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Abstract
Learning by exploration makes reinforcement
learning (RL) potentially attractive for many real-
world applications. However, this learning pro-
cess makes RL inherently too vulnerable to be
used in real-world applications where safety is of
utmost importance. Most prior studies consider
exploration at odds with safety and thereby re-
strict it using either joint optimization of task and
safety or imposing constraints for safe exploration.
This paper migrates from the current convention
to using exploration as a key to safety by learning
safety as a robust behavior that completely excludes
any behavioral pattern responsible for safety vio-
lations. Adversarial Behavior Exclusion for Safe
RL (AdvEx-RL) learns a behavioral representa-
tion of the agent’s safety violations by approxi-
mating an optimal adversary utilizing exploration
and later uses this representation to learn a separate
safety policy that excludes those unsafe behaviors.
In addition, AdvEx-RL ensures safety in a task-
agnostic manner by acting as a safety firewall and
therefore can be integrated with any RL task pol-
icy. We demonstrate the robustness of AdvEx-RL
via comprehensive experiments in standard con-
strained Markov decision processes (CMDP) envi-
ronments under 2 white-box action space perturba-
tions as well as with changes in environment dy-
namics against 7 baselines. Consistently, AdvEx-
RL outperforms the baselines by achieving an av-
erage safety performance of over 75% in the con-
tinuous action space with 10 times more variations
in the testing environment dynamics. By using a
standalone safety policy independent of conflicting
objectives, AdvEx-RL also paves the way for inter-
pretable safety behavior analysis as we show in our
user study.

1 Introduction
In the last two decades, RL has greatly evolved demonstrating
its potential in a wide range of applications including robotics
[Kober et al., 2013], and autonomous driving [Grigorescu et
al., 2020]. To be deployed in the real world, ensuring safety is

a crucial factor that RL inherently lacks due to its exploratory
learning. One way safety can be ensured in RL is by modify-
ing its objective to optimize both the safety goals and the task
learning [Kim et al., 2020] [Geibel, 2006]. In this approach,
the RL agent must explore a significant number of safety-
violating states which inherently leads to sub-optimal poli-
cies due to the conflict between the task learning and safety
objectives [Thananjeyan et al., 2021]. Another way for en-
suring RL safety is to enforce safe exploration by endowing
explicit constraints. Manual specification of such constraints
[Levine et al., 2018] though possible in environments with
known dynamics, cannot be generalized to any slight changes
in those environments. Besides, safety specifications based
on estimating the environment dynamics during offline learn-
ing [Bastani, 2021] [Alshiekh et al., 2018] are not sufficient to
assure that the RL agent will behave safely during runtime for
two reasons. First, the details of the environment dynamics
can’t be fully known at training time, which partially invali-
dates the initial assumptions about the environment modeling
used to design the safety specifications. Second, RL agents
are susceptible to even subtle perturbations in their observa-
tions and actions, known as adversarial examples [Chen et al.,
2019] [Lee et al., 2020] which introduces novel perturbations
in the environment model. Although a vulnerable policy un-
der adversarial attacks cannot be regarded as truly safe in the
physical world, there is little research studying the robustness
of the safe RL methods against those attacks. In this paper,
we investigate the following question: how can we ensure
a robust safety for the RL agent without impairing its task
learning under deliberate perturbations?

We propose the Adversarial Behavior Exclusion (AdvEx-
RL) framework for safe RL. AdvEx-RL first trains an ad-
versarial policy to interactively extract unsafe behaviors by
maximizing the safety violations in the environment. Then,
it learns a safety policy by maximizing its divergence from
the adversarial policy. This approach is different from ad-
versarial training which requires the agent to learn its task in
a zero-sum game with the adversary. Instead, we train the
adversarial policy to estimate the safety of each encountered
state and to learn the underlying behavior most likely violates
the safety constraints in the environment. Our contributions
are three-folded: (1) developing a task-agnostic safety learn-
ing framework, AdvEx-RL, where the RL agent can use it
as a safety firewall to avoid unsafe behaviors, (2) introducing
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Figure 1: AdvEx-RL Safety Framework

a new safety learning method separate from task learning by
deriving a state-action distribution that is most divergent from
the state-action distribution of an approximated optimal ad-
versary, and (3) providing a theoretical proof for the safety of
AdvEx-RL along with empirical evaluations against 7 base-
lines in 3 continuous MuJoCo environments from [Thanan-
jeyan et al., 2021] and SafetyGym environments [Ray et al.,
2019] . Unlike prior safe RL studies, in our empirical evalua-
tion, we consider factors such as robustness and frequency
of deadlocks. We also demonstrate the interpretability of
AdvEx-RL through a study conducted on 41 end users using
an extended version of CAPS [McCalmon et al., 2022].

2 Related Work
We adopt 3 algorithmic concepts from the literature: (1)
safe exploration via online shielding (2) value function-
based safety estimation, and (3) the use of two policies.
AdvEx-RL integrates the shielding concept from [Alshiekh
et al., 2018; ElSayed-Aly et al., 2021; Bansal et al., 2017;
Fisac et al., 2019] to prevent the agent from visiting un-
safe states during runtime. We employ a post-posed [Al-
shiekh et al., 2018] shield in AdvEx-RL, but instead of
deriving the safety probabilities using formal methods, we
use the value-function based safety estimation [Geibel and
Wysotzki, 2005], [Hans et al., 2008; Srinivasan et al., 2020;
Thananjeyan et al., 2021].

In [Geibel and Wysotzki, 2005; Hans et al., 2008], Q-
learning is used for the risk estimation and to derive the risk-
averse and rescue policies [Mihatsch and Neuneier, 2002].
The safety violations is estimated in [Srinivasan et al., 2020]
through a safety critic implemented using DQN. Then, the
safety Q-function estimation is utilized to optimize a La-
grangian relaxation (LR) objective to derive a safety policy.
[Srinivasan et al., 2020] shows that any policy constrained
under a safety Q-function is guaranteed to be safe. Recov-
eryRL [Thananjeyan et al., 2021] adopts the concept of safety
Q-function [Srinivasan et al., 2020] to develop a shielding
mechanism. They use offline demonstration data collected
from human-supervised policy to train a safety estimator, Q-
risk then derives a model-free recovery policy by defining an
LR objective function that minimizes the Q-risk. The per-
formance of [Thananjeyan et al., 2021] is greatly reliant on
the human-supervised offline data. In AdvEx-RL we employ
a similar shielding mechanism by applying a threshold on

the safety estimation from a critic network [Srinivasan et al.,
2020; Thananjeyan et al., 2021]. However, instead of training
a different DQN safety critic through exploring a pre-training
environment [Srinivasan et al., 2020] or on human supervised
data [Thananjeyan et al., 2021], we acquire the safety critic
from the critic network of a trained adversary.

In AdvEx-RL, we follow the strategy of using two separate
policies i.e. task policy and safety policy similar to[Bastani,
2021; Thananjeyan et al., 2021]. In [Bastani, 2021], a shield
mechanism is used to switch between the task and safety poli-
cies. The safety policy is derived using a non-linear model
predictive controller (NMPC) that in the advent of probable
safety violations, resets the agent to some fixed initial safety
point within the environment. Whereas [Thananjeyan et al.,
2021] uses a similar concept but instead of resetting the agent
to some fixed initial point, they reset the agent to nearby safe
points. The safety policy in NMPC [Bastani, 2021] and MPC
[Thananjeyan et al., 2021] requires prior knowledge about the
environment dynamics or demonstration data.

3 Problem Statement
We consider the standard CMDPs, M =
(S,A, µ,P(.|., .),R, γ, C) where S and A denote the state
and action space; µ and P : S × A × S −→ [0, 1] denote the
initial state distribution and state transition dynamics respec-
tively. R : S ×A −→ R is the reward function; γ denotes dis-
count factor; and C = {ci : S ×A S−→ R ≥ 0; i = 1, 2, .., T}
denotes the set of cost associated with safety constraint vio-
lations in any trajectory episode τ = {s0, a0, ..., aT−1, sT }
with a maximum trajectory length of T . We assume that
accomplishing the task goal or violating a safety constraint in
M leads to episode termination. Let Π be the set of station-
ary MDP policies for M such that πtask, πadv, πsafety ∈ Π
denote the task policy, adversary policy and safety policy
respectively. The objective of task policy πtask is to learn the
optimal control to maximize the expected discounted reward
at time t; Rπtask = Eτ∼πtask [

∑T
t′=t γ

t
′
−trt]. On the other

hand, the objective of adversary policy πadv is to maximize
the expected discounted cost associated with safety violations
Cπadv = Eτ∼πadv [

∑T
t′=t γ

t
′
−tct]. AdvEx-RL works like

a protective safety firewall integrated with a safety shield
allowing task policy πtask and safety policy πsafety to be
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learned and executed completely independent of each other
as depicted in Fig.1.

4 Adversarial Behavior Exclusion for Safe
Reinforcement Learning

AdvEx-RL (Fig.1) uses a post-posed shielding mechanism to
assess the agent’s current safety and act appropriately follow-
ing either its task policy or safety policy. The task policy is
any conventional RL policy optimized to learn a certain task
while the safety policy is a task-agnostic policy that aims to
only maximize the agent’s safety in a certain environment.
When the task policy takes the agent closer to a potentially
dangerous/unsafe state, the safety policy is triggered by the
shield to rescue the agent to a nearby safe state.

4.1 First, Learn to be Unsafe
AdvEx-RL first extracts unsafe behavior by interactively
training an optimal adversary in M. The adversary, simi-
lar to any conventional RL, learns an optimal policy πadv to
maximize the accumulated cost associated with the safety vi-
olations through the exploration-exploitation principle of RL.
To improve the exploration of the adversarial policy, we use
off-policy learning with entropy regularization by maximiz-
ing the following objective:

J(ϕ) = E(st,at)∼ρπadv [c(st, at) + αH(πadvϕ (.|st))] (1)

where H(πadvϕ (.|st)) is the policy entropy and α is the
temperature parameter. Using the maximum entropy pol-
icy objective [Haarnoja et al., 2018a], the optimal state-
action functionQadv

∗
(s, a) can be approximated through soft

Q-function that is evaluated with Bellman backup operator
τπadvas:

τπ
adv

Qadv(st, at) ≜ c(st) + Est+1∼p[V (st+1)] (2)

where,

V (st) = Eat∼πadv
[Qadv(st, at)− logπadv(at|st)] (3)

The optimal Qadv
∗
(s, a) provides the estimation of the ex-

pected cost over any trajectory τ ∈ M; Qadv
∗
(s, a) =

Eτ∼πadv∗ [
∑T
t′=t γ

t
′
−tc(st)]. Therefore, we approximate

Qadvφ (s, a) by minimizing soft bellman residual [Haarnoja et
al., 2018a] and use it to quantify safety violation as we will
show in Section 4.3 . (Details on the training of the adversar-
ial policy are given in Appendix1 A, Algorithm 1.)

4.2 Learn to be Safe from The Worst Behavior
The second phase of AdvEx-RL is to learn a task-agnostic
safety policy exploiting the adversarial policy πadv under the
following assumptions:
Assumption 1: Given CMDP M, with the state space S =
Ssafe ∪ Sunsafe, if a state s ∈ Ssafe have any neighboring
unsafe state s̃ ∈ Sunsafe, then the transition probability de-
noting safety violation upon taking an available action a at
that state P (s̃|s, a) > 0.

1Appendix link

Assumption 2: The adversarial policy has sufficiently ex-
plored M and is optimal πadv

∗
such that Qadv

∗ ≥ Qadv
′

where πadv
′

is any sub-optimal adversary policy. Therefore
Qadv

∗
(.) can quantify the expected cost for any trajectory

τ ∈ M.
Assumption 3: Every state has at least one neighboring
safe state i.e. at any state st, there exists at least one safe
action that can lead the agent to a neighboring safe state;
∃at s.t P(st+1|st, at) > 0 where st+1 ∈ Ssafe.
Theorem 1 (Reduction of safety violation probability):
The probability of following a trajectory that violates safety
can be reduced by increasing KL divergence between the ad-
versarial policy πadv and any arbitrary policy π′.
Proof
Let’s consider the objective of the optimal adversary in M
which maximizes the expected cost (Eq.1). Stationary policy
πadv ∼ πadv

∗
represents a one-to-one correspondence [Put-

erman, 2014] with the state-action distribution in M which
can be computed by:

ρπ
adv

(s, a) = µ(s0)
T∏
t=1

P(st|st−1, at)π
adv(at|st−1) (4)

From inverse reinforcement learning principle [Ghasemipour
et al., 2019], the expected return of an arbitrary policy π

′
can

be computed with respect to the optimal adversary policy (i.e.
expert) πadv as:

Eτ∼π′ [
∑
t

c(st, at)] = Eτ∼π′ [
∑
t

ρπ
adv

(st, at)

ρπ′(st, at)

· log ρπ
′

(st, at)

ρπadv (st, at)
]

∝ E(s,a)∼ρπ′ (s,a)[
ρπ

adv

(st, at)

ρπ
′
(st, at)

· log ρπ
′
(st, at)

ρπadv (st, at)
]

= −DKL(π
′
||πadv)

(5)

This intuitively means that, as an arbitrary policy π
′

becomes
more similar to an optimal adversary πadv by minimizing the
KL divergence DKL(π

′ ||πadv), the expected cost associated
with safety violations increases. Meanwhile, according to
the probabilistic inference [Levine, 2018], the probability of
choosing a trajectory τ involving safety violation under πadv
can be given by

pπadv (τ) ∝ E(
∑
t

γtct) (6)

Then optimal πadv can be denoted as:

logpπadv (τ) = log

∫
pπadv (τ)dτ

≥ Eτ∼π′ [
∑
t

γtct)]−DKL(π
′
(τ)||πadv(τ))

(7)
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The KL divergence term in the above equation acts like a
penalty regularization [Goo and Niekum, 2022] that guides
the arbitrary policy π

′
closer to the optimal adversary i.e

DKL → 0 which in turn maximizes the expected cost. This
also indicates that if the trajectory distribution under the ar-
bitrary policy π

′
diverges from the trajectory distribution of

the optimal adversary, it will then minimize the expected
cost. Since diverging from a trajectory distribution is lower
bounded by its state distribution [Ke et al., 2021] and con-
sidering assumption 3, maximizing KL divergence of the ar-
bitrary policy with respect to the optimal adversary policy
guarantees to reduce the probability of selecting a trajectory
leading to safety violations.

We use this theorem as the learning principle of the safety
policy, where the state-action distribution of policy πsafe is
derived by maximizing its KL-divergence from πadv accord-
ing to the following objective:

J(θ) = argmax
θ

Eτ∼πsafe [DKL(πsafeθ (τ)||πadvϕ (τ))] (8)

πsafe is trained by taking samples from a set of tra-
jectories τπsafe ; where the distribution of any trajectory
τ = {s0, a0, s1, a1, ...., aT , sT } under πsafe is given by
ρπ

safe

(τ) = µ(s0)
∏T
t=1 π

safe(at|st)P(st+1|st, at) then:

DKL(πsafe(τ)||πadv(τ)) =
∑

τ∼τ
πsafe

ρπ
safe

(τ)

log[
∏
t

πsafe(at|st)
πadv(at|st)

]

= E(st,at)∼πsafe [logπsafe(at|st)
− logπadv(at|st)]

(9)

Here the KL divergence DKL(πsafe(τ)||πadv(τ)) is upper
bounded by Pinsker’s inequality i.e. the square root of total
variational distance between the trajectory distribution under
πsafe and πadv . To ensure that πsafe is not only divergent
from πadv but also will rescue the agent to a safe state, we
change the objective in Eq.8 to state-pairwise safety learning
by optimizing πsafe as:

J(θ) = argmax
θ

E[
∑
τsafe

st∼τsafe,at∼πsafe(st)logπ
safe
θ (at|st)

− (Qestadv

ψ (st, at)− logπadvϕ (at|st))]
(10)

Where Qestadv (st, at) is derived by minimizing objective:

J(ψ) =
∑

(st,st+1)∼τsafe, at+1∼πsafe(st+1)[
1

2
(Qestadv

ψ (st, at)

− (C(st) + γQadvφ (st+1, at+1)))
2]

(11)

Maximizing Eq.10 ensures that the trajectory distribution of
the safety policy πsafe is diverse from the trajectory distribu-
tion of πadvϕ while increasing the probability of sampling tra-
jectories that have lower expected safety violation cost. Con-
sequently, πsafe will rescue the agent to nearby states that

have lower values for the adversary or in other words safer
for the agent.

Sampling trajectories directly under πsafe would lead to
poor exploration. Therefore, we train πsafe using a roll-
out mechanism. This mechanism generates a demo trajec-
tory τdemo using either the adversarial policy πadvϕ , the task
policy πtask, or randomly sampled actions. For each state
st ∈ τdemo; safety policy πsafe generates new trajectories
τπsafe ∼ (st, st+1, C(st)) which are then used to train the
safety policy πsafe by maximizing the objective function of
Eq.10 in an off-policy fashion. (More details on AdvEx-RL
safety policy training can be found in Appendix B, Algorithm
2).

4.3 Online Execution with Safety Shielding
We adopt the strategy of using a post-posed shield from [Al-
shiekh et al., 2018] only during the online execution. Unlike
[Srinivasan et al., 2020; Thananjeyan et al., 2021], which sep-
arately trains a DQN safety critic functionQπrisk for safety es-
timation, we instead utilize the critic function of the optimal
adversary Qadvφ that we trained previously (Eq.2) to imple-
ment the safety shield as:

Shield(st, at) : Q
adv
φ (st, at) > Tsafety (12)

where Tsafety is a predefined threshold value such that at any
state st and for any action at ∼ πtask(st); if Shield(st, at)
is triggered, then the AdvEx-RL safety firewall replaces the
selected action at by a safer action given by the safety policy
asafet ∼ πsafety(st). The value of Tsafety is environment-
specific and can be chosen based on a sensitivity test for each
environment (see Appendix C for details about the sensitivity
test. Algorithm 3 in Appendix D shows the online execution
of AdvEx-RL.)
Deadlock Side Effect: Providing safety in 2 separate policies
is prone to deadlock as the agent may loop between the same
states due to switching between πsafe and πtask. Suppose
at any timestep t, for action atc ∼ πtask(.|stc) at a critical
state stc , the shield is triggered. From this state stc onward,
the shield will make sure that the agent keeps following a safe
trajectory using πsafe until it reaches a safe state sts such that
for action atask ∼ πtask(.|sts); Qadvφ (sts , atask) < Tsafety
is satisfied. Afterward, the agent can select actions using its
task policy πtask unless the shield is triggered again. How-
ever, due to the presence of external perturbation or inherent
weakness within the task policy πtask, the agent might cycle
back to the same old critical state stc while selecting action
atc ; resulting in an inadvertent deadlock.

Although deadlock can hamper the agent’s task, it can save
the agent from dangerous situations. For example, a dead-
lock can be a safe, temporary solution for an expensive robot
until it gets rescued by human operators. To examine the pro-
posed AdvEx-RL for deadlocks, we empirically analyze the
frequency of deadlocks in the tested environments using the
deadlock detection proposed in [Ye et al., 2022].

5 Practical Implementation
The adversarial policy was trained using SAC [Haarnoja et
al., 2018b] since it provides better exploration. The task pol-
icy was also trained using SAC but it can be trained using any
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RL algorithm. The safety policy was trained by performing
gradient descent on the objective function in Eq.10. The post-
posed shield was implemented as a safety assurance layer that
explicitly replaces any unsafe action selected by the task pol-
icy with a safe action chosen by the safety policy during exe-
cution.

6 Experiments
The experiments in this paper are conducted to answer the
following questions: (1) how robust is AdvEx-RL compared
to the baselines under deliberate uncertainty in form of exter-
nal perturbations and altered environment dynamics? (2) how
does AdvEx-RL’s safety policy affect the agent’s task perfor-
mance? (3) how much does the safety policy contribute to the
safety of AdvEx-RL? (ablation analysis) (4) how often does
the deadlock occur in AdvEx-RL and the baselines? and (5)
how transparent and interpretable is the behavior generated
by AdvEx-RL to the end users? All the codes2 relevant to the
experiments are available online.

6.1 Environments
We conducted our experiments on three continuous MuJoCo
CMDPs [Thananjeyan et al., 2021] (i) Maze (ii) Navigation 1,
and (iii) Navigation 2. In these environments, the agent’s task
is to reach the goal state while avoiding collisions with ob-
stacles, walls, or boundaries. In addition, we also conducted
experiments on SafetyGym environments [Ray et al., 2019].
(See Appendix E for more details about the environments.)

6.2 Baselines
We have tested AdvEx-RL against 7 baselines; SAC (without
any safety measures), Lagrangian Relaxation (LR) [Thanan-
jeyan et al., 2020], Safety Q-Functions for RL (SQRL)
[Srinivasan et al., 2020], Risk Sensitive Policy Optimization
(RSPO) [Mihatsch and Neuneier, 2002], Critic Penalty Re-
ward Constrained Policy Optimization (RCPO) [Tessler et
al., 2018], Reward Penalty (RP) [Thananjeyan et al., 2021],
and Recovery RL Model Free (RRL-MF) [Thananjeyan et al.,
2021]. (More details on the baselines are in Appendix F. In
addition, see Appendix G for further implementation details
of AdvEx-RL and the baselines.)

6.3 Performance Metrics
Assuming a maximum episode length Tmax in any environ-
ment, the following cases might happen: (1) the agent ac-
complishes its task within Tmax without any safety viola-
tions, (2) it violates at least one safety constraint and termi-
nates, or (3) it exhausts Tmax without accomplishing its task
or violating any safety constraints. Considering these cases,
we use the following two performance metrics in our exper-
iments: (i) Safety(%): This metric measures the portion of
time the agent acts safely over its maximum episode length.
Given Tmax; the function F (.) counts the total number of
timesteps before the episode termination caused by safety vi-
olation. Then Safety% is measured as a function of trajectory

2https://github.com/asifurrahman1/AdvEx-RL

τ :

Safety(%) =

{
F (τ)
Tmax

× 100 ; if ∃st ∼ τ e.g. C(st) > 0
1× 100 ; otherwise

(13)
(ii) Success-Safety(%): Assuming the AdvEx-RL agent’s
task is to reach a goal state G, both the reward and success
are measured in terms of how close the agent is to G. The
agent is considered successful in accomplishing its task when
the episode ends while it is within a predefined minimum dis-
tance from G Mindistance. If the maximum distance from
G is given by Maxdistance and the agent’s current Euclidean
distance from the goal is D(st,G), then the Success-Safety %
measures the trade-off between safety and task objectives by:

Success− safety(%) =
D(st,G)−Maxdistance

Mindistance −Maxdistance
×Safety(%)

(14)

6.4 Robustness Analysis
While prior safe RL works focus on the performance opti-
mality, we argue that optimality is not enough and we have
to study the robustness of the safety solutions against deliber-
ately crafted perturbations. Therefore, we evaluate the robust-
ness of the safety performance of the baselines and AdvEx-
RL under different magnitudes and types of uncertainty. We
injected two types of uncertainty into the testing environ-
ments; external action space perturbations and changes to the
environment dynamics (such as air resistance and noise). For
the first type, we kept the environment dynamics the same as
the training environment while incorporating two white-box
action space perturbations; random and alternative adversar-
ial action (AAA) perturbations from [Tessler et al., 2019].
(See Appendix H for details.)

6.5 Results
Evaluation of Safety Robustness: The results of the safety
robustness analysis are presented in Fig.2 and Fig.3. The re-
sults are averaged over 100 test episodes. Evidently, the base-
lines showed optimal safety performance under no external
perturbations or dynamics changes. However, a significant
deterioration of both safety(%) and success-safety(%) can be
seen for most of the baselines with increasing in perturbation
rates. Performance deterioration is more visible in the case of
the AAA perturbation than random perturbation, which indi-
cates that the prior safe RL techniques are not robust against
deliberate perturbations. Moreover, changes in the environ-
ment dynamics negatively impact the safety robustness of the
baselines as well as AdvEx-RL. Interestingly, in Fig.2, we
observe that SAC provides reasonable safety which is due
to its default robustness properties [Eysenbach and Levine,
2021]. RRL-MF provides the second-best safety robustness,
particularly for higher perturbation rates and the reason for
this could be its usage of explicit unsafe demonstration data
provided by experts during its training. In both uncertainty
types, AdvEx-RL clearly outperforms the baselines with a
minimum safety(%) over 75% and success-safety(%) over
80%. This empirically proves the robustness of AdvEx-RL
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Random Action Perturbation AAA Perturbation

Figure 2: Safety(%) and success-safety(%) performance of the baselines and AdvEx-RL under the influence of various rates of external
action perturbations in the Maze (top row) and Navigation 2 (bottom row) environments suggest that baseline methods are not robust, and
their performance decreases when the attack rate increases. During this analysis, the dynamics of the environments were kept the same during
training and testing. (See Appendix H for results on Navigation 1).

Random Action Perturbation AAA Perturbation

Figure 3: The robustness performance of AdvEx-RL and baselines on the Navigation 1 test environment with 10 times more variation in
dynamics than its training environment while being exposed to external perturbations. The results show that AdvEx-RL is more robust to
variations in the environment dynamics than other baselines. (Please refer to Appendix K for the detailed experiment)

against perturbations and demonstrates its generalizability to
unseen scenarios. (Please refer to Appendix I, to see results
in SafetyGym environments. Also the switching between task
policy and safety policy is provided in Appendix J.)
Ablation analysis: AdvEx-RL, has three components that
contribute to its safety performance i.e (1) the task policy, (2)
the safety policy, and (3) the shield. To evaluate the con-
tribution of the safety policy to the overall performance, we
conducted a thorough ablation study , the details of which can
be found in Appendix L.
Deadlock analysis: We analyzed the presence of deadlock
in the baselines while subjected to different rates of AAA

perturbation (ranging from 0% to 100%). Using a 20-step
look-ahead for deadlock cycle detection across 100,000 test
episodes, we found no deadlock cycles in the baselines and
AdvEx-RL in all three environments. (See code supplements
for deadlock experiment details).
Interpretability Analysis: Since safety-assurance ap-
proaches, in general, compromise system performance, we
must ensure that human practitioners and users trust them,
lest they ignore them and negate their effectiveness. Trust-
worthiness regarding how safe an agent is depends on how
transparent its behavior is to the end users. For the joint
task-safety optimization techniques [Srinivasan et al., 2020;
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Tessler et al., 2018; Liu et al., 2022], it is not possible to
pinpoint what influences the agent’s behavior, task, or safety
objective. AdvEx-RL, however, uses two separate policies
for the task and safety and is, therefore, capable of explaining
what influences its behavior at each time step. To analyze the
interpretability of AdvEx-RL, we extend the explainable RL
method CAPS [McCalmon et al., 2022] into safety-CAPS to
explain the impact of safety violations on the agent’s behav-
ior and to provide a directed graph with an explanation of the
agent’s safety policy by extending CAPS with two criteria;
risk estimation and the episode length in time steps. We use
the safety-CAPS graphs to answer the question of ”why the
agent is taking certain actions at certain states?”. We then add
more details to the CAPS graph about how, when, and why
the safety policy and safety shield are triggered during safety
violations. Episode length (TS) measures the time steps the
agent takes to accomplish its task. Perturbing the agent’s pol-
icy during safety violations could result in the agent taking a
longer time to reach its goal state. Hence, we use this metric
to answer the question of ”why the agent is not taking action
a′ instead of a at state sc?” by attaching the timesteps to each
abstract state of the CAPS graphs. The risk estimation (RE),
on the other hand, measures how likely the agent will fail its
task when it takes action a′ instead of following its policy
and taking a at a critical state sc due to a safety violation. To
estimate the risk, we build on the risk estimation approach
proposed in [Uesato et al., 2018] for uncovering failures in
RL agents by sampling the agent in states where its safety is
violated. We use a neural network with two fully-connected
layers of 64 neurons each, and train it to predict RE from each
state st. An example of the safety-CAPS graph for Naviga-
tion 2 is displayed in Fig.4.

Figure 4: An example of the graphs generated by safety-CAPS for
Navigation 2.

We conducted a user study using the Navigation 2 environ-
ment and presented 41 Amazon Mechanical Turk (AMT)
workers with the safety-CAPS graphs and asked them 8 ques-
tions (See Appendix M for the study and the details of the
questions) about their interpretability of AdvEX-RL policies.
A summary of the accuracy of the users’ answers to each
question is shown in Figure.5.

In questions 1,2,5, we asked the users to identify optimal
actions the agent will take at a certain state with its task pol-
icy (Q1), task policy under attack (Q2), and task policy under
attack but with AdvEx-RL’s safety policy (Q3). The partici-
pants demonstrated a good understanding of the environment,
with an accuracy rate above 80% in those questions. Notably,

the accuracy rate of Q5 is above 90%, which indicates that
the users can understand the purpose and impact of the safety
policy on the agent’s behavior. This clearly shows the inter-
pretability of AdvEx-RL for end-users regardless of their RL
background.

Q3 and Q6 are true or false questions where we asked the
users to identify if the agent will terminate in a dangerous
state under an attack without (Q3) or with (Q6) the safety
policy. Roughly 70% and 85% of the users correctly an-
swered Q3 and Q6, respectively. The increase in the accu-
racy of Q6 demonstrates that the safety-CAPS graph with the
safety policy can better convey the reason behind the agent’s
actions. Q4 and Q7 are counterfactual reasoning type ques-
tions where we asked the users why the agent terminated in
dangerous states under attack (Q4) but successfully avoided
the dangerous states using the safety policy (Q7). We think
the low accuracy for those questions is due to their difficulty
and demand in terms of logic and analytical skills, which can
be challenging to non-technical participants who do not have
RL background. Lastly, Q8 is a comprehensive measure of
the users’ understanding of the overall impact of the safety
policy on the agent’s behavior. Approximately 73% of the
users successfully understood how the safety policy protects
the agent from choosing unsafe actions. At the same time,
we also need to consider the fact that the length of the study
and the dependent relationship of questions generally pose
challenges to the participants. If they fail to understand the
central idea of the study, they tend to perform badly subse-
quently. All the participants who incorrectly answered Q8
have at least answered 2 or 3 questions incorrectly before.
Therefore, we believe our AdvEx-RL is interpretable by non-
technical users using the graphs generated by safety-CAPS.

Figure 5: The summary of the accuracy of users’ answers to the 8
questions in the user study.

7 Conclusion
In this paper, we introduced an alternative view on safety
learning for RL through our task-agnostic safety framework
AdvEx-RL. We empirically showed that AdvEx-RL is effec-
tive in ensuring safety even in uncertain conditions. Through
a user study conducted on 41 non-technical end users, we also
demonstrated the transparency of AdvEx-RL by explaining
its behavior using safety-CAPS. In future work, we plan to
extend this framework to multi-agent settings along with an
explainable safety method.
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ton Maximilian Schäfer, and Steffen Udluft. Safe explo-
ration for reinforcement learning. In ESANN, pages 143–
148. Citeseer, 2008.

[Ke et al., 2021] Liyiming Ke, Sanjiban Choudhury, Matt
Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f-divergence minimization. In In-
ternational Workshop on the Algorithmic Foundations of
Robotics, pages 313–329. Springer, 2021.

[Kim et al., 2020] Youngmin Kim, Richard Allmendinger,
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