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Abstract
Robust reinforcement learning (RL) has been a
challenging problem due to the gap between simu-
lation and the real world. Existing efforts typically
address the robust RL problem by solving a max-
min problem. The main idea is to maximize the
cumulative reward under the worst-possible pertur-
bations. However, the worst-case optimization ei-
ther leads to overly conservative solutions or unsta-
ble training process, which further affects the pol-
icy robustness and generalization performance. In
this paper, we tackle this problem from both for-
mulation definition and algorithm design. First,
we formulate the robust RL as a max-expectation
optimization problem, where the goal is to find
an optimal policy under both the worst cases and
the non-worst cases. Then, we propose a novel
framework DRRL to solve the max-expectation op-
timization. Given our definition of the feasible
tasks, a task generation and sequencing mechanism
is introduced to dynamically output tasks at appro-
priate difficulty level for the current policy. With
these progressive tasks, DRRL realizes dynamic
multi-task learning to improve the policy robust-
ness and the training stability. Finally, extensive
experiments demonstrate that the proposed method
exhibits significant performance on the unmanned
CarRacing game and multiple high-dimensional
MuJoCo environments.

1 Introduction
Reinforcement learning (RL) has recently achieved beyond-
human performance on a wide range of decision-making
tasks like games [Silver et al., 2017], continuous control [Lyu
et al., 2022] and robotics [Dalal et al., 2021]. In order to re-
duce risk of costly failure, RL agents are typically trained in
a high-precision simulator. However, due to the inevitable
reality gap, these algorithms are often overfitted to simula-
tion environments and fail to generalize to the real world. In
some safety-sensitive scenarios such as autonomous driving
and medical treatment, using a bad policy can be costly and
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Figure 1: The max-min formulation updates the current policy only
with the worst-case perturbations, while the max-expectation formu-
lation selects a set of perturbations with appropriate difficulties (i.e.,
the feasible tasks) to update the current policy.

dangerous [Thomas and Brunskill, 2016]. To this end, learn-
ing policies that are robust to environmental shifts or mis-
matched configurations are becoming increasingly important.

Recent efforts in robust RL focus on performing perturba-
tions at training time to achieve robustness. There are three
main branches of the prior works that diverse in how the per-
turbations are introduced: 1) the Robust Markov Decision
Process (RMDP)-based methods [Nilim and El Ghaoui, 2005;
Iyengar, 2005; Wiesemann et al., 2013], where the perturba-
tions are modeled as an uncertainty set to be introduced over
different elements of the MDP tuple; 2) the Domain Ran-
domization (DR) [Jakobi, 1997; Peng et al., 2018], a method
that manipulates environmental perturbations by randomiz-
ing a set of parameters, which requires a delicate definition
of the aspects that the agent should be robust to; and 3) the
adversarial methods [Pinto et al., 2017; Vinitsky et al., 2020;
Tessler et al., 2019; Dennis et al., 2020; Jiang et al., 2021],
which introduces adversarial agents to automatically gener-
ate perturbations by applying external forces to the protag-
onist agent, formulating the robust RL as a max-min game.
More recently, intrinsic motivation methods are proposed to
encourage agents to learn robust policies, using the intrinsi-
cally motivated reward signal from evolutionary techniques
[Song and Schneider, 2022; Niekum, 2010], distance con-
strains [Abdullah et al., 2019] and so on.

Despite the impressive progress, existing studies typically
tackle the robust RL problem under the max-min settings, i.e.,
to maximize the return of the agent under worst-case pertur-
bations. However, the max-min formulation often leads to
overly conservative solutions and unstable training process
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[Zhang et al., 2020; Yu et al., 2021]. In order to prevent the
performance under the worst cases from being too bad, the
max-min methods scarify the reward under non-worst cases.
Moreover, as existing robust RL framework lacks the effec-
tive perturbation organization and programming during train-
ing, the worst-case perturbations may break the training sta-
bility and even bring a failure of policy learning. The same
occurs in the field of classification problem, where the op-
timization technique is used to find the optimal hyperplane
with the largest margin, i.e., to maximize the margin of the
closest pair of classes. However, Gao et. al [Gao and Zhou,
2013] disclosed that maximizing the minimum margin does
not necessarily lead to better performance, and instead, it is
more crucial to optimize the margin distribution. Thus, the
optimal margin distribution machine [Zhang and Zhou, 2018]
is proposed, which is proved to have better generalization per-
formance than large margin-based methods.

Inspired by the above works, an important insight brought
by this work is to formulate the robust RL as a max-
expectation problem, where the agent is trained to maximize
the expected reward simultaneously under as many perturba-
tions as possible including the worst cases and the non-worst
cases. We argue that for the max-min methods, the conser-
vative solutions are caused by the limited knowledge space
for the agent, which is only composed of the environments
under worst-case perturbations. By introducing the “expec-
tation”, we aim to extend the knowledge space for the agent
to explore the optimal policy, and thus to avoid conservative
policies. Figure 1 shows the difference between the two ro-
bust formulation. However, the max-expectation formulation
inevitably makes finding of the robust policy a more complex
optimization problem. This presents us with a new question:
how to organize the learning process to effectively solve the
max-expectation optimization problem?

To solve the question, in this paper, we propose a novel
approach, i.e., Dynamic Robust RL named DRRL, where
we model the robust RL problem as a progressive multi-task
learning problem. The core of DRRL is an effective perturba-
tion (i.e., task) programming. Through the genetic algorithm
(GA) based task generation and task evaluation, a group of
feasible tasks are generated iteratively, which satisfies the ap-
propriate difficulty level for the current policy. With the pro-
gressive task sequence, DRRL improves the policy robustness
and the training stability via progressive task-oriented learn-
ing. In summary, our contributions are highlighted as follows:

• We make the first attempt to formulate the robust RL as
a max-expectation optimization problem, which extends
the agent’s knowledge space about the RL task, and thus
to avoid conservative solutions.

• We propose a novel approach DRRL to effectively solve
the max-expectation optimization problem, which in-
troduces progressive multi-task learning to improve the
policy robustness and training stability.

• We conduct extensive experiments on high-dimensional
continuous environments (i.e., Hopper, HalfCheetah,
Walker2d and CarRacing) to validate the effectiveness
of DRRL compared with state-of-the-art methods.

2 Problem Formulation
Reinforcement learning is typically formalized as Markov
Decision Processes (MDPs): M = (S;A;P; r; γ; s0), where
S is a set of states, and A is a set of actions, P: S×A×S →
[0, 1] is the state transition probability describing the system’s
dynamics, r: S × A → R is the reward function measuring
the agent’s performance, γ ∈ [0, 1) is the discount factor, and
s0 is the initial state distribution. The learning goal for a given
MDP is to obtain an optimal policy π∗ : S × A → [0, 1] that
maximizes the expected cumulative discounted reward:

π∗ = argmax
π

R(π|P) = argmax
π

E[
T−1∑
t=0

γt · r(st, at)|P]. (1)

It is worth noting that the cumulative discounted reward
is conditioned on the transition probability P , which is al-
ways fixed in ordinary RL [Chen et al., 2021]. Motivated by
real-world applications, a good RL policy should generalize
well across a range of different transition probabilities. That
is, a good RL policy should be robust to variations in dy-
namics. Taking OpenAI gym’s CarRacing scenario [Brock-
man et al., 2016] as an example, we aim to learn a policy
for autonomous vehicles that can run not only on high-grade
roads (corresponding to one transition function) but also on
icy roads (corresponding to another transition function).

Thus, instead of learning an optimal policy on a fixed tran-
sition probability (as shown in Eq. 1), the goal of robust RL is
to learn a policy that is robust to a group of feasible transition
probabilities. Generally, robust RL is achieved by solving the
following max-min optimization problem [Wiesemann et al.,
2013; Kuang et al., 2022]

π∗ = argmax
π

[ min
P∈P(·)

E[
T−1∑
t=0

γt · r(st, at)|P ]]. (2)

P(·) is the set of possible transition probabilities. In this
case, the objective of robust RL is to learn best-case policies
under worst-case transitions. However, in the worst-cases, the
agent is trained to always take conservative actions to avoid
performing catastrophic actions [Lecarpentier and Rachelson,
2019]. Thus, the expected rewards in some best cases are in-
evitably reduced, which is obviously not the optimal solution
for real-world applications.

In our work, instead of the max-min game, we formulate
the robust RL problem as an expectation optimization, where
the learning goal is to maximize the expected reward among
all the possible transition probabilities:

π∗ = argmax
π

R(π|P(·))

= argmax
π

E
P∈P(·)

[E[
T−1∑
t=0

γt · r(st, at)|P]].
(3)

To solve the expectation optimization problem in Eq. 3, we
tackle the robust RL issue as a multi-task learning problem
via modeling transition probabilities as the tasks, and propose
a progressive robust policy optimization framework DRRL,
which is detailed in the following section.
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Figure 2: Overview of Dynamic Robust Reinforcement Learning (DRRL).

3 Methodology
3.1 DRRL Overview
For our defined robust RL, we have the following two as-
sumptions:

• Modeling errors of transition probability can be viewed
as a set of RL tasks, in which each task corresponds to a
specific variant of P0. Here, P0 represents the original
transition probability in simulation.

• If the trained optimal policy is robust to a sequence of
well-designed RL tasks, then it will have high probabil-
ity to be robust to modeling errors or mismatch between
simulation and real world.

Based on the above assumptions, our proposed DRRL
tackles robust RL as a dynamic multi-task learning process
on progressive task sequence.
Definition 1 (Dynamic Progressive Tasks). Dynamic
progressive tasks are a sequence of task groups
over a maximum of T training steps: DCT =
{KG1|π0,KG2|π1, ...,KGt|πt−1, ...,KGT |πT−1}, in which
KGt|πt−1 = {k1t , k2t , ..., kit, ...}. Each single task kit
corresponds to a specific variant of the original transition
probability P0:

kit ∼ ωi
t · P0 ∀ task kit ∈ KGt|πt−1, (4)

such that the following three conditions are satisfied.

• The training difficulty levels (DLs) of tasks in the same
group are much the same, i.e., DL(k1t ) ≈ DL(k2t ) · ··.

• The tasks of KGt are generated dynamically according
to the current policy πt−1, i.e., KGt ∼ tasks(πt−1).

• The training difficulty levels of task groups gradually in-
crease, i.e., DL(KGt) < DL(KGt+1).

Thus, the progressive multi-task learning trains a robust
policy with easier tasks first, and then gradually increases the
difficulty level until all the target tasks are traversed.

As shown in Figure 2, we propose Dynamic Robust Re-
inforcement Learning (DRRL). At the iteration t of training,
tasks are firstly generated by the GA-based task generation
module, where the fitness function is defined as the increase
of reward. Then, according to the tasks’ expected rewards,
the task evaluation module will filter out feasible tasks KGt,

which satisfy the appropriate difficulty level for the current
policy πt−1. Based on KGt, policy πt−1 will be trained and
updated to πt. In this way, the feasible tasks at different it-
erations dynamically form an easy-to-hard tasks sequence.
Finally, through task (or perturbation) organization and pro-
gramming, we can accelerate the policy convergence and im-
prove the policy generalization performance.

3.2 Task Generation and Sequencing Mechanism
Existing perturbation-based robust RL approaches perform
perturbations on state observations, actions, or transition
probabilities in the learning process. Unfortunately, most
methods lack guarantees of the perturbation extents of the
transition functions. Hence, as a prerequisite, we adapt the
Wasserstein constraint [Abdullah et al., 2019; He et al., 2022]
to restrict the admissible perturbed transition probabilities
within a Wasserstein ball centered at the original transition
probability P0 of the RL simulator:

Wϵ(P0) = {P(·) : E(s,a)∼P [W2
2 (P(·|s, a),P0(·|s, a))] ≤ ϵ}.

(5)
Here, ϵ ∈ R+ is a hyper-parameter used to specify the

maximum Wasserstein bound. In our method, only the transi-
tion probabilities that satisfy the Wasserstein constraint (i.e.,
P ∈ Wϵ(P0)) will be chosen for robust RL training.

Task Generation
Sampling tasks from Wϵ(P0) directly, and filtering out feasi-
ble tasks to get DCT may not be the most sample efficient
way. Thus, we adopt genetic algorithms (GAs) to gradu-
ally generate appropriate tasks. GA is a kind of search al-
gorithm inspired by the process of natural selection, where
a population of size NP is evolved iteratively [Pan et al.,
2019]. In our GA variant, the population is composed of can-
didate tasks k, represented by a group of simulation param-
eters k = {p1, p2, · · ·, pn}, where the simulation parameters
are restricted to obtain the variations of transition dynamics
satisfying the Wasserstein constraints in Eq. 5. For each task
k, we calculate the fitness score as:

fitness(k) =
R(πi|k)−R(πi−1|k)

R(πi−1|k)
. (6)

R(π|k) = E[
T−1∑
t=0

γt · r(st, at)|k]. (7)
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Figure 3: An example of Robust Policy Network.

Here, R(πi|k) and R(πi−1|k) are the task’s expected re-
ward of the current policy and the last policy, respectively.
The fitness function defines the difficulty of a task to be the
increase of reward, taking into account the policy change be-
tween the previous iteration and the current iteration [Xu et
al., 2020]. The task with high fitness indicates that the policy
improves the task’s reward significantly in the current itera-
tion, and is more likely to learn better in the next iteration.
On the contrary, the task with low fitness indicates that (1)
the current policy does not have enough competence to han-
dle it and may wait to be learned at a later iteration; or (2) the
current policy performs enough well on this task having no
space to further increase and do not need to be trained repeat-
edly. Therefore, the tasks with higher fitness are viewed with
more appropriate difficulty for the current policy.

The goal is to find a group of tasks with higher fitness
scores. At every generation, each task k is evaluated using
Eq. 6, produces a fitness score, and is sorted according to the
score. The top K candidates (called parents) are kept to the
next generation. Then a two-point crossover of the selected
parents is used to generate their child candidates (called off-
spring). Also, random mutation is applied to the child can-
didates with the mutation rate Pm. By running such a GA
algorithm, we aim to gradually generate appropriate tasks for
the current policy.

Task Evaluation
In task generation, a group of training tasks with high fit-
ness scores are outputted. However, the increase-based fitness
function neglects the current expected reward. For example,
one task with a high fitness score may have an extremely low
expected reward and is still a difficult task for the current pol-
icy. Thus, we consider the tasks with both high fitness scores
and appropriate expected rewards to be feasible tasks, used
for training the policy. Here, we give a definition on the fea-
sible task:

Definition 2 (Feasible Task). For a policy π, we consider a
task k to be a feasible task if π on task k is able to receive
expected reward Rmin ≤ R(π|k) ≤ Rmax.

On the one hand, R(π|k) ≥ Rmin guarantees task k can
obtain enough reward and the policy π can reach convergence
more easily. On the other hand, R(π|k) ≤ Rmax ensures
we do not generate feasible tasks repeatedly from the already
mastered tasks, as these mastered tasks usually have high re-
wards. The expected reward constraint in Definition 2 fur-
ther guarantees the feasible tasks are at the appropriate level
of difficulty for the current policy. After the task evaluation,
only the feasible tasks KG are filtered out and will be used

Algorithm 1 Iterative training of DRRL
Input: Simulator environment ε; Size of the population NP ; Size

of the parent population K; Training iterations limit N ; Gener-
ation limit G; Wasserstein constraintWϵ(P0)

Output: Robust policy πN

DCT ← {KG0 = ∅,KG1 = ∅, · · · ,KGN = ∅}
KG0 ← {ε}
π0 ← initialize policy(KG0)
R(π0)← E[

∑T−1
t=0 γt · r(st−1, at−1, st, at)|ε]

R1
min ← wmin ·R(π0), R1

max ← wmax ·R(π0)
1: for i = 1 to N do

// task generation
2: population← sample task(Wϵ(P0), NP )
3: for m = 1 to M do
4: fitness← calculate fitness(population)
5: parents← select(fitness,K)
6: population← crossover and mutate(parents,NP )
7: end for

// task evaluation
8: for k in population do
9: R(πi−1|k)← E[

∑T−1
t=0 γt · r((st−1, at−1, st, at)|k]

10: if Ri
min ≤ R(πi−1|k) ≤ Ri

max then
11: KGi ← add task(k)
12: end if
13: end for

// policy update
14: πi ← update policy(πi−1,KGi)
15: R(πi)← Ek∼DCT [E[

∑T−1
t=0 γt · r(st−1, at−1, st, at)|k]]

16: Ri+1
min ← wmin ·R(πi), R

i+1
max ← wmax ·R(πi)

17: end for
18: return πN

for updating the policy. In each training iteration, the final
feasible tasks which are firstly generated by task generation
and then filtered out by task evaluation, meet the difficulty
requirement and guarantee the training stability.

Task Sequencing
In progressive multi-task learning, the difficulty levels for the
feasible tasks should be updated as the policy is constantly
updated. In other words, the values of Rmin and Rmax
should be updated dynamically. For instance, at iteration m,
we generate a group of feasible tasks KGm for the current
policy. Then, we update the policy to πm on these tasks and
obtain the expected reward:

R(πm) = E
k∼DCT (m)

[E[
T−1∑
t=0

γt · r(st, at)|k]]. (8)

KGi represents the generated feasible tasks at iteration i,
and DCT (m) =

⋃m
i=0 KGi is the union of all generated fea-

sible tasks in the first m iterations. In order to set appropriate
difficulty level for the feasible tasks according to current ex-
pected reward R(πm), Rmin and Rmax will be updated as:

Rm+1
min = wmin ·R(πm), Rm+1

max = wmax ·R(πm). (9)

Here, wmin and wmax are hyper-parameters. We suggest
that wmin ∈ (0.5, 1) and wmax ∈ (1, 1.5). With new Rmin

and Rmax, new task evaluation and policy training will be
performed iteratively.
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Under no perturbations Under adversarial perturbations Under test conditions
Hopper HalfCheetah Walker2d Hopper HalfCheetah Walker2d Hopper HalfCheetah Walker2d

TRPO 3118.13 ± 81.02 5001.20 ± 83.59 2666.28 ± 48.93 568.07 ± 125.29 4541.38 ± 153.22 2120.50 ± 133.99 1788.77 ± 997.81 4767.51 ± 223.76 2608.65 ± 131.47
RARL 2914.45 ± 10.20 4428.40 ± 79.12 3171.30 ± 533.35 603.23 ± 52.79 4249.21 ± 86.91 2701.75 ± 124.31 1331.78 ± 1100.44 3877.24 ± 437.72 2808.26 ± 313.82
RAP-3 1243.71 ± 1182.23 4736.52 ± 55.96 2902.37 ± 47.11 903.54 ± 3.01 4498.53 ± 81.04 2732.50 ± 119.78 1516.11 ± 946.96 4398.36 ± 318.14 2491.56 ± 261.71

DR 2139.12 ± 0.63 4713.61 ± 89.52 3149.56 ± 104.35 309.51 ± 1.69 4283.08 ± 85.46 2825.99 ± 62.05 1680.86 ± 756.29 4579.08 ± 141.33 2995.08 ± 220.64
DRRL 3112.81 ± 4.18 5403.69 ± 82.45 3552.98 ± 25.67 1503.39 ± 3.98 4888.74 ± 68.43 3549.95 ± 32.68 2190.15 ± 1103.02 5060.88 ± 323.45 3414.28 ± 268.17

Imp. -0.17% 8.05% 12.04% 66.39% 7.65% 25.62% 22.44% 6.15% 14.0%

Table 1: Policy performance under no perturbations, adversarial perturbations, and test conditions (Bold: best; Underline: runner-up). ‘Imp.’
means the relative improvement percentage of our method against the best baseline.

3.3 Robust Policy Network
Traditional RL policy network takes the current state s as in-
put and outputs a policy π(s, a) = Pr(at = a|st = s), that
gives an agent the probability of taking action a in state s.

In real-world applications, there are always several latent
parameters that fail to be modeled in state space S , such as
friction in autonomous driving scenarios. Traditional policy
networks just take the current state st as input and cannot per-
ceive environmental setting variants. Consequently, an agent
will tend to take conservative actions to avoid catastrophic
events in some worst-cases. To solve this problem, we im-
prove the policy network as follows:

π∗(at|st, st−1, at−1) =

argmax
π

[E[
T−1∑
t=0

γt · r(st−1, at−1, st, at)|P(·)]].
(10)

The agent would take action at according to not only the
current state st but also the previous state st−1 and previous
action at−1. Taking the CarRacing scenario as an example,
although the friction value of the testing scenario is difficult to
obtain, we can infer the friction value indirectly. Generally,
an autonomous vehicle may show different driving statuses
given the same state and action due to different friction coef-
ficients. Hence, in principle, if an autonomous vehicle takes
action at−1 at state st−1, making the state transfer to a new
state st, we can extrapolate the current friction correspond-
ingly. By using st−1, at−1, and st as pre-conditions of policy
π, the improved policy network can represent possible latent
environmental parameters in the training/test scenario.

As shown in Figure 3, if an autonomous vehicle takes ac-
tion turn right at state st−1, and transfer to new state st, we
can infer that the current friction is suitable. Then, accord-
ing to policy π∗(at|st, st−1, at−1), the autonomous vehicle
should take action accelerate. Accordingly, the final conver-
gent policy will perform uniformly well in all cases.

The input space of the proposed policy network will be in-
tuitively increased from |s| to |s|2|a|. Indeed, there are high
temporal correlations between st−1 and st. An agent takes
action at−1 at state st−1 and transfers to state st, and mean-
while the number of possible actions is small. Hence, the in-
put space can be reduced to |s||a|2. In particular, for a given
environmental parameter setting where the transition proba-
bility is fixed, π∗(at|st, st−1, at−1) = π∗(at|st).

In summary, the proposed policy network will not bring
about a serious increase in input space. Moreover, it can gen-
erate a separate policy for each environment parameter set-

ting, while improving the overall performance on different
transition probability variations.

3.4 Progressive Robust Policy Optimization
As mentioned earlier, we attempt to train a robust policy
π∗(at|st, st−1, at−1) to maximize the expected reward in
Eq. 10. Algorithm 1 outlines our approach in detail.

Initially, we train a policy based on the initial environment
parameters of simulator. For the initial policy π0, we calcu-
late the expected reward R(π0) used to specify the appropri-
ate level of difficulty for the feasible tasks at the first iteration
(i.e., R1

min and R1
max). At each iteration i, we firstly use

the GA to generate a group of appropriate tasks. The initial
population of size NP is sampled from Wϵ(P0). At each
generation m, the increase-based fitness scores are calculated
based on Eq. 6, and the top K candidates sorted by the fit-
ness scores are selected as parents. After the crossover and
mutation, a new population is generated, where all the can-
didates satisfy the Wasserstein constraint Wϵ(P0). By itera-
tively running GA, a group of tasks with high fitness scores
are outputted. Next in the task evaluation, we calculate each
task’s expected reward. The tasks satisfying the current diffi-
culty level (see Definition 2) will be labeled as feasible tasks
for the current policy and added to the KGi. Then, we use
feasible tasks KGi to update policy πi−1, with the objective
function given by Eq. 10. Noting that, in our DRRL, any RL
algorithm can be used as the optimizer to train the policy. At
last, we update Ri+1

min and Ri+1
max according to the new policy

πi, making the entire training process from easy to hard. The
above process is repeated until convergence or the maximum
number of iterations N is reached, and the current policy will
be outputted as the final robust policy.

4 Experimental Results and Analysis
In our experiments1, we validate the following hypotheses:
H1. Based on the max-expectation formulation, DRRL is
able to improve the training stability and policy robustness
compared to state-of-the-art methods.
H2. The proposed robust policy network enables the agent
to learn from the history, leading to improved generalisation
across environments with varying dynamics.
H3. The task generation and sequencing mechanism in
DRRL provides better control over the perturbation difficulty,
with the progressively hard task sequence.

1The code is available at https://github.com/li-yike/DRRL.
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Figure 4: Mean reward visualization of heatmap w.r.t. different methods under test conditions.

Figure 5: Training curves for DRRL and the baselines.

4.1 H1. Robustness and Training Stability
Analysis

In this evaluation, we implement the Hopper, HalfCheetah,
and Walker2d benchmarks using OpenAI gym [Brockman et
al., 2016] with the MuJoCo simulator [Todorov et al., 2012].

We compare our method with four state-of-the-art base-
lines. (1) TRPO [Schulman et al., 2015], that realizes a strong
RL without perturbations. (2) RARL [Pinto et al., 2017], that
trains the protagonist agent in the presence of an adversary
agent’s perturbations. (3) RAP [Vinitsky et al., 2020], that
uses a population of adversary agents for perturbations. The
size of the adversary population is 3 (called RAP-3), in our
implementation. (4) DR [Mehta et al., 2020], that trains the
agent under a set of random perturbations.

In our experiments, we use TRPO as the policy optimizer
implemented by a neural network consisting of three hidden
layers with 100 neurons each. We set the learning rate as 0.01
and other hyper-parameters (e.g., batchsize, discount factor)
are tuned by grid search. For the GA implementation, the
population size NP , the parent population size K, and the
mutation rate Pm are set as 250, 50 and 0.9, respectively.

Training Stability
We analyze the training stability by comparing the mean and
standard deviation of rewards at each training iteration. The
comparison is shown in Figure 5, from which we can observe
that for all the three environments, DRRL leads to a more
stable increase of reward and a smaller standard deviation.
These empirically highlight that by controlling perturbation

Figure 6: Policy Performance in the CarRacing environment.

difficulty and implementing training in a scheduled way, our
DRRL gains better training stability.

We then evaluate the learned policy in original environ-
ments without perturbations, and the results are shown in the
first part of Table 1. We can observe that across the three en-
vironments, generally DRRL matches or outperforms all the
baselines. The DRRL policy reaches the highest mean reward
in HalfCheetah and Walker2d, with 8.05%, and 12.04% im-
provements compared to the second best results, respectively.
This indicates that, although trained under perturbations, our
DRRL still achieves high rewards under no perturbations.

Robustness under Adversarial Perturbations
To simulate the uncertain effects of the latent parameters in
the real world, following the idea of RARL, we train another
adversarial agent to add adversarial forces to destabilize the
protagonist agent. Under the well-trained adversary, the per-
formance of the protagonist agent is shown in the second part
of Table 1, from which we can observe that our method con-
sistently outperforms all the baselines. The average improve-
ments of our DRRL to the second best results are 66.39% in
Hopper, 7.65% in HalfCheetah, and 25.62% in Walker2d. It
proves that our method improves the robustness in the pres-
ence of adversarial perturbations, which enables the agent to
better adapt to the latent environmental effects.

Robustness under Test Conditions
Further, we measure the robustness under a variety of test
conditions, where different torso mass and friction coeffi-
cients are set for the three environments. The agent’s rewards
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Figure 7: Visualization of generated perturbations by DRRL and policy robustness performance in iterative training for Walker2d.

across all combinations are visualized in Figure 4, where each
square denotes the mean reward of five trials. We observe that
for all three environments, DRRL shows a significant outper-
formance on robustness against various test conditions. Note
that, for Walker2d, the robust policy learned by DRRL is gen-
eralized to nearly all environmental settings instead of just
earning high rewards locally. In addition, the quantitative ex-
perimental results are shown in the third part of Table 1 which
reports the mean reward with standard deviations under all
test conditions. Clearly, the performance of our DRRL is sig-
nificantly higher than all baselines in these benchmarks.

4.2 H2. Effectiveness of Robust Policy Network

We conduct the following ablation study to demonstrate the
effectiveness of the robust policy network in DRRL. Here,
we compare DRRL with a variant DRRLTPN , where the ro-
bust policy network (RPN) π∗(at|st, st−1, at−1) is replaced
by the traditional policy network (TPN) π∗(at|st) while other
parts are kept unchanged. The ablation study is implemented
in a new benchmark CarRacing, a top-down car racing from
pixels environment with a three-dimensional continuous ac-
tion space (i.e., steer, gas, brake). We introduce perturba-
tions by setting friction coefficient f ∈ [0.6, 1], gas error
Egas ∈ [0, 0.4], steer error Esteer ∈ [0, 0.4], and brake er-
ror Ebrake ∈ [0, 0.4].

Figure 6(a) shows the performance of the racing car under
the handcrafted perturbed environments, where Egas = 0.4,
Ebrake = 0.4, Esteer = 0.4, and f ∈ {0.6, 0.65, 0.7}. Be-
sides, the performance under the test conditions is shown in
Figure 6(b). To generate the test conditions, we take Egas ∈
{0, 0.2, 0.4}, Esteer ∈ {0, 0.2, 0.4}, Ebrake ∈ {0, 0.2, 0.4}
and f ∈ {1, 0.8, 0.6}, and apply them to different combina-
tions (81 in total). As presented in both figures, overall, our
DRRL is consistently superior to other methods. PPO is least
competitive, illustrating that PPO lacks robustness when vari-
ations are introduced in the dynamics. DRRLTPN achieves
better performance, which demonstrates the benefits of pro-
gressive multi-task learning with appropriate task difficulty.
However, it still underperforms the DRRL, illustrating our
proposed robust policy network is vital to improve generali-
sation across varying dynamics.

4.3 H3. Stepwise Analysis
Here, we examine the effectiveness of the GA-based progres-
sive perturbation generation. Figure 7(a) shows the pertur-
bations generated by DRRL in Walker2d, where each point
denotes a two-dimensional adversarial force (D1, D2). We
observe that during the training, the point distributions shift
from the area around the zero point to the boundary. It indi-
cates that along with the improvement of the policy, the gen-
erated tasks for the agent are increasingly difficult. This easy-
to-hard task sequence enables the agent to generalize increas-
ingly well under the test conditions, as shown in Figure 7(b).

5 Related Work
Robust RL problem has been studied extensively from dif-
ferent perspectives. DR-based methods [Peng et al., 2018;
Andrychowicz et al., 2020; Loquercio et al., 2019] introduce
random perturbations by changing simulation parameters.
Another line of works [Pinto et al., 2017; Zhang et al., 2020;
Curi et al., 2021; Jiang et al., 2021] consider the adversar-
ial multi-agent setting. Other works [Wang and Zou, 2021;
Badrinath and Kalathil, 2021] inspired by Robust Markov
Decision Process theory consider the worst-case perturba-
tions from transition probabilities. More recently, there are
some intrinsic motivation methods that train with generated
curriculum [Sheng et al., 2022; Dennis et al., 2020], historical
failures [Song and Schneider, 2022], and gradually changing
bounds [Wu et al., 2021; Liang et al., 2022].

Different from existing works, we reformulate the robust
RL as a max-expectation optimization, and solve it via dy-
namic multi-task learning under a progressive task sequence.

6 Conclusions
In this paper, we make the first attempt to formulate the robust
RL as a max-expectation optimization problem to avoid con-
servative solutions. Then, we propose DRRL, which realizes
dynamic multi-task learning and achieves better organization
of robust RL training. In particular, an effective task gen-
eration and sequencing mechanism with increase-based task
fitness is introduced to gradually generate appropriate tasks
for iterative training. Experimental results including stability
analysis, robustness analysis, stepwise analysis, and ablation
analysis demonstrate the effectiveness of DRRL.
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