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Abstract
There are increasing demands for understanding
deep neural networks’ (DNNs) behavior spurred
by growing security and/or transparency concerns.
Due to multi-layer nonlinearity of the deep neu-
ral network architectures, explaining DNN predic-
tions still remains as an open problem, preventing
us from gaining a deeper understanding of the mech-
anisms. To enhance the explainability of DNNs,
we estimate the input feature’s attributions to the
prediction task using divergence and flux. Inspired
by the divergence theorem in vector analysis, we
develop a novel Negative Flux Aggregation (Ne-
FLAG) formulation and an efficient approximation
algorithm to estimate attribution map. Unlike the
previous techniques, ours doesn’t rely on fitting a
surrogate model nor need any path integration of
gradients. Both qualitative and quantitative exper-
iments demonstrate a superior performance of Ne-
FLAG in generating more faithful attribution maps
than the competing methods. Our code is available
at https://github.com/xinli0928/NeFLAG.

1 Introduction
The growing demand for trustworthy AI in security- and
safety-critic domains has motivated developing new meth-
ods to explain DNN predicitons using image, text and tabular
data [Chefer et al., 2021; Li et al., 2021; Pan et al., 2020;
Qiang et al., 2022]. As noted in some pioneering works, e.g.,
[Hooker et al., 2019; Smilkov et al., 2017; Kapishnikov et al.,
2021], faithful explanation is indispensable for a DNN model
to be trustworthy. However, it remains to be challenging for
human to understand a DNN’s predictions in terms of its input
features due to its black-box nature.

As such, the field of explainable machine learning has
emerged and seen a wide array of model explanation ap-
proaches. Among others, local approximation and gradient
based methods are the two major categories that are more in-
tensively researched. Local approximation methods mimic the
local behavior of a black-box model within a certain neighbor-
hood using some simple interpretable models, such as linear
models and decision trees. However, they either require an
additional model training processes (e.g., LIME [Ribeiro et al.,

2016], SHAP [Lundberg and Lee, 2017]), or rely on some cus-
tomized propagation rules (e.g., LRP [Bach et al., 2015], Deep
Taylor Decomposition [Montavon et al., 2017], DeepLIFT
[Shrikumar et al., 2017], DeepSHAP [Chen et al., 2021]).
Gradient based methods such as Saliency Map [Simonyan
et al., 2013], SmoothGrad [Smilkov et al., 2017], FullGrad
[Srinivas and Fleuret, 2019], Integrated Gradient (IG) and
its variants [Sundararajan et al., 2017; Hesse et al., 2021;
Erion et al., 2021; Pan et al., 2021; Kapishnikov et al., 2019;
Kapishnikov et al., 2021] require neither surrogates nor cus-
tomized rules but must tackle unstable estimates of gradients
w.r.t. the given inputs. IG type of path integration based
methods mitigate this issue via a path integration for gradi-
ent smoothing, however, this also introduces another degree
of instability and noise sourced from arbitrary selections of
baselines or integration paths. Others (e.g., Saliency Map, Full-
Grad) relax this requirement nevertheless can be vulnerable to
the small perturbations of the inputs due to its locality.

Ideally, we hope to avoid surrogates, special rules, arbitrary
baselines and/or path integrals in interpreting DNN’s predic-
tion. In addition, since DNN interpretation often works on
per sample basis, efficient algorithms are also crucial for a
scalable DNN explanation technique. Here we examine the
prediction behavior of DNNs through the lens of divergence
and flux in vector analysis. We propose a novel Negative Flux
Aggregation (NeFLAG) approach, which reformulates gradi-
ent accumulation as divergence. By converting divergence to
gradient fluxes according to divergence theorem, NeFLAG in-
terprets the DNN prediction with an attribution map obtained
by efficient aggregation of the negative fluxes (see divergence
theorem, flux, and divergence in Preliminaries).

We summarize our contributions as follows: 1) To the best
of our knowledge, this is the first attempt to tackle the problem
of explaining DNN model prediction leveraging the concepts
of gradient divergence and fluxes. 2) Our NeFLAG technique
eliminates the need for path integration via converting diver-
gence to flux estimation, opening a new avenue for gradient
smoothing techniques. 3) We propose an efficient approxima-
tion algorithm to enable a scalable DNN model explanation
technique. 4) We investigate the relationship between flux
estimation and Taylor approximation, bridging our method
with other local approximation methods. 5) Both qualitative
and quantitative experiment results demonstrate NeFLAG’s
superior performance to the competing methods in terms of

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

446

https://github.com/xinli0928/NeFLAG


interpretation quality.

2 Related Work
We categorize our approach as one of the local approximation
methods. Other examples include LIME [Ribeiro et al., 2016],
which fits a simple model (linear model or decision trees
etc.) in the neighborhood of a given input point, and use
this simple model as a local interpretation. Similarly, SHAP
[Lundberg and Lee, 2017] generalizes LIME via a Shapley
value reweighing scheme that has been proved to yield more
consistent results. These methods, in general, enjoy their own
merit when the underlying model is completely black-box, i.e.,
no gradient and model architecture information are available.
However, in the case of DNN model interpretation, we usually
know both model architecture and gradient information, so
it is often beneficial to utilize this extra information as we
are essentially interpreting the DNN model itself rather than
a surrogate model. Saliency Map [Simonyan et al., 2013]
and FullGrad [Srinivas and Fleuret, 2019] exploit the gradient
information, yet remain sensitive to small perturbations of
the inputs. SmoothGrad [Smilkov et al., 2017] improves it
by averaging attributions over multiple perturbed samples of
the input by adding Gaussian noise to the original input. As
we will see in Section of Preliminaries below, our NeFLAG
method not only exploits the smoothing gradient information
to achieve robustness against perturbations, but also eliminates
the need for fitting an extra surrogate model.

Another line of research explains DNN predictions via ac-
cumulating/integrating gradients along specific paths from
baselines to the given input. Here we denote them as path in-
tegration based methods, represented by Integrated Gradients
(IG) [Sundararajan et al., 2017]. Recent variants includes fast
IG [Hesse et al., 2021], and IG with alternative paths and base-
lines (e.g., Adversarial Gradient Integration (AGI) [Pan et al.,
2021], Expected Gradient (EG) [Erion et al., 2021]), Guided
Integrated Gradients (GIG) [Kapishnikov et al., 2021], Attri-
bution through Regions (XRAI) [Kapishnikov et al., 2019]).
IG chooses a baseline (usually a black image) as the reference
to calculate the attribution by accumulating gradients along
a straight-line path from the baseline to the given input in
the input space. AGI, on the other hand, relaxes the baseline
and straight-line assumption by utilizing adversarial attacks
to automatically generate both baselines and paths, thereafter
accumulating gradients along these paths. Both would re-
quire paths and baselines for gradient smoothing via path
integration regardless of manually picked or generated, which
could introduce attribution noises along the path (as noted
by [Sundararajan et al., 2017], different paths could result in
completely different attribution maps). On the contrary, our
NeFLAG method doesn’t need a path nor a baseline, in which
the gradient smoothing is controlled by a single radius pa-
rameter ϵ, opening up a new direction for gradient smoothing
techniques.

3 Preliminaries: Divergence and Flux
We start explaining our approach by introducing the concept
of divergence and flux in vector analysis. Lets first consider a
general scenario: to interpret a DNN’s prediction, we hope to

characterize its local behavior. Let’s define a DNN model
f : X → Y , which takes inputs x ∈ X , and outputs
f(x) ∈ Y . For simplicity, we also assume that the model
is locally continuously differentiable. When we query the
interpretation for a given input x, we are interested in how and
why a decision is made, i.e., what is the underlying decision
boundary. In fact, this is also the idea behind many other
interpretation methods such as LIME [Ribeiro et al., 2016]
and SHAP [Lundberg and Lee, 2017]. In these methods, an
interpretable linear model (or other simple models) is fitted via
sampling additional points around the neighborhood of input
of interest. Clearly, taking advantage of a certain kind of neigh-
borhood aggregation is a promising route for interpretation of
local approximation.

When the gradients ∇xf are available, it is already a de-
cent indicator of DNN’s local behavior. If we only calculate
the gradients at x, the resulting attribution map is called the
Saliency Map [Simonyan et al., 2013]. However, without
aggregation, these gradients are usually unstable due to ad-
versarial effect, where a small perturbation of the inputs can
lead to large variation of gradient values. On the other hand,
these gradients may be vanishing due to the so-called satura-
tion effect [Miglani et al., 2020]. To overcome the instability,
lets denote a neighborhood around input x to be Vx, and es-
timate the average gradients over it. Intuitively, the resulting
vector

´
Vx
∇f · dVx can be viewed as a local approximation

for the underlying model. However, neither a single gradient
evaluation nor neighborhood gradient integration exploits the
fact that the function value f(x) can be viewed as a result
of gradient field flow accumulation. The gradient field flow
therefore inspires us to accumulate the gradients along the flow
direction, giving rise to the new idea of gradient accumulation.

3.1 Gradient Accumulation

Plenty of methods have already embraced the idea of accumu-
lation without explicitly defining it. They typically accumulate
the gradients along a certain path, for example, Integrated Gra-
dients (IG) [Sundararajan et al., 2017] integrates the gradients
along a straightline in the input space from a baseline to the
given input. Specifically, they study not a single input point,
but the gradient flows from a baseline point towards the given
input (Figure 1). The baseline here is selected assuming no
information is contained for decision. Another example is Ad-
versarial Gradient Integration (AGI) [Pan et al., 2021], which
instead integrates along multiple paths generated by an ad-
versarial attack algorithm, and aggregates all of them. This
method also accumulates gradient flows, and it differs from
IG only in accumulation paths and selection of baselines.

Although both IG and AGI exploit the idea of gradient
accumulation, they only tackle one-dimensional accumulation,
i.e., accumulating over a path/paths. In fact, [Pan et al., 2021]
point out that neither an accumulation path is unique, nor a
single path is necessarily sufficient. Ideally, an accumulation
method should take into account of every possible baseline
and path. However, it is nearly impossible to accumulate
all possible paths. Then how could we overcome such an
obstacle? A promising direction is to examine the problem
through the lens of divergence and flux.
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Figure 1: In a non-uniform field, IG accumulates gradient flow from
a baseline to the given input. Here black solid arrows denote the gra-
dient field, the red dashed arrow denotes the accumulation direction,
and the length of green solid arrows denote the gradient magnitude
on the accumulation direction.

3.2 Divergence and Flux
For studying accumulation, the definition of divergence per-
fectly fits our needs. Let F = ∇xf be the gradient field, the
divergence divF is defined by

divF = ∇ · F =

(
∂

∂x1
,

∂

∂x2
, ...

)
· (Fx1 , Fx2 , ...) , (1)

where Fxi
and xi are the gradient vector’s and input’s ith

entry, respectively. The above definition is convenient for
computation, however, difficult to interpret. A more intuitive
definition of divergence can be described as follows.
Definition 1. Given that F is a vector field, the divergence
at position x is defined by the total vector flux through an
infinitesimal surface enclosure S that encloses x, i.e.,

divF|x = lim
V→0

1

|V |

‹
S(V )

F · n̂dS, (2)

where V is an infinitesimal volume around x that is enclosed
by S, and F · n̂ denotes the normal vector flow (flux) through
the surface S.

It is not hard to see that ∇ · F is essentially the (nega-
tively) accumulated gradients at point x from Definition 1, as
it defines the total gradient flow contained in the infinitesimal
volume V .

Therefore, given input x, to interpret the model within its
neighborhood denoted by Vx, we only need to calculate the
accumulated gradients by integrating the divergence over all
points within this neighborhood. The attribution heatmap can
be obtained by simply replacing the dot product in Eq. 1 by
an element-wise product, and then integrate, i.e.,

Attribution =

ˆ
Vx

(
∂

∂x1
,

∂

∂x2
, ...

)
⊙ (Fx1

, Fx2
, ...) dV.

(3)

Eqs. 2 and 3 are equivalent because of the divergence theo-
rem described below. We use element-wise product because
we want to disentangle the effects from different input entries.

However, there is one major obstacle, that is, how to inte-
grate the whole volume Vx especially when the input dimen-
sion is high. It is tempting to sample a few points inside the
neighborhood surface enclosure, and sum up the divergence.

But the computational cost for divergence, which involves
second order gradient computation, is much higher than only
calculating the first order gradients.

Fortunately, we can gracefully convert the volume integra-
tion of divergence into surface integration of gradient fluxes
using divergence theorem, and thus simplify the computation.

3.3 Divergence Theorem
In vector analysis, the divergence theorem states that the total
divergence within an enclosed surface enclosure is equal to
the surface integral of the vector field’s flux over such surface
enclosure. The flux is defined as the vector field’s normal
component to the surface. Formally, let F be a vector field in
a space U , S is defined as a surface enclosure in such space,
and we call the neighborhood volume that is enclosed in S as
V . Assuming that F is continuously differentiable on V , the
Divergence Theorem states that˚

V

(∇ · F)dV =

‹
S

(F · n̂)dS. (4)

Here the integrating symbols
˝

and
‚

don’t necessarily need
to be 3-dimensional and 2-dimensional, respectively. They
can be any higher dimension as long as the surface integration
is one dimension lower than the volume integration.

In DNNs, the gradient field F = ∇xf w.r.t. the inputs is
exactly a vector field in the input space. Note that there could
be non-differentiable points (that could violate the continu-
ously differentiable condition due to some activation functions
such as ReLU may not differentiable at some point). Never-
theless we can safely assume that it is at least continuously
differentiable within a certain small neighborhood.

4 Negative Flux Aggregation
In this Section, we describe our interpretation approach, Nega-
tive Flux Aggregation (NeFLAG). We first explain the neces-
sity of differentiating positive and negative fluxes, and then
describe an algorithm on how to find negative fluxes on a
ϵ-sphere and aggregate them for interpretation.

4.1 Negative Fluxes Define a Linear Model
Interpreting via directly integrating all fluxes is an intriguing
approach, however, the positive and negative fluxes should
be interpreted differently. By convention, positive fluxes are
pointed outward the enclosure surface, and the negative fluxes
are pointed inward (Figure 2a). Let S be a surface enclosure
and V is its corresponding volume, a positive flux can be
viewed as the gradient loss of V , and similarly a negative flux
is the gradient gain of V . It means the confidence gain or loss
of the prediction of x. For example, from f(x) = 0.99 to
f(x) = 0.8 represents a confidence loss. The sum of negative
fluxes here means a total confidence loss if x moves out of the
neighborhood. When interpreting a DNN model prediction f ,
assuming x is a point in the input space U , the prediction of
it by f is class A. To interpret this prediction at a location in
the input space (i.e., x), we need to find out that moving to
which direction could make it less likely to be A? Apparently,
a good choice is to move in the direction of negative gradient,
i.e., with negative gradient fluxes. In contrast, the positive flux

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

448



Figure 2: The fluxes on closed surfaces with different shapes. a. The total flux of a closed sphere surface is zero when the field is uniform, and
the vector obtained by negative flux vector aggregation is coherent to the field vector. Here red arrows and blue arrows denote positive and
negative flux. The green arrow bar denotes the direction of the aggregated vector. b. When the closed surface is not symmetric with respect to
the field, the resulting aggregated vector is not in the same direction as the field.

can be interpreted as what makes it more likely to be class A.
But since x is already predicted as A, this information is less
informative than the negative fluxes in terms of interpretation.
(An additional intuition is that for a given input x we are more
interested in its direction towards decision boundary, instead
of the other side of it.)
Linear case. It is not hard to see that in a linear vector field
Fl with underlying linear function fl, the sum of fluxes within
any enclosure is 0 (Figure 2). Moreover, when the enclosure
is an N -dimensional sphere (where N is the dimension of the
space), we can sum up over all vectors on the sphere surface
that are contributing negative flux. The obtained summed-up
vector is then equivalent to the weight vector of the underlying
linear function fl.

The observation of the linear case study inspires us to learn
the weight vector of a local linear function by summing up all
negative fluxes on an N -d sphere. Hence we say that the vector
sum of all negative fluxes interprets the local behavior of the
original function via a local linear approximation. Formally,
we state Assumption 1 as follows.
Assumption 1. Given model f whose gradient field is F, and
sample x, let Sx be an N -d ϵ-sphere that centered at x. The
vector sum of all negative flux can be obtained by

w =

‹
S−
x

F⊙ n̂dSx, (5)

where ⊙ denotes element-wise product, and S−
x is a set of

point on the sphere where flux is negative. The linear model
defined by weight vector w is then a local linear interpretation
to the original model of input x.

Note that this assumption is derived from the observation
when y = a1x1 + a2x2 + ... + anxn, so we interpret this
linear model by attributions attr = (a1x1, a2x2, ..., anxn).
The entry attri = aixi represents the contribution of the ith
attribute to the final prediction. Note that the attribution can
also be written as attr = a ⊙ x, hence the element-wise
product in the Assumption. It is also critical to set Sx as
a sphere in Assumption 1, any other shape introducing any
degree of asymmetry would cause disagreement between local

linear approximation and the negative flux aggregation, as
shown in Figure 2b.
Interpretation. An interpretation can be achieved by plot-
ting an attribution map using the vector w from Eq. 5. The
rationale is directly from the correspondence between this
vector and the underlying linear model.

4.2 An Approximation Algorithm
To calculate Eq. 5, we have to find out both the point x̃ with
negative flux and its normal vector n̂. For the latter, given a
candidate point x̃ on the sphere surface Sx, we can replace
n̂ by (x̃ − x)/|x̃ − x| because x is the center of the sphere
Sx, and the radius ϵ = |x̃− x|. As for point x̃ with negative
flux, a straightforward solution is to randomly subsample a list
of points on the ϵ-sphere, then select those with negative flux.
However, this trick has no guarantee on how many subsam-
pling is sufficient, and also cannot guarantee that a negative
flux exists. Therefore, we need an approximation algorithm
that can guide us to those points with negative fluxes.

Since we are interested in interpreting the local behavior,
meaning that the radius of ϵ-sphere should be sufficiently
small. This provides us with the possibility to approximate the
gradient (flux). i.e.,

F(x̃) · n̂ ≈ (f(x̃)− f(x))

ϵ
. (6)

Since x is the center of ϵ-sphere Sx, to make the flux (left
hand side of Eq. 6) negative, we only need to find x̃ such
that f(x̃) < f(x). Moreover, for interpreting a classification
task, it is usually the case that f(x) is of a high value (when a
prediction is confident, the output probability would be close
to 1). Therefore, if we could find a random local minimum x̃
on the ϵ-sphere Sx, it would most likely have f(x̃) < f(x).

In order to obtain a local minimum starting with any arbi-
trary initialization, we propose the following Lemma.
Lemma 1. Let x be the center of sphere Sx, and x(0) be a
random point on the ϵ-sphere Sx. We define the following
recurrence

x(k) = x− ϵ ·
F
(
x(k−1)

)∣∣F (x(k−1)
)∣∣ . (7)
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Let Vx be the space enclosed by Sx, assuming F is continuous
on Vx, then f(x(k)) converges to a local minima on Sx as
k →∞.

Proof. To find a local minima on the surface Sx, given
the current candidate x(k−1) and its corresponding gradient
F(x(k−1)), the updating formula needs to take x(k−1) to x(k)

such that x(k) is on the opposite direction of the tangent com-
ponent of F(x(k−1)) to the surface Sx. Assuming the updat-
ing step to be ϵ, the updating rule is then

x(k) = x(k−1) − ϵ ·

(
F
(
x(k−1)

)∣∣F (x(k−1)
)∣∣ − F

(
x(k−1)

)
· n̂∣∣F (x(k−1)
)∣∣ · n̂.

)
.

(8)

Note that the term in the parentheses is exactly the tangent
direction of the gradient (i.e., the direction of the gradient
minus the normal component). We can derive that

x = x(k−1) + ϵ ·
(
x− x(k−1)

)
ϵ

(9)

≈ x(k−1) + ϵ ·
F
(
x(k−1)

)
· n̂∣∣F (x(k−1)
)∣∣ · n̂., (10)

where x is the center of the ϵ-sphere Sx, substituting Eq. 10
into Eq 8, we then have the updating rule in Eq. 7.

Lemma 1 tells us that given any initial point x(0) on the
sphere, we can always find a point with local minimal flux
value. Ideally, by seeding multiple initial points, following the
recurrence in Eq. 7, we can obtain a set of local minima points
on Sx. The integration in Eq. 5 can then be approximated by
summation of the gradient fluxes at these local minima points.
But this approximation is suboptimal because the updating
rule in Eq. 8 will cause bias towards those points with minimal
fluxes, instead of distributing evenly to points with negative
fluxes. To overcome this issue, we add a sign operation on the
recurrence in Eq. 7, implemented in Algorithm 1, to introduce
additional stochasticity, hence making the negative flux points
distributed more evenly. Algorithm 1 describes this trick as
well as the step-by-step procedure of calculating NeFLAG.

Here we note Eq. 5 provides a formulation (or a framework)
to calculate a representing vector for the neighborhood near x.
We develop Algorithm 1 as one way of approximation to effi-
ciently perform the experiments. There are other algorithms
with better approximation accuracy that we may explore the
different approximation tricks in the future.

4.3 Connection to Taylor Approximation
NeFLAG can be viewed as a generalized version of Taylor
approximation. Here we show that NeFLAG can not only
be viewed as a gradient accumulation method, but also an
extension to some local approximation methods. Given that Sx

is an N -d ϵ-sphere centered at x, for any point x̃ on the sphere
surface, we can represent the normal vector n̂ as (x̃− x)/ϵ.
This inspires us to investigate its connection to the first order
Taylor approximation. As pointed out by [Montavon et al.,

Algorithm 1 NeFLAG(f,x, n, Sx, ϵ,m)
Input: f : Classifier, x: input, n: number of negative flux
samples, Sx: ϵ-sphere, ϵ: radius of Sx, m: max number
of backpropagation steps;
Output: Attribution map NeFLAG;

1: NeFLAG← 0; j ← 0; i← 0 ;
2: while i = 1 : n do
3: while j = 1 : m do
4: Randomly sample x̃ on sphere Sx;
5: x̃ = x− ϵ · sign

(
F(x̃)
|F(x̃)|

)
;

6: end while
7: NeFLAG = NeFLAG + F (x̃)⊙ (x− x̃);
8: end while

2017], Taylor decomposition can be applied at a nearby point
x̃, then the first order decomposition can be written by

f(x) = f(x̃) + (∇xf |x=x̃)
⊤ · (x− x̃) + η, (11)

where η is the error term of second order and higher. We use
R(x) = (∇xf |x=x̃)⊙ (x− x̃) to represent a heatmap gen-
erated by this approximation process. Note that the heatmap
R(x) completely attributes f(x) if f(x̃) = 0 and the error
term η can be omitted.

One may notice that if x̃ is by chance on the N-d ϵ-sphere,
the first order Taylor approxmation of x from x̃ is then equiv-
alent to the flux estimation at x̃. To explain it more clearly, we
can simply view −(x− x̃)/|x− x̃| as the normal vector n̂ in
Eq. 5, and (∇xf |x=x̃) is exactly the gradient vector F at x̃.
Hence the first order Taylor decomposition and a single point
flux estimation differs only by a factor of −ϵ as ϵ = |x− x̃|.

Since we only care about the negative fluxes, then the sec-
ond term of Eq 11, i.e., (∇xf |x=x̃)

⊤ · (x − x̃) must be
positive. If we further omit the error term η, we must have
f(x) = f(x̃) + positive value. It tells us that in the perspec-
tive of first order Taylor decomposition, the negative flux in-
deed attributes to positive predictions, bridging the connection
between NeFLAG and other local approximation methods.

5 Experiments
In this Section, we demonstrate and evaluate NeFLAG’s per-
formance both qualitatively and quantitatively using a diverse
set of DNN architectures and baseline interpretation methods.

5.1 Experiment Setup
Models. InceptionV3 [Szegedy et al., 2015], ResNet152 [He
et al., 2015] and VGG19 [Simonyan and Zisserman, 2014] are
selected as the pre-trained DNN models to be explained.

Dataset. The ImageNet [Deng et al., 2009] dataset is used
for all of our experiments. ImageNet is a large and complex
data set (compared with smaller and simpler data sets such as
Places, CUB200, or Flowers102) for us to better demonstrate
the key advantages of our approach.

Baseline interpretation methods. IG [Sundararajan et al.,
2017] and AGI [Pan et al., 2021] are selected as baselines for
both qualitative and quantitative interpretation performance
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Figure 3: Examples of attribution maps obtained by NeFLAG, AGI and IG methods. The underlying prediction model is InceptionV3
(additional examples for ResNet152 and VGG19 can be found in the supplementary materials). Compared to AGI and IG, we observe that
NeFLAG’s attribution map has a clearer shape and focuses more densely on the target object.

Metrics Methods/Models IG SG GIG EG AGI NeFLAG-1 NeFLAG-10 NeFLAG-20

Deletion
Score ↓

VGG19 0.071 0.065 0.054 0.041 0.040 0.034 0.052 0.059
ResNet152 0.132 0.091 0.090 0.066 0.068 0.055 0.076 0.081

InceptionV3 0.122 0.079 0.096 0.049 0.059 0.048 0.066 0.068

Insertion
Score ↑

VGG19 0.223 0.312 0.304 0.338 0.401 0.416 0.521 0.535
ResNet152 0.332 0.380 0.437 0.447 0.480 0.485 0.568 0.578

InceptionV3 0.375 0.465 0.465 0.478 0.480 0.544 0.618 0.625

Table 1: Quantitative evaluation using deletion and insertion scores. NeFLAG-1, NeFLAG-10 and NeFLAG-20 are NeFLAG methods with
various number of negative flux samples. Note NeFLAG-1 already outperforms all the competing methods with a linear computational
complexity of the number of backprogation steps (see Appendix on Computational Complexity and Overhead for detailed analysis).

comparison. We also include Expected Gradients (EG)[Erion
et al., 2021], Guided Integrated Gradient [Kapishnikov et al.,
2021], and SmoothGrad [Smilkov et al., 2017] in quantitative
comparison as they can be viewed as smoothed versions of
attribution methods. We use the default setting provided by
captum 1 for IG, EG and SmoothGrad methods. For AGI, we
adopt the default parameter settings reported in [Pan et al.,
2021], i.e., step size ϵ = 0.05, number of false classes n = 20.
For GIG, we also used the default settings provided in their
latest official implementation [Kapishnikov et al., 2021]. Here
we focus on the comparison with gradient based methods
since non-gradient methods typically require a surrogate and
additional optimization processes.

5.2 Qualitative Evaluation
We first show some examples to demonstrate a better quality
of the attribution maps generated by NeFLAG than by other

1https://captum.ai/

baselines. The NeFLAG is configured as follows: ϵ-sphere
radius is set to ϵ = 0.1, and the number of random negative
flux point x̃ is n = 20. Figure 3 shows the attribution maps
generated by various interpretation methods for the Inception
V3 model (examples for ResNet152 and VGG19 models can
be found in the Appendix). Qualitatively speaking, we denote
an attribution map is faithful to model’s prediction if 1) it
focuses on the target objects, and 2) has clear and defined
shapes w.r.t. class label instead of sparsely distributed pixels.
Based on this notion, it is clearly observed that NeFLAG has
a better attribution heatmap quality than AGI and IG.

A key observation from Figure 3 is that the NeFLAG at-
tribution heatmap provides a defined shape of the entity of
the class whereas IG and AGI attribution heatmaps do not
reflect that ability. In fact, the latter heatmaps are scattered
and do not retain a definite shape. For example, in Figure 3,
IG and AGI’s heatmaps fail to delineate a definite and slender
shape of the Rock Python. The same notion happens with the
Impala and Chimpanzee where the attribution heatmaps of IG
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Figure 4: Quantitative Performance Comparison in terms of Difference between the Insertion and Deletion Scores.

and AGI are scattered across the background and class entity.
We note that the results shown in Figure 3 are very typical
(not cheery-picked) in our experiments. We also provide more
examples from each class to demonstrate the superior quality
of attribution maps in the Appendix.

We note that the striking performance disparities referenced
above could mainly be caused by the inconsistency of path
accumulation methods. Since both IG and AGI incorporate
a certain kind of path integration, any gradient vector on that
path is taken into account of the final interpretation. However,
the gradient vectors on the path aren’t necessarily unique and
consistent. The rationale behind this argument is that neither
IG nor AGI is capable of guaranteeing that their choice of
accumulation path is optimal. For example, in IG, the path
is a straight-line, which isn’t by any means ideal. Similarly
in AGI, the path of an adversarial attack is chosen. However,
due to the stochastic effect, a slightly different initialization
could result in completely different attack paths. Our method
NeFLAG, on the other hand, takes advantage of negative flux
aggregation without the burden of path accumulation.

In fact, NeFLAG’s advantage is highly pronounced when
we set the number of negative flux points to 1 (i.e., n = 1),
where we will show hereinafter using quantitative experiments,
is sufficient for a superior performance to the competing meth-
ods. Yet, NeFLAG-1 achieves an unequaled computational
efficiency via a single point gradient evaluation instead of a
path integration used in IG type methods.

5.3 Quantitative Evaluation
In the quantitative experiments, we compare the performance
of IG, AGI, EG, GIG, SmoothGrad and three NeFLAGs vari-
ants with different numbers of sampled negative flux points.
Since our NeFLAG is considered as a robust local attribution
method, the size the neighborhood (radius of ϵ-sphere) and
number of negative fluxes are tuning parameters. Similarly,
the baseline local attribution method, SmoothGrad, also has
two tuning parameters: the noise level and the number of sam-
ples to average over. Contrastively, IG, AGI, EG, and GIG
are global attribution methods so there is no tuning param-
eter involved. We extensively investigate the neighborhood
size and experiment with various number of negative fluxes
(e.g., NeGLAG-1, NeGLAG-10, and NeGLAG-20) to faith-
fully demonstrate the stability of our method in comparison

with others.
Here VGG19, InceptionV3, and ResNet152 are used as

underlying DNN prediction models. Since we focus on ex-
plaining DNN prediction on a per sample basis just like other
DNN explanation methods, we randomly select 5,000 samples
from ImageNet validation dataset with 5 samples from each
class as a good representation of the classes. We use insertion
score and deletion score as our evaluation metrics [Petsiuk
et al., 2018]. We replace the top pixels with black pixels in
the first round [Petsiuk et al., 2018] whereas with Gaussian
blurred pixels in the second round [Sturmfels et al., 2020]. We
report the average performance of two rounds of experiments.
Experimental details can be found in the Appendix.

Table 1 demonstrates that NeFLAG outperforms other base-
lines even with only a single negative flux point (NeFLAG-
1), and becomes much better when we incorporate sufficient
amount of negative flux points (NeFLAG-10 and NeFLAG-
20). In Figure 4, we systematically compared the performance
of our NeFLAG with the competing methods on three DNN
architectures. We used the Difference between the Insertion
and Deletion scores as the metric for comparison [Shah et al.,
2021]. It is because the deletion and insertion scores can be
influenced by distribution shift caused by removing/adding
pixels [Hooker et al., 2019]. Since the shift occurs during
both pixel insertion and deletion, focusing on their relative
difference instead of their absolute values helps in neutral-
izing the effects of distribution shift. It is clearly observed
from Figure 4 that our NeFLAG method outperforms all the
competing methods across the three DNN models in terms of
the Difference between the Insertion and Deletion scores. We
note there still a room for more reliable and comprehensive
evaluation metrics for the attribution methods.

6 Conclusion
We develop a novel DNN model explanation technique Ne-
FLAG built off the concept of divergence, and point out a
connection to other local approximation methods. NeFLAG
doesn’t require a baseline, nor an integration path. This is
achieved by converting a volume integration of the second or-
der gradients to a surface integration of the first order gradients
using divergence theorem. Both qualitative and quantitative
experiments demonstrate a superior performance of NeFLAG
in explaining DNN predictions over the strong baselines.
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