
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts

Shubham Sharma1 , Jette Henderson2 and Joydeep Ghosh1

1The University of Texas at Austin
2TecnoTree

{shubham_sharma, jghosh}@utexas.edu, jette.henderson@gmail.com

Abstract
Three key properties that are desired of trustwor-
thy machine learning models deployed in high-
stakes environments are fairness, explainability, and
an ability to account for various kinds of "drift".
While drifts in model accuracy have been widely
investigated, drifts in fairness metrics over time re-
main largely unexplored. In this paper, we pro-
pose FEAMOE, a novel "mixture-of-experts" in-
spired framework aimed at learning fairer, more
interpretable models that can also rapidly adjust
to drifts in both the accuracy and the fairness of a
classifier. We illustrate our framework for three pop-
ular fairness measures and demonstrate how drift
can be handled with respect to these fairness con-
straints. Experiments on multiple datasets show
that our framework as applied to a mixture of linear
experts is able to perform comparably to neural net-
works in terms of accuracy while producing fairer
models. We then use the large-scale HMDA dataset
and show that various models trained on HMDA
demonstrate drift and FEAMOE can ably handle
these drifts with respect to all the considered fair-
ness measures and maintain model accuracy. We
also prove that the proposed framework allows for
producing fast Shapley value explanations, which
makes computationally efficient feature attribution
based explanations of model decisions readily avail-
able via FEAMOE.

1 Introduction
The field of responsible artificial intelligence has several
desiderata that are motivated by regulations such as the Gen-
eral Data Protected Regulation [Butterworth, 2018]. These
include: ensuring that an AI model is non-discriminatory and
transparent; individuals subject to model decisions should
have access to explanations that point a path towards recourse;
and models should adapt to any changes in the characteristics
of the data post-deployment so as to maintain their quality and
trustworthiness.

Most approaches towards the mitigation of any form of
bias assume a static classifier. A practitioner decides on some
definition of fairness, trains a model that attempts to enforce

this notion of fairness and then deploys the model. Many of the
fairness definitions are based on model outcomes or on error
rates (the gap between true and/or false positive rates) that are
associated with different subgroups specified by a protected
attribute. The goal is to reduce the difference between these
error rates across relevant subgroups. For example, average
odds difference [Bellamy et al., 2018] is a measure signifying
equalized odds and is given by the sum of the differences
in both true positive and false positive rates between two
groups, scaled by a factor of 0.5. Equality of opportunity and
demographic parity [Barocas et al., 2019] are also popular
definitions of fairness. Recently, fairness in terms of a gap of
recourse has been proposed, where recourse is defined as the
ability to obtain a positive outcome from the model [Sharma
et al., 2020a]. While the suitability of a fairness measure is
application dependent [Mehrabi et al., 2019; Barocas et al.,
2019], demographic parity and equalized odds remain the most
popularly used, and the need for recourse gap-based fairness
is being increasingly recognized [Karimi et al., 2020].

However, static models can encounter drift once deployed,
as the statistical properties of real data often change over time.
This can lead to deteriorating performance. Model drift can oc-
cur when the properties of the target variable change (concept
drift) or when the input data distribution changes, or both. The
performance of models has largely been measured through
accuracy-based metrics such as misclassification rates, F-score
or AUC. [Stanley, 2003]. However, a model trained in the past
and found to be fair at training time may act unfairly for data
in the present. Addressing drift with respect to fairness in
addition to accuracy has remained largely unexplored though
it is an important aspect of trustworthy AI in practice.

Explainability of individual model outcomes is another prin-
cipal concern for trustworthy ML. Among many methods of
explanations in terms of feature attribution, [Bhatt et al., 2020],
the SHAP approach based on Shapley values is particularly
popular as it enjoys several axiomatic guarantees [Lundberg
and Lee, 2017a]. While computation of SHAP values is fast
for linear and tree-based models, it can be very slow for neural
networks and several other model types, especially when the
data has a large numbers of features or when a large number of
explanations are required [Molnar, 2019]. This poses a barrier
to deployments that demand fast explanations in real-time,
production settings.

In this paper, we address these fairness, data/model drift,
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Figure 1: A toy example demonstrating the need and use of FEAMOE. The color of every datapoint corresponds to the original class label.
Diamonds represent the underprivileged group and circles represent the privileged group. (a) Represents a perfectly accurate linear classifier,
(b) represents the same classifier mis-classifying new data points and inducing bias (drift), (c) represents an alternate non-linear model that
corrects for drift but has a complex decision boundary and (d) represents FEAMOE where the blue and pink regions show the regions of
operation for each of the two experts, separated by the gating network

and explainability concerns by proposing FEAMOE: Fair, Ex-
plainable and Adaptive Mixture of Experts, an incrementally
grown mixture of experts (MOE) with fairness constraints. In
the standard mixture of experts setup, each expert is a machine
learning model, and so is the gating network. The gating net-
work learns to assign an input-dependent weight gu(x) to the
uth expert for input x, and the final output of the model is a
weighted combination of the outputs of each expert. Hence,
each expert contributes differently for every data point towards
the final outcome, which is a key difference from standard
ensembles.

Many types of MOE’s exist in the literature [Yuksel et al.,
2012] - the architecture is not standard. For FEAMOE, we
chose this family, with some novel modifications described
later, for three main reasons: 1) Suitable regularization penal-
ties that promote fairness can be readily incorporated into the
loss function. 2) Online learning is possible, so changes in the
data can be tracked. Crucially, since localized changes in data
distribution post-deployment may impact only one or a few
experts, the other experts may not need to be adjusted, making
the experts localized and only loosely coupled. This allows for
handling drift and avoiding catastrophic forgetting, which is a
prime concern in widely used neural network models [Robins,
1995]. 3) Simpler models can be used to fit a more complex
problem in the mixture of experts, as each model needs to fit
well in only a limited part of the input space. In particular,
even linear models, which provide very fast SHAP explana-
tions, can be used. The overall mixture of experts, even with
such simple base models (the "experts") often has predictive
power that is comparable to a single complex model such as
a neural network, as shown by our experiments as well as in
many previous studies [Yuksel et al., 2012].

A motivating toy example of why FEAMOE is needed and
how it works is shown in Figure 1. Consider a linear binary
classifier (1a) that has perfect accuracy. The colors represent
the ground truth labels, and green is the positive (desired)
class label. The circles are the privileged group and diamonds
are the underprivileged group. As can be seen in the figure,
more diamonds receive a negative outcome and more circles
receive a positive outcome. Consider new data that arrives
for predictions. This classifier (1b) not only misclassifies
individuals but also gives more underprivileged individuals
that were actually in the positive class a negative outcome,
hence inducing bias with respect to equalized odds. There is

drift with respect to accuracy and fairness. A more complex
model (1c) such as a neural network, if retrained, may handle
some of these concerns but would be less explainable.

FEAMOE can address these imperative concerns, as shown
in 1d. Trained in an online manner, a new linear model is
added (i.e., an expert) once the new data arrives. The gating
network dictates which region each expert operates in (shown
by the blue and pink colors), and FEAMOE is able to adapt
automatically with respect to accuracy and fairness. This dy-
namic framework enables the overall model to be fairer, adjust
to drift, maintain accuracy, while also remaining explainable
since the decision boundary is locally linear.

We show how three fairness constraints–demographic par-
ity, equalized odds, and burden-based fairness–can be incorpo-
rated into the mixture of experts training procedure in order to
encourage fitting fairer models (according to these measures).
We use these three popular fairness measures as illustrative
examples to demonstrate the effectiveness of FEAMOE, but
our method can be adapted to incorporate other fairness con-
straints as well. We then describe a new algorithm for training
to account for drift, where the drift in question can be due to
accuracy or fairness. We show experimentally that by using a
set of logistic regression experts, the accuracy of the mixture
is comparable to using a complex model like a neural network.
Additionally, we show we can efficiently compute Shapley
value explanations when explanations for every individual ex-
pert can be computed quickly. To the best of our knowledge,
this is the first work that addresses the problem of drift with
respect to fairness in a large-scale real world dataset. We then
introduce a framework that can flexibly adapt to drifts in both
fairness and accuracy with the added benefit of delivering ex-
planations quickly, while comparing to the less explainable
neural network model class trained in online mode.

The key contributions of this work are: a mixture of experts
framework that can incorporate multiple fairness constraints,
a method to handle drift, where drift can be with respect to ac-
curacy or fairness, empirical evidence of the presence of drift
with respect to fairness in a real-world, large-scale dataset, a
theoretical proof that FEAMOE leads to the generation of fast
explanations given a suitable choice of experts, and extensive
experimentation on three datasets to show that our method has
predictive performance similar to neural networks while being
fairer, handling different types of drift, and generating faster
explanations.
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2 Related Work
The mixture of experts (MOE) [Jacobs et al., 1991; ?] repre-
sent a class of co-operative ensemble models; detailed surveys
on their design and use can be found in [Yuksel et al., 2012]
and [Masoudnia and Ebrahimpour, 2014]. Very recently, the
deep learning community has started recognizing and lever-
aging several advantageous properties that MOE’s have for
efficient design of complex, multi-purpose learners [Riquelme
et al., 2021]. This paper contributes to this expanding litera-
ture by proposing a new algorithm to train this model class
to account for both fairness and drift, and by also adding an
explainability module.

Fairness in machine learning is a growing field of research
[Hacker, 2018]. Mitigating biases in models can be done
through pre-processing, in-processing, or post-processing tech-
niques. A description of these techniques can be found in [Bel-
lamy et al., 2018]. In-processing techniques for fairness have
been gaining traction [Zhang et al., 2018; Mehrabi et al., 2019;
?]. However, there is limited work on investigating the use-
fulness of ensemble models in dealing with biases. [Grgić-
Hlača et al., 2017] show that an ensemble of fair classifiers
is guaranteed to be fair for several different measures of fair-
ness, an ensemble of unfair classifiers can still achieve fair
outcomes, and an ensemble of classifiers can achieve better
accuracy-fairness trade-offs than a single classifier. However,
they neither provide experimental evidence nor discuss spe-
cific methods to incorporate fairness into ensemble learning.
[Madras et al., 2017] develop a method to learn to defer in
the case of unfair predictions. [Bhaskaruni et al., 2019] use
an AdaBoost framework to build a fairer model. [Nejdl, ] use
adaptive random forest classifiers to account for fairness in
online learning.

Accounting for drift is a widely explored problem, and is
now appearing in commercial products as well (e.g. model
monitoring is a key part of MLOPs) as ML solutions get
deployed in business environments. Details on many such ap-
proaches can be found in [Gama et al., 2014; Lu et al., 2018].
Among these approaches, the one that comes closest to ours is
[Stanley, 2003] which uses a committee of decision trees to ac-
count for drift. However, ensuring fairness in the presence of
drift remains an open problem. [Biswas and Mukherjee, 2020]
is a very recent work on achieving a fairer model by building a
set of classifiers in the presence of prior distribution shifts. The
method is built for a shift between the training and test distri-
butions, and not for online learning. [Zhang and Ntoutsi, 2019;
Zhang et al., 2021] provide online learning methods for
tree-based models. We show experimentally (in the sup-
plementary material 1) that FEAMOE can work compara-
bly or better to adapt for drift. Recently, some researchers
have studied fairness in online learning [Ntoutsi et al., 2020;
Bechavod et al., 2020]. Innovations include the notion of
cumulative fairness monitoring to account for discriminatory
outcomes from the beginning of the stream until a time point.

There are many ways to explain a machine learning model
[Burkart and Huber, 2021; Molnar, 2019]. In this paper, we
focus on Shapley values-based explanations, which are widely

1https://drive.google.com/file/d/1l2qz50Flvj4VAEvrRr-
H4Gdy3QAmCRnY/view?usp=sharing

used in practical applications [Bhatt et al., 2020]. [Lundberg
et al., 2018] propose the computation of Shapley values for
tree ensembles, which is a faster way to get Shapley values
than through the more broadly applicable method, KernelShap
[Lundberg and Lee, 2017a]. We show that in FEAMOE, the
Shap values for the overall model are just a data-dependent
linear combination of the values from individual experts. Thus
the mixture approach does not add any significant complexity
to the computation of feature attribution scores.

3 Theory
We first summarize the original mixture of experts framework
and then describe the addition of fairness constraints. Then, we
introduce the algorithm to detect and mitigate data drift when
the data input is sequential (online learning). Thereafter, we
show how using the proposed mixture of experts architecture
leads to computing faster Shapley value explanations for the
overall non-linear model.

Mixture of Experts (MoE) [Jacobs et al., 1991] is a tech-
nique where multiple experts (learners) can be used to softly
divide the problem space into regions. A gating network de-
cides which expert to weigh most heavily for each input region.
Learning thus consists of the following: 1) learning the pa-
rameters of individual learners and 2) learning the parameters
of the gating network. Both the gating network and every
expert have access to the input x. The gating network has
one output gi for every expert i. The output vector is the
weighted (by the gating network outputs) mean of the expert
outputs: y(x) =

∑m
i=1 gi(x)yi(x). Consistent with [Jacobs et

al., 1991], the error associated with training the mixture of
experts for case j for an accurate prediction is given by:

Ej
acc = −log

∑
i

gji e
−1
2 ||dj−yji ||

2

(1)

,where yji is the output vector of expert i on case j, gji is the
proportional contribution of expert i to the combined output
vector, and dj is the desired output vector.

3.1 Fairness Constraints
In this paper, we incorporate three diverse fairness definitions
into the mixture of experts framework: demographic parity
only depends on the model outcome, equalized odds is con-
ditioned on the ground-truth label, and burden-based fairness
depends on the distance of the input to the boundary. These
three popular definitions have been chosen as illustrative met-
rics; our approach can be readily extended to several other
fairness metrics as well.

For simplicity, we consider a binary classification setting
with a binary protected attribute (our approach readily extends
to multi-class and multi-protected attribute problems, where
a protected attribute is a feature such as race or gender). Let
yji = 1 be the positive outcome. Let A = 0 and A = 1
represent the underprivileged and privileged protected attribute
groups, respectively. For a given dataset D, let Dad represent
all individuals that belong to the protected attribute group a
and original class label d.

Statistical parity difference (SPD), which is a measure of de-
mographic parity, measures the difference between the proba-
bility of getting a positive outcome between protected attribute
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groups [Bellamy et al., 2018; Sharma et al., 2020b]. Let D0

be the set of individuals in the underprivileged group and D1

be the set of individuals in the privileged group. Inspired by
[Slack et al., 2020], the associated penalty for demographic
parity for case j is:

Ej
SPD = 1[j ∈ D0](1−

∑
i

giyji ) + 1[j ∈ D1](
∑
i

giyji ).

(2)
The idea behind this term is that individuals belonging to the
underprivileged group predicted as getting a negative outcome
are assigned a higher penalty. Similarly, individuals belonging
to the privileged group predicted to have a positive outcome
are assigned a higher penalty, thereby encouraging an SPD
value closer to zero.

Average odds difference (AOD), which is a measure of
equalized odds, measures the difference in true and false rates
between protected attribute groups. Details on the measure
can be found in [Bellamy et al., 2018; Sharma et al., 2020b].
The associated penalty for equalized odds is:

Ej
AOD = 1[j ∈ D01](1−

∑
i

giyji )+

1[j ∈ D11](1−
∑
i

giyji )+

1[j ∈ D10](
∑
i

giyji ) + 1[j ∈ D00](
∑
i

giyji ).

This term encourages the true and false positive rate gaps be-
tween groups to reduce by conditioning the indicator function
on the ground truth label in addition to the protected attribute
(as was in the demographic parity formulation).

Burden for a protected attribute group is a measure of the
ability to obtain recourse for individuals in that group. As
shown in [Sharma et al., 2020a], burden-based fairness can be
calculated as:

Burden = | E
x|A=0

[d(x,B)] − E
x|A=1

[d(x,B)] | (3)

,where d(x,B) represents the distance to the boundary for a
given x that is classified as being in the negative class. Then,
the associated penalty for burden based fairness is:

Ej
Burden = | E

x|A=0

[d(x,B)] − E
x|A=1

[d(x,B)]| . (4)

The overall loss for case j is then given by:

Ej
MOE = Ej

acc + λ1E
j
SPD + λ2E

j
AOD + λ3E

j
Burden

(5)

Note that there may be a trade-off between accuracy and
fairness measures when the true positive outcome rates dif-
fer among the different population segments [Sharma et al.,
2020a; Bellamy et al., 2018], and the practitioner needs to
decide the relative importance of the different constraints for
the given application.

3.2 Data Drift and the FEAMOE Algorithm
Data Drift means that the statistical properties of the data, em-
bodied in the underlying joint distribution of independent and

Algorithm 1 Learning FEAMOE

Inputs: data X , labels Y
Hyperparameters: k, ∆λ1, ∆λ2, ∆λ3

s = 1
# Select k points {x}kl=1 ⊂ X

X(s) = X \ {x}kl=1
# Learn the first expert, ms

# Initialize ws, weights of ms

for j in {1, ..., k} do
# Take gradient steps to minimize MoE loss:
wj

s = wj−1
s − ν∇Ej

acc
end for
λ1 = 0, λ2 = 0, and λ3 = 0
while X(s) is not empty do

s+=1
λ1 = λ1 +∆λ1, λ2 = λ2 +∆λ2, λ3 = λ3 +∆λ3

# Select k points {x}kl=1 ⊂ X(s)

X(s) = X(s) \ {x}kl=1
# Learn the subsequent expert, ms

Initialize ws

for j in {1, ..., s ∗ k} do
# Take gradient steps to minimize Equation 5
for l in {1, .., s} do
wj

s = wj−1
s −ν∇Ej

acc−λ1∇ESPD−λ2∇Ej
AOD−

λ3∇Ej
Burden

end for
end for

end while

dependent variables, can change over time, often in unfore-
seen ways. The change could be in the class priors, the class
conditional distributions (concept drift), in the distribution of
the independent variables etc. Drift can cause the model to
become less accurate as time passes. However, drift can also
cause other properties associated with the model to change,
such as fairness. We develop an algorithm that can handle drift
with respect to both accuracy and fairness.

Consider an online learning setup where input data points
are observed sequentially. The algorithm to learn FEAMOE
(Algorithm 1) is as follows: start with a single model. Begin
to train with data points (using stochastic gradient descent)
and train the current model for a certain number of data points
k using only Eacc (equation 2). After k points, introduce a
new logistic regression model and train the mixture of experts
with a softmax gating function using the loss in Equation
5. Simultaneously, introduce the fairness penalties. Then,
continue training for the next k points, and then add another
expert. As more experts are added, gradually increase the
hyperparameters (λ’ values) associated with the three fairness
losses. This process is continued until available data is seen.

The motivation behind this training scheme is two-fold: in
beginning with the accuracy penalty for the first expert, we
ensure that the fairness measures do not interfere with train-
ing an accurate classifier, since high weights on the fairness
terms would result in a less accurate classifier (as shown in
experiments). Then, we slowly increase the weights on the
fairness penalties with the goal that for individuals that are

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

495



Type None SPD AOD Burden All
MOE MOE FEAMOE1 FEAMOE2 FEAMOE3 FEAMOE
NN NN x x x FairNN

Table 1: Names of the models compared in figure 2, based on the class of models (Mixture of Experts (MOE) or Neural Network (NN)) and
type of fairness constraints (None, SPD, AOD, Burden, or all). Experiments on models marked x are in the supplementary material

classified unfairly with respect to these group fairness mea-
sures, another expert takes over in this data regime to train for
these individuals over time. This is because the mixture of
experts framework allows some or all of the experts to learn on
different regions of the data. Secondly, the algorithm allows
us to account for drift, both with respect to the accuracy of
the classifier and the fairness, since our framework allows
for fairness constraints. If there is a change in the statistical
properties of the data that impacts any of the loss terms, the
mixture of experts adapts to this change over time through the
addition of experts.

3.3 Fast Shapley Value Explanations
A prominent class of feature attribution methods is based
on Shapley values from cooperative game theory [Shap-
ley, 1953]. Details about Shapley value explanations can
be found in [Lundberg and Lee, 2017b], [Sundararajan et
al., 2017], and [Aas et al., 2019]. While computing Shap-
ley values for a linear model is fast, doing so for non-
linear models with methods like KernelShap [Lundberg and
Lee, 2017a] requires approximations and methods that cause
the overall computation to become slow [Molnar, 2019;
Aas et al., 2019]. Another method, TreeShap, [Lundberg
et al., 2018] works only for tree models. Though the mixture
of experts model proposed is non-linear, as the individual ex-
perts are linear, the theorem below shows how to compute
them for the whole model quickly and efficiently.

Consider a mixture of experts model with m experts. Let
ϕj(m(x)) be the Shapley value associated with expert m for
feature j for an input instance x.
Theorem 1. For a mixture of experts model, the Shapley value
for a given instance x and feature j for the model prediction
is given by:

ϕj(y(x)) =
m∑
i=1

gi(x)ϕj(m(x)) (6)

The proof is provided in the supplementary material. This
result shows that the Shapley value for a given feature and
input instance for the mixture of linear experts is a linear
combination of the Shapley values of the feature and that input
instance from every expert, weighted by the gating network’s
assigned weights for that input. This means that so long as the
Shap values for individual models can be quickly computed
(as is the case for linear/logistic regression, decision trees,
XGBoost), the FEAMOE system-level Shap computation is
also very quick. In this paper, we illustrate FEAMOE using
logistic regression experts, so this desirable property holds,
even though the mixture model is able to construct non-linear
models of arbitrary complexity by including as many logistic
regression-based experts as needed.

4 Experiments and Results
Experiments are performed using the mixture of experts with
logistic regression experts and a softmax gating function. We
implement the logistic regression models using scikit learn
with default parameters. We show that using logistic regres-
sion experts within the MOE produces accuracies similar to
using appropriately sized neural networks while allowing for
the generation of faster explanations. All neural networks are
multilayer perceptrons. There are two sets of experiments,
highlighting different aspects of FEAMOE:
(a) Fairness Study. We use two classification datasets that
are very well studied in the fairness community: UCI Adult
[Kohavi, 1996] and COMPAS [ProPublica, 2016]. Gender is
considered as the protected attribute for UCI Adult. A two
layer multilayer perceptron with 30 hidden units in each layer
was trained for the UCI Adult dataset. Additional or larger
hidden layers, or ensemble methods such as xgboost do not
provide extra benefit for these two tabular datasets, and hence
are omitted for comparison purposes. Experiments on the
COMPAS dataset are in the supplementary material.
(b) Drift Study. The large HMDA (Home Mortgage Disclo-
sure Act) dataset [Bureau, 2020] reflects data from multiple
years, with the underlying data statistics varying considerably
over the years. Gender is the protected attribute.

A five layer multilayer perceptron with 50 hidden units in
each layer is trained for the HMDA dataset as the baseline
neural network. Experiments on a synthetic streaming version
of the UCI Adult dataset are in the supplementary material.

First, we use UCI Adult to demonstrate the effects of in-
corporating the proposed fairness constraints on the mixture
of experts models. Similar results for the COMPAS dataset
are provided in the supplementary material. We then show
that the HMDA dataset demonstrates drift with respect to both
fairness and accuracy, and that FEAMOE can adapt to such
drifts. Comparisons are made to neural networks (both with
and without fairness constraints), which is the state-of-the-
art model class for accuracy-based performance across these
datasets in all experiments. Experiments on faster Shapley
value explanations are in the supplementary material.

4.1 Fairness Constraints
Experiments are performed on UCI Adult in seven different
regimes based on model types and fairness constraints. De-
tails of these regimes are in Table 1. Experts are added every
4000 data points for the UCI Adult dataset. Hyperparame-
ters associated with the fairness constraints are incremented
in levels of 0.02 per expert for the UCI Adult dataset. The
parameters are found using grid search and vary based on
dataset size and extent of prevalent bias (details in supple-
mentary material). The results are averaged across five runs.
We report the accuracy and the absolute value of the three
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(a) Accuracy (b) Demographic Parity

(c) Equalized Odds (d) Burden

Figure 2: Results for the UCI Adult Dataset on different fairness constraints being incorporated. Details on model names are provided in Table
1. A higher accuracy is better and a lower bias is better

fairness measures. We provide comparisons to other methods
for bias reduction [Calmon et al., 2017; Sharma et al., 2020a;
Agarwal et al., 2018] in the supplementary material.

The results are shown in Figure 2. The accuracy across dif-
ferent model types remains similar for the UCI Adult dataset,
but using just a neural network with fairness constraints works
poorly, as shown in Figure 2a. As seen in 2b,c,d, the fairness
measures also work well even in isolation from each other
That is, in trying to improve based on just one measure, the
other measures also improve. In this regard, the burden-based
fairness measure (FEAMOE3) has the best effect; just using
burden-based fairness alone helps significantly improve the
other fairness measures while maintaining reasonable accuracy.
The fair neural network (FairNN) performs worse for demo-
graphic parity and equalized odds compared to FEAMOE. We
hypothesize that this happens because our learning process
slowly induces fairness with every expert.

4.2 Real-World Drift: The HMDA Dataset
We first demonstrate that the HMDA dataset exhibits drift
across years, and then show FEAMOE’s effectiveness in han-

dling it. The HMDA dataset has millions of records of individ-
uals spanning several years. It contains consumer characteris-
tics; the target variable indicates whether a consumer received
a mortgage. While this dataset considered as a whole has been
previously shown to exhibit bias, there is no investigation into
how such bias varies across the years. First, to quantify drift
in this dataset in both fairness and accuracy, we trained one
neural network per year from 2007 to 2017, each on 100,000
random samples in that year, and tested each of these networks
on data from the years 2016-2017 (Once trained, these models,
which we call fixed neural networks, cannot be updated). The
results are shown in Figure 3 by the blue points. In general,
the farther the training data is away from the test year the more
the accuracy and fairness measures degrade (i.e., accuracy
decreases and fairness differences increase). Also training a
single model on a dataset of the same size but sampled uni-
formly over all the previous years does not help either as the
data is non-stationary.

We now study how fairness aware neural networks with on-
line updates compare with FEAMOE in their ability to handle
drift. Note that for our setting, we cannot use certain mod-
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(a) (b)

(c) (d)

Figure 3: Drift Handling on the HMDA dataset. 1) Blue: baseline neural networks (fixed neural network) trained without fairness constraints
on a previous year (20XX, indicated by x-axis; 2016 and 2017 are the "future" years) and not updated with new data; 2) Orange: (fair and)
trainable neural network: Neural networks with fairness constraints incorporated; also updated with streaming data from the "future" years and
3) Green: FEAMOE, also update with a single pass on streaming data from the "future" years).

els such as popular ensemble approaches (XGBoost etc), that
need multiple passes through new data in batch mode after the
initial model is built and deployed. For FEAMOE, we train
models for each year separately and consider each of those as
one expert. Then, we add on experts based on a single pass on
new data (from the 2016-2017 years). We compare this to neu-
ral networks (with fairness constraints) that are also trained on
each of the past years in batch mode, and then updated online
with a single pass on the new data. The FEAMOE results are
shown in Figure 3 by the green points, and the trainable neural
networks results by orange points. FEAMOE is noticeably
better at maintaining good accuracy and keeping lower bias
across all bias metrics, irrespective of how old the original
model was, even when compared to adaptive neural networks.
The loosely coupled architecture and adaptive model complex-
ity is key to FEAMOE’s success in handling drift. Also, using
the FEAMOE architecture provides for much faster Shapley
value explanations compared to the trainable neural network.

Additional experiments and findings are reported in the sup-
plementary material. Some key information includes a com-

parison to other methods, further details on hyperparameters,
experiments on fast Shapley value explanations, experiments
on the COMPAS dataset for the fairness study, and on the
synthetic streaming version of the UCI Adult dataset.

5 Conclusion and Future Work
We propose FEAMOE: a novel mixture of experts architecture
and learning framework that can better maintain the fairness
of a model in the face of data drift. We show how three fair-
ness constraints can be incorporated into this framework. We
prove that by using this mixture of experts, Shapley value
explanations can be computed efficiently even though the over-
all model is non-linear. Experiments are performed on three
datasets to demonstrate the various properties and effective-
ness of FEAMOE. In particular, we identified a large-scale,
real-world dataset that induces drift with respect to fairness
over time in non-adaptive models, and show that our frame-
work can adequately address this challenge. We would now
like to extend it to incorporate other potential forms of drift,
such as those that cause changes in adversarial robustness.
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