiority of the gradient reweighing strat-
egy. Overall, our method can enhance fairness significantly
with much less accuracy drop.

4.3 Further Discussion
Layer-wise Analysis
We here further analyze which part of the parameters should
be more responsible for the unfairness on the Adult dataset.
Here we separately consider the "weight" parameters and the
"bias" parameters and do the analysis layer by layer. The
fairness loss item to optimize layer l is designed as follows:

Ll
fair =

∑
w∈θl

∑
Y ∈{0,1}

(WA=0,Y=y ∗ |gA=0,Y=y
w |−

WA=1,Y=y ∗ gA=1,Y=y
w |). (14)

The experimental results are shown as follows:
From Table 2, we can see that optimizing "bias0" achieves

better fairness compared with "weight0" (the APs are the
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OverSampling weight0 bias0 weight1 bias1 weight0+1

λ 0.5 5.0 50.0 50.0 1.0

AP score 0.762 0.759 0.759 0.747 0.755 0.749

Fairness score (−∆EO) −0.140 −0.118 −0.058 −0.079 −0.070 −0.090

Table 2: The experimental results of the layer-wise analysis.
"weight0", "bias0", "weight1", "bias1" and "weight0+1" repre-
sent when we only align the group contribution for the "weight" in
layer 0, the "bias" in layer 0, the "weight" in layer 1, the "bias" in
layer 1, and the "weight" in layer 0 and layer1, respectively.

same and the −∆EO value -0.058 is far better than -0.118).
The "bias" parameter is more likely to be the cause of the
unfairness because optimizing the "bias" parameters tends to
achieve better fairness. Moreover, we optimize the "weight"
parameters in both layers ("weight0+1"), the fairness improve-
ment of which is also limited. Recently some work is con-
stantly proposed to understand the model behaviors at the
neuron level. Such work usually bases their analysis on the
neuron output (i.e., the output of the "weight" parameters),
while neglecting the "bias" parameters. However, our exper-
iments show that the "bias" parameters are also likely to be
responsible for the unfairness.

Other Gradient Matching Choices
Fairness improvement could also be regarded as requiring
different domains (i.e., domains of different subgroups) to own
the same generalization performance, the essence of which
is similar to domain generalization. Recently, some gradient
matching methods have emerged in the domain generalization
field. One typical gradient matching method Inter Gradient
Alignment (IGA) is proposed by [Koyama and Yamaguchi,
2020] to improve the invariance of inter-domain gradients to
learn invariant features. Specifically, IGA learns invariant
features by minimizing the variance of inter-domain gradients.
The original optimization objective is as follows:

argminθE[Lϵ(θ)] + λtrace(V ar(∆θLϵ(θ))), (15)

where Lϵ is the loss of the θ-paramterized prediction model
computed on the environment ϵ 2. Following the spirit of IGA
in the fairness area, we adapt the optimization objective as:

Lfair =
∑
w∈θ

∑
a∈{0,1}

(gA=a
w − gw), (16)

where gw is the gradient regarding the whole training batch
and gA=a

w is the parameters gradients regarding the data group
A = a. The experimental results are shown in Table 3.

Van λ = 0 λ=1.0 λ=2.0 λ=10.0

AP score 0.778 0.762 0.765 0.771 0.755

Fairness score (−∆EO) −0.096 −0.140 −0.095 −0.121 −0.103

Table 3: The experimental results of the IGA method. The fairness is
restrictedly improved by the IGA method.

We can find that the IGA method cannot be directly used to
improve fairness. Even if the gradients of the two domains (i.e.

2Please refer to the Domainbed benchmark [Gulrajani and Lopez-
Paz, 2020] for more details.

males and females) are aligned, we believe that optimizing
IGA will result in a biased gradient and an imbalanced contri-
bution. We could revise the IGA loss function as follows:

Lfair =
∑
w∈θ

∑
y∈{0,1}

(gA=0,Y=y
w − gA=1,Y=y

w ). (17)

Different from the initial IGA method, this method splits the
data into four groups rather than two domains. This method
is identical to the algorithm to align the gradients of different
subgroups directly as we mentioned in Sec. 3.2 which is re-
ferred as direct gradient aligning. Our experimental results are
shown in Table 4. We can see that such a method still barely
improves the fairness of the target model when under satis-
fying accuracy which shows the superiority of our gradient
reweighing method.

λ=0.0 λ=0.3 λ=0.5 λ=0.8 λ=1.0

AP score 0.762 0.750 0.748 0.738 0.732

Fairness score (-∆EO) −0.140 −0.130 −0.106 −0.071 −0.061

Table 4: Experimental results of the direct gradient aligning method.

Experiments on Other Datasets
We further extend experiments on two datasets, Colored
MNIST [Arjovsky et al., 2019], and CIFAR-10S [Wang
et al., 2020] to show the performance of GCM. Specifi-
cally, for Colored MNIST, we color each image with two
colors spuriously with the label to assign a preliminary
binary label ỹ: ỹ = 0 for digits 0-4 and ỹ = 1 for 5-9
and the sensitive attribute is color [Arjovsky et al., 2019].
For CIFAR-10S, it has 10 object classes and we employ
it to validate the multi-classification scenarios. The sensi-
tive attribute is grayscale or color. The fairness metrics,
∆EO and EOP, are primarily designed and widely adopted
by binary classification tasks [Chuang and Mroueh, 2021;
Du et al., 2021]. We use the Bias metric [Wang et al., 2020]
for the multi-class task. The results below show that GCM
outperforms all baselines as presented in Table 5 and 6.

Colored MNIST Vanilla OverSampling Adv EOR GCM (T=0) GCM (T=2)

AP ↑ 0.995 0.906 0.896 0.907 0.912 0.908

-∆EO ↑ -0.750 -0.020 -0.031 -0.016 -0.015 -0.013

Table 5: Experimental results on the Colored MNIST dataset.

CIFAR-10S Vanilla OverSampling Adv GCM

Acc of Color/Gray/Mean↑ 89.0/88.0/88.5 89.2/89.1/89.1 84.6/83.5/84.1 89.6/88.2/88.8

Fairness: Metric Bias ↑ -0.074 -0.066 -0.094 -0.028

Table 6: Experimental results on the CIFAR-10S dataset.

Experiments on Other Fairness Metrics
We mainly present two group fairness measures following
[Wang et al., 2022a; Jung et al., 2022] and we can also poten-
tially extend GCM to other measures. For example, consider-
ing the metric demographic parity DP, we take the resampling
method in [Baniecki et al., 2021] to sample Z00, Z01, Z10, and
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Z11, and then align gA=0,Y=y
w and gA=1,Y=y

w for y ∈ {0, 1},
w ∈ θ. We conduct experiments on the COMPAS dataset and
find that compared with the vanilla method with AP/-∆DP
scores 0.649/-0.245, our GCM method can achieve an AP/-
∆DP 0.633/-0.0027. The -∆DP is 1/10 of that of resampling
(0.636/-0.029) and outperforms other baselines largely (EOR:
0.634/-0.015). Our method GCM is compatible with the re-
sampling strategies designed for different fairness measures
and improves fairness for various fairness measures.

5 Related Work

5.1 Fairness Mitigation

Deep learning models easily exhibit some undesirable behav-
iors on concerns such as robustness, privacy, and other trust-
worthiness issues [Goodfellow et al., 2014; Madry et al., 2017;
Kurakin et al., 2018; Liu et al., 2019; Liu et al., 2020b; Liu et
al., 2020a; Hu et al., 2021; Li et al., 2021d; Liu et al., 2021;
Li et al., 2022; Xie et al., 2022; Liu et al., 2023; Guo et al.,
2023; Xiao et al., 2023; Huang et al., 2023], in which dis-
crimination could be extremely socially influential. There is a
line of work dedicated to alleviating unfairness in DNNs. For
example, several mitigation methods including oversampling,
adversarial training, and other domain-independent methods
are compared in [Wang et al., 2020]. [Bahng et al., 2020;
Sarhan et al., 2020] propose to disentangle unbiased repre-
sentations to ensure fair DNNs. Moreover, [Du et al., 2021]
directly repair the classifier head even though the middle rep-
resentations are still biased. [Madras et al., 2018] propose
to relax the fairness metrics for optimization. [Roh et al.,
2020] propose a batch gradient descent approach that can be
used to learn fair models, which induces accurate models with
multiple groups but is sub-optimal in terms of fairness [Ma-
heshwari and Perrot, 2022]. Recently, [Li et al., 2023] propose
an approach to enhance fairness by emphasizing decision ratio-
nale alignment, while this approach requires a more complex
hyper-parameter setting. However, these methods neglect the
unfairness development process. In our work, the analysis to
how unfairness develops gradually during the training process
provides insights into the blind spots of models, which in turn
offers us clues to build fairer models.

5.2 Data Contribution

Some works [Schaul et al., 2015; Koh and Liang, 2017;
Katharopoulos and Fleuret, 2018; Pruthi et al., 2020; Li et al.,
2021b; Wang et al., 2022b] have been proposed to evaluate the
instance contribution to better control the training data input in
the real world. These works either use the gradients [Li et al.,
2021a; Li et al., 2021c] or the loss to compute each sample’s
importance. However, the former is computationally expen-
sive and the latter is not a particularly good approximation of
the gradient norm [Katharopoulos and Fleuret, 2018].

In our work, we investigate the contribution of each training
subgroup rather than each individual sample, which avoids the
heavy calculation. Moreover, different from previous methods,
our definition to group contribution disparity could bypass the
calculation regarding the test data, which is also time-saving.

6 Conclusions and Future Work
In this paper, we examine the training process to better under-
stand how unfairness dynamically develops. We propose the
group contribution disparity metric and observe that unequal
contributions of different sub-groups are the source of unfair-
ness. We further illustrate that the oversampling strategy fails
to match the contribution of each sub-group. To effectively
match the group contribution, we then propose the gradient
reweighing method, which significantly improves fairness. Al-
though promising, our method necessitates the computation
of second-order derivatives. In subsequent research, we aim
to enhance our method through more efficient calculations.
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