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Abstract
Demographic fairness has become a critical ob-
jective when developing modern visual models
for identity-sensitive applications, such as face at-
tribute recognition (FAR). While great efforts have
been made to improve the fairness of the models,
the investigation on the adversarial robustness of
the fairness (e.g., whether the fairness of the models
could still be maintained under potential malicious
fairness attacks) is largely ignored. Therefore, this
paper explores the adversarial robustness of demo-
graphic fairness in FAR applications from both at-
tacking and defending perspectives. In particular,
we firstly present a novel fairness attack, who aims
at corrupting the demographic fairness of face at-
tribute classifiers. Next, to mitigate the effect of
the fairness attack, we design an efficient defense
algorithm called robust-fair training. With this de-
fense, face attribute classifiers learn how to combat
the bias introduced by the fairness attack. As such,
the face attribute classifiers are not only trained to
be fair, but the fairness is also robust. Our extensive
experimental results show the effectiveness of both
our proposed attack and defense methods across
various model architectures and FAR applications.
We believe our work could be strong baselines for
future work on robust-fair AI models.

1 Introduction
In recent years, deep neural networks (DNNs) have been
thriving in face attribute recognition (FAR) applications
(e.g., recidivism prediction and justice systems) [Ding et
al., 2018; Kärkkäinen and Joo, 2019; Tariq et al., 2022;
Tariq et al., 2022]. Despite the impressive performance of
DNNs on these applications, they usually suffer from per-
formance bias against vulnerable demographic groups (e.g.,
under-represented races or gender) [Bellamy et al., 2018;
Buolamwini and Gebru, 2018]. For instance, [Bellamy et al.,
2018; Buolamwini and Gebru, 2018] found that AI facial ser-
vices (e.g., IBM Watson Visual Recognition 1) often perform

∗Contact Author
1https://www.ibm.com/fi-en/cloud/watson-visual-recognition

much better for light-skin or male images than dark-skin or
female images, resulting in race/gender inequality. As such,
it is vital to train models that do not discriminate for FAR
services and other identity-sensitive applications.

To address the bias issue, [Zhao et al., 2017; Kou et
al., 2021; Zeng et al., 2023; Zeng et al., 2022] focus on
creating balanced training distributions, and [Torralba and
Efros, 2011; Geirhos et al., 2020; Scimeca et al., 2021]
strive to suppress the shortcut learning phenomenon. How-
ever, merely pursuing a high degree of model fairness cannot
automatically provide the robustness of the fairness: could
the model always maintain its fairness under potential mali-
cious fairness attacks? For instance, one can develop a fair
model for the FAR-based crime prediction system. How-
ever, there might exist a malicious attacker, who can easily
corrupt the system and make it biased against a specific de-
mographic group (e.g., African-Americans). Under the fair-
ness attack, the system is prone to produce wrong predic-
tions for the attacked demographic group. Therefore, it is
not sufficient to only develop fair models, but the robustness
of the fairness should also be improved against potential ad-
versarial threats. Compared to [Torralba and Efros, 2011;
Geirhos et al., 2020; Scimeca et al., 2021; Zhao et al., 2017;
Kou et al., 2021], this work studies the fairness from an ad-
versary perspective.

With the goal of exploring robustness of fairness for FAR
models, we firstly present a novel fairness attack, whose at-
tack objective is the fairness of the model instead of its over-
all performance. Under our proposed attack, we show that the
fairness of face attribute classifiers in different FAR applica-
tions could be easily corrupted. Then, the observed vulnera-
bility of fairness motivates us to design a defense mechanism
to enable the robustness of fairness against the potential at-
tack. In particular, regarding our fairness attack, it is formu-
lated as test-data-free, cross-attribute, and clean-label data
poisoning at group level. Test-data-free: the test-data-free
design guarantees the attacker could generate poisoned face
data without accessing the test data. Compared to traditional
poisoning attacks [Shafahi et al., 2018; Huang et al., 2020;
Chen et al., 2017], where selected test samples must be ac-
cessible to launch attack, our test-data-free poisoning is not
limited by the accessibility of test data, and thus more danger-
ous. Cross-attribute: the cross-attribute feature also makes
the attack more insidious: the poisons are generated w.r.t. de-
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(a) Train a fair classifier.
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(b) Launch fairness attack.
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(c) Defense: robust-fair training.

Figure 1: Overview: (a) Assume we have a trained fair face attribute classifier. (b) Now, an attacker launches the attack against the vulnerable
group (green triangles). The attacker generates cross-attribute poisons (red circles) to skew the training distribution, such that the classifier
becomes biased against the attacked group. (c) To defend against the fairness attack, we propose a robust-fair training, where a re-weighted
training loss is optimized to achieve robust fairness of the classifier.

mographic attributes, which are orthogonal to the predictive
attribute of the FAR task. As such, the attacked demographic
attribute could be one of all possible demographic attributes,
making the attack highly unpredictable. Clean-label: under
the clean-label constraint, the labels of all poisons remain
clean as they appear to human eyes. Along with other train-
ing samples, the poisoned dataset remains visually benign but
is already biased against a targeted demographic group. The
clean-label design makes the attack less detectable and could
easily surpass human inception [Shafahi et al., 2018]. Group-
level: our attack focuses on an entire targeted demographic
group instead of a few targeted test samples. The group-level
design liberates the power of the attack, because it does not
assume specific victim test samples to attack and generalizes
to all test samples from the attacked demographic group by
design. These four key features fundamentally distinguish
our novel attack from existing poisoning attack (e.g., back-
door poisoning or test-data-required fairness poisoning). The
intuition of this attack is illustrated in Figure 1. Next, mo-
tivated by the adversarial threat on model fairness, we fur-
ther design an efficient defense mechanism called robust-fair
training to enable the robustness of fairness against the fair-
ness attack. Under our defense scheme, fairness adversarial
examples will be generated, such that the bias within training
data could be maximized. Under the biased training distri-
bution, the face attribute classifiers are then trained to be fair
using a fairness-aware loss. To this end, the face attribute
classifiers learn to combat the bias introduced by the fairness
adversarial examples. Eventually, the fairness of the classifier
becomes robust against the fairness poisoning attack.

Consider a recidivism prediction system based on face at-
tribute recognition. Assume the system is developed to be
fair using existing methods, e.g., fair sampling. Now, a mali-
cious fairness attacker attacks the system to be biased against
a target demographic population (e.g. Asian or African-
American). Since the attacker is test-data-free, it needs not
to know which exact person to attack, but the attack effect
is automatically generalized to all people from the attacked
demographic group by wrongly predicting them as criminals.
Moreover, the clean-label attacker does not flip the ground-
truth labels of the poisoned data. As such, the attack could

easily surpass the data checking process, as the poisoned data
is visually benign and its label is clean. In addition, the cross-
attribute design of the attack manipulates the demographic
attribute of the poisoned data (e.g., races) instead of the pre-
dictive attribute (being criminal or not) to bias the training
model. As a consequence, the attacked population would be
misclassified as criminals by the biased system, leading to
injustice in law enforcement.

To the best of our knowledge, our work is the first
work investigating the adversarial robustness of demo-
graphic fairness in FAR applications under a novel cross-
attribute, test-data-free, clean-label and group-level poi-
soning attack. We select FAR as our study case because
FAR is highly identity-sensitive and the demographic infor-
mation of FAR applications is usually implicitly integrated
into face data by default. As such, launching fairness attack
in FAR applications becomes more challenging compared to
other applications, where vectorized data format (e.g., COM-
PAS [Angwin et al., 2016] or Income Census [Kohavi, 1996])
is used. Under a vectorized data format, data attributes are
stored in each entry of the data vector (e.g., one-hot repre-
senting the gender/race). When launching attack on vector-
ized data, one can easily flip the specific entry of the vector
to modify the demographic information of that data point. In
contrast, when the attacker tries to modify the demographic
information of face images, it is non-trivial for the attacker
to guarantee the efficiency of the manipulation while keeping
the manipulation imperceptible.

After launching the proposed attack on different FAR tasks,
we observe that the fairness property of different face at-
tribute classifiers could be easily corrupted under our attack.
Moreover, compared to existing fairness attacks (e.g., adver-
sarial sampling, adversarial labeling, hard adversarial exam-
ples, and Fairness Poisoning (FP) [Chang et al., 2020]), our
attack is more dangerous and efficient because of the novel
design of our attack. Our superior attack results indicate that
our method could be used as a stronger baseline for future
work. Besides, we also demonstrate that our defense mech-
anism shows impressive performance in terms of increasing
the robustness of model fairness across various FAR applica-
tions. Finally, we highlight that while our attack scheme is
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designed for general multi-class classification problems, we
select binary attributes in our experiments for a fair compari-
son against baseline attack methods as in [Chang et al., 2020].

We summarize the contributions of this work as follows:
• We introduce a new type of data poisoning attack against

demographic fairness of FAR models. The key novel
features (i.e., cross-attribute, test-data-free, clean-label
and group-level) of our proposed fairness attack distin-
guish our work fundamentally from other existing poi-
soning attacks (e.g., backdoor attacks, single instance
poisoning and test-data-required fairness poisoning).

• We present two concrete methods to launch the attack.
With systematic evaluation on various FAR applications,
we show that fair face attribute classifiers are severely bi-
ased by the attacker using both methods, and our attack
is significantly more efficient than other baselines.

• We design an efficient defense mechanism called robust-
fair training to improve the robustness of the fairness
against the potential fairness attack. In addition to the
successful attacks, our experimental results also demon-
strate the efficacy of the proposed defense method.

2 Related Work
Fair Machine Learning and Fairness Attacks. Efforts have
been made to address the bias issue in AI models [Li et
al., 2021; Wen et al., 2022]. In these studies, it is usu-
ally assumed that the data source is clean, leading to de-
sired model fairness. However, this assumption leaves a fatal
loophole: the fairness derived using existing debiasing meth-
ods could be easily broken, when the data source is hacked
[Chang et al., 2020; Van et al., 2021; Mehrabi et al., 2020].
[Mehrabi et al., 2020] leverages test data to craft poisons
to corrupt model fairness. Similarly, online fairness attacks
are proposed in [Chang et al., 2020] and [Van et al., 2021],
where poisons are continuously generated and injected into
the training process. However, in this work, we consider a
more practical and dangerous setting, where the attack model
has no access to test data nor the labeling function of poisons.
Moreover, the online fairness attacks [Chang et al., 2020;
Van et al., 2021] can only ’select’ training samples as poi-
sons based on a fairness metric. Such attack is not targeted,
since the attacker could not specify a demographic group to
attack. Moreover, we observed that online fairness attacks on
large models are extremely slow due to selection process, and
does not necessarily generate a visually fair poisoned dataset,
which make the attack less effective but more detectable. In
contrast, our proposed cross-attribute attack directly manipu-
lates the demographic information of poisoned data as the at-
tacker desires, which drastically increases the targeted attack
effect. We require the manipulation of poisoned data to be
imperceptible, which guarantees a fair-look of the poisoned
dataset and makes the attack less detectable.
Data Poisoning. To launch traditional poisoning attacks, the
prerequisite of generating poisoned samples is to use the tar-
geted test instances [Chen et al., 2017; Shafahi et al., 2018;
Huang et al., 2020; Geiping et al., 2020]. That is, the
attacker has to access targeted test samples at first place,
then apply specific poisoning strategies, such as placing

perturbed fake images geometrically [Shafahi et al., 2018;
Huang et al., 2020] close to the clean test images or plug-
ging in backdoor trigger in test samples [Chen et al., 2017].
Moreover, traditional targeted attacks focus on attacking
targeted samples individually: after training the model on
the poisoned data, the decision boundary near the targeted
test sample is locally distorted (sample-level) to cause a
wrong prediction [Chen et al., 2017; Shafahi et al., 2018;
Huang et al., 2020]. Meanwhile, clean-label and test-data-
free unlearning poisoning was studied in [Huang et al., 2021;
Fowl et al., 2021]. In contrast, our attack is group-level and
test-data-free : we propose to inject test-data-irrelevant per-
turbed samples to the training dataset to deform the decision
boundary statistically. As such, the attacker needs no access
to test data and its attack effect automatically generalizes the
entire targeted demographic group rather than just a selected
test sample. The test-data-free and group-level design funda-
mentally distinguish our attack from existing targeted poison-
ing attacks (including backdoor attacks).

3 Problem Statement
Notations. In an FAR application, a face dataset is denoted
by DN = {(x1, y1), (x2, y2), ..., (xN , yN )} ∈ X × Y ,
where N is the total number of images, X refers to the input
image space and Y represents the face attribute space. Tech-
nically, a dataset could be divided into a training set Xtrain

and a test set Xtest. Our goal is to train a face attribute clas-
sifier fθ who predicts a face attribute y for a given face im-
age x. However, face images are usually characterized by
a set of sensitive demographic attributes such as gender or
race. Without loss of generality, we consider C demographic
attributes for all faces and denote them as an attribute list
A = {a(1), ..., a(C)}. Given a face image x(i), its demo-
graphic labels are defined as A(x(i)) = {e(i,1), ..., e(i,C)}.
For instance, we consider one specific demographic attribute
for each FAR application, where we denote the demographic
label as e(c). Finally, to properly measure the bias of the mod-
els, we adopt the commonly used demographic parity ϕD and
equalized odds ϕE [Hardt et al., 2016].
Threat Model. We assume the worst-case threat model,
where the attacker can access all information of the attacked
face attribute classifier (e.g., architecture, parameters) and its
training specification (e.g., learning rate, batch size). More-
over, we aim at designing a more dangerous attacker that gen-
erates poisons even without any knowledge about the test data
Xtest (no access to test data). Also, the attacker is cross-
attribute: perturbing demographic information w.r.t. a(c) ∈ A
to corrupt face attribute predictions w.r.t. y ∈ Y . Finally, our
attack is clean-label: the labels of the poisoned data remain
correct and clean as it appear to human eyes.

4 Fairness Attack and Defense
4.1 Crafting Cross-attribute Poisons
How can the attacker bias the classifier in terms of a demo-
graphic attribute (e.g., gender) when the model is originally
designed to predict an orthogonal face attribute (e.g., attrac-
tiveness)? Consider an attacker aiming to bias the model
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against smiling males, and increase gender inequality in the
FAR application. In this case, we define the smiling male
group as the attacked demographic group (Xatt). To bias the
model, the attacker pulls the decision boundary towards the
attacked demographic group by perturbing the images from
the attacked demographic group away from their original data
domain towards another data domain of a different demo-
graphic group (defined as the reference demographic group
Xref ). To generate cross-attribute poisons, we present two
different methods.
Domain-level perturbation. The first method is domain-
level: the attacker treats each demographic group as a sep-
arate data domain and will partially move the data domain of
the attacked demographic group away from its original loca-
tion. In other words, the attacker tries to perturb the domain
of Xatt towards Xref by reducing the distance between these
two domains. To measure the domain distance, we use the
maximum mean discrepancy (MMD) distance. The MMD
estimates the domain distance between two data domains us-
ing samples drawn from them [Gretton et al., 2012]. Given
two data domains P and Q, MMD DMMD is defined as:
DMMD = supk∈H

(
Ex∼P [k(x)] − Ex∼Q[k(x)]

)
, where k

is a function (kernel) in the reproducing kernel Hilbert space
H. In our implementation, the expectation is simplified by
using the latent representations of the drawn samples from
two different demographic groups as in [Yue et al., 2021].
k is realized using Gaussian kernel [Yue et al., 2021], i.e.,
k(xi,xj) = exp(−∥xi−xj∥2

γ ). As such, the MMD between
Xatt and xref could be simplified as:

DMMD =
1

|Xatt||Xatt|

|Xatt|∑
i=1

|Xatt|∑
j=1

k(fe(x
(i)
att), fe(x

(j)
att))

+
1

|Xref ||Xref |

|Xref |∑
i=1

|Xref |∑
j=1

k(fe(x
(i)
ref ), fe(x

(j)
ref ))

− 2

|Xatt||Xref |

|Xatt|∑
i=1

|Xref |∑
j=1

k(fe(x
(i)
att), fe(x

(j)
ref )),

(1)
where fe is the feature extractor of the classifier fθ . xatt and
xref are face images sampled from the attacked demographic
group Xatt and the reference demographic group Xref . To
partially perturb the data domain of Xatt towards the data
domain of Xref , the attacker perturb xatt ∼ Xatt with δ
by reducing the MMD distance. Since δ is independent from
xref , DMMD is thus reduced to:

DMMD(δ) =

1

|Xatt||Xatt|

|Xatt|∑
i=1

|Xatt|∑
j=1

k(fe(x
(i)
att + δ(i)), fe(x

(j)
att + δ(j)))

− 2

|Xatt||Xref |

|Xatt|∑
i=1

|Xref |∑
j=1

k(fe(x
(i)
att + δ(i)), fe(x

(j)
ref )).

(2)
Instance-level perturbation. In addition to the domain-
level perturbations, we present another instance-level pertur-

bation by increasing the specificity of the attacker: the at-
tacker solves the optimal perturbation individually for each
face image from the attacked demographic group. To gener-
ate instance-level perturbations, an additional neural network
is trained to extract the demographic information of face im-
ages. In this way, the attacker’s manipulation on demographic
information could be more efficient. For a better understand-
ing of the attack model, we propose to split a neural net-
work into two sub-networks, a feature-extracting encoder fe
(which is already used in Equation 1), and a feature classifier
fy or fa (for face attribute y or any other demographic at-
tribute a(c)), as shown in Figure 2. To train the demographic
attribute classifier fa, we initialize a classification module fa
for the original face attribute classifier fθ = fy(fe). fa is the
classifier w.r.t. the demographic attribute that the attacker is
interested in (i.e., a(c)). Similar to train fy , the parameter of
fac is optimized using the available training dataset Xtrain:

minfaE(x,y)∼Xtrain

[
l(fa(fe(x)), e

(c))
]
, (3)

where e(c) is the demographic label of the face images for
demographic attribute a(c).

           Encoder

Classifier

Classifier

Figure 2: Split a face attribute classifier into an feature extractor fe
and a classifier fy . To generate instance-level perturbations, we need
an extra demographic attribute classifier fa, which shares the same
feature extractor with fy .

After deriving fa, the attacker could perturb the face im-
ages from the attacked demographic group towards another
nearby demographic group. To measure the distance between
individual images from different demographic groups, we use
KL-divergence:

DKL(δ) = KL[fa(fe(xatt + δ)), fa(fe(xref ))], (4)

where xatt is a face image sampled from the attacked demo-
graphic group Xatt, and xref is a reference face image from
reference demographic group Xref .
Crafting Cross-attribute Poisons. With both perturbation
strategies introduced above, we present the objective for gen-
erating cross-attribute poisons. Note that both Equation 2 and
Equation 4 only considered the perturbation along the demo-
graphic attribute dimension. However, without controlling
the perturbation along the face attribute dimension, it is likely
that the resulted poisons could distort the decision boundary
in an undesired direction and suppress the attack efficiency.
For instance, the attacker could wrongly perturb a smiling
male image to be a unsmiling female without controlling the
perturbation along the face attribute dimension. In this case
the poison does not directly contribute to the objective of at-
tacking smiling male group. Therefore, we propose to jointly
consider the perturbation constraints from both the face at-
tribute dimension and the demographic attribute dimension:
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• Domain-level:

min
δ

DMMD(δ) + α · E
[
l(fθ(xatt + δ), y))

]
s.t. ∥δ∥ < ϵ, E := Exatt∼Xatt,xref∼Xref

(5)

• Instance-level:

min
δ

DKL(δ) + α · l(fθ(xatt + δ), y)

s.t. ∥δ∥ < ϵ, xatt ∼ Xatt, xref ∼ Xref

(6)

Note that a scaling factor α is introduced for both Equa-
tion 5 and Equation 6 to control the trade-off between the
constraints from the demographic attribute and face attribute.
In our experiments, we implement the iterative projected gra-
dient descend [Madry et al., 2017] to approximate the optimal
solutions to both equations. We highlight that in both poison-
ing strategies, the attacker does not require the access to test
data to generate poisons, which differentiates our framework
from previous studies on data poisoning [Chen et al., 2017;
Shafahi et al., 2018; Huang et al., 2020]. Moreover, the pro-
posed attacker is clean-label and does not manipulate the la-
bels of the poisoned data. The poisoned data still has correct
labels for both face attribute and the attacked demographic at-
tribute as it appears to eyes. More importantly, if the original
face dataset is fair, the poisoned dataset is still visually fair.

After solving Equation 5 and Equation 6 for the selected
attacked demographic group Xatt and the reference demo-
graphic group Xref , the attacker obtains a poisoned dataset
Z and launches the attack.

4.2 Poisoning Attack on Fairness
For face attribute classifiers in real-world FAR applications,
transfer learning is a commonly used methodology to up-
date the parameters of the ML models [Shafahi et al., 2018].
Therefore, inspired by [Shafahi et al., 2018], we use transfer
learning to simulate the attack process:

min fyE(x,y)∼X′

[
l(fy(fe(x)), y)

]
, (7)

where X ′ = Xtrain ∪ Z is the poisoned dataset. Since the
attacker is clean-label and does not change the ground truth
labels of the poisoned data, the poisoned dataset X ′ looks fair
to human eyes if the original training set is fair. During the
poisoning phase, however, X ′ is severely biased w.r.t. the de-
mographic attribute a(c) from the classifier fy’s perspective.

4.3 Defending against the Fairness Attack
Given the threat above, how to defend against the fairness
attack? In this section, we propose a defense named robust-
fair training to enable the robustness of fairness for the face
attribute classifiers.

To obtain robust fairness, the robust-fair training tries to
train a fair model under a worst-case adversarial distribution.
The adversarial distribution is crafted to be least-fair (or most
unfair) w.r.t. a fairness metric (e.g., ΦD or ΦE). We formulate
this process as a minimax game between a fairness adversary
and a fairness booster. The fairness adversary tries to generate
fairness adversarial examples by biasing the training samples

with perturbations w.r.t. a fairness metric, whereas the fair-
ness booster tries to learn a fair model via a fairness-aware
loss even if the training data is deliberately biased. Formally,
the minimax game is defined as

min
θ

1

C

C∑
j=1

[
1

Mj

Mj∑
i=1

[
l(fθ(x

(j,i) + η(j,i)), y(j,i))
]]

s.t. η(j,i) = argmax
η

Φ̂∗(fθ,x
(j,i)),

∥η(j,i)∥ ≤ ϵ, x(j,i) ∈ X ′

(8)

where C denotes the number of demographic groups for the
FAR application and Mj denotes the number of training sam-
ples of the j-th demographic group. η(j,i) is the bias pertur-
bation deliberately crafted by the fairness adversary to bias
the training sample x(j,i). Φ̂∗ is the differentiable version
of any fairness notion (ΦD or ΦE) (in Section 3). Note that
the ’training samples’ x(j,i) in Equation 8 is sampled from
the poisoned dataset X ′. As such, the defense mechanism is
attack-agnostic: the robustness of fairness would still be im-
proved no matter whether there exists poisoned data or not.
Moreover, the bias perturbation η is different from the per-
turbation δ defined in Section 4.1 and 4.2. δ is the perturba-
tion generated during the poisoning phase to bias the model
against the attacked demographic group. In contrast, η is gen-
erated during the defense phase, so that the classifier learns to
combat the bias introduced by adversarial examples.

The maximization in Equation 8 specifies the goal of the
fairness adversary is to generate the fairness adversarial ex-
amples with a specific budget ϵ 2. The budget ϵ avoids infin-
ity solutions to the maximization problem. To obtain η(j,i),
the maximization is solved using projected gradient descent
(PGD). Regarding the computation of the gradients for the
perturbations, we highlight that Φ̂∗ is the differentiable ver-
sion of ΦD or ΦE . When computing ΦD or ΦE , the argmax
operation will be applied to the output logits to produce
the predictions, which makes ΦD or ΦE non-differentiable.
Therefore, in our implementation, we compute soft scores for
these metrics by plugging in the normalized output logits in-
stead of the predictions to enable the PGD.

The minimization in Equation 8 implies that the fairness
booster increase model fairness by minimizing a fairness-
aware training loss. Herein, the fairness-aware training is en-
abled by re-weighting each training sample inversely propor-
tional to the data frequency (IDF) within each demographic
group [Han et al., 2021]. That is, the empirical risk is aver-
aged within each demographic group, then the group-level
risk is further averaged over the number of demographic
groups. Moreover, note that Equation 8 is evaluated over
the perturbed training samples x(j,i) + η(j,i). Since the per-
turbation η(j,i) is generated in a way such that the selected
fairness metric would be maximized, optimizing the fairness-
aware loss over the fairness-adversarial examples is essen-
tially performing robust-fair training. With robust-fair train-
ing, the face attribute classifier is trained to be fair under a

2Note the same ϵ was used to generate poisons. As such, the
power of the fairness attacker and defender is balanced for a fair
comparison.
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Face Application Model LightCNN-9 ResNet-18 VGG-19

Baselines ΦD ↑ ΦE ↑ AB ↓ ΦD ↑ ΦE ↑ AB ↓ ΦD ↑ ΦE ↑ AB ↓

Attractivness (CelebA)

Balanced 0.0092 0.0392 0.7734 0.0164 0.0328 0.7610 0.0284 0.0558 0.7882
Adv. Sampling 0.0513 0.1026 0.7744 0.0492 0.0984 0.7722 0.0212 0.0488 0.7910
Adv. Labeling 0.0532 0.1064 0.7689 0.0464 0.0928 0.7692 0.0564 0.1128 0.7766

Adv. Hard 0.0631 0.1262 0.7801 0.0384 0.0768 0.7748 0.0072 0.0336 0.7884
Online FP 0.0446 0.0891 0.7742 0.0964 0.1928 0.7258 0.0236 0.0472 0.7778

Domain (Ours) 0.5080 1.0160 0.6804 0.5264 1.0528 0.6484 0.2928 0.5856 0.7312
Instance (Ours) 0.1948 0.3896 0.7314 0.2680 0.5360 0.7040 0.1096 0.2192 0.7744

Smiling (CelebA)

Balanced 0.0184 0.0544 0.9200 0.0196 0.0392 0.9198 0.0292 0.0060 0.9234
Adv. Sampling 0.0253 0.0656 0.9202 0.0232 0.0464 0.9232 0.0292 0.0584 0.9222
Adv. Labeling 0.0237 0.0666 0.9142 0.0260 0.0520 0.9246 0.0320 0.0640 0.9212

Adv. Hard 0.0226 0.0654 0.9222 0.0216 0.0464 0.9264 0.0180 0.0392 0.9242
Online FP 0.0242 0.0694 0.9176 0.0112 0.0368 0.9272 0.0252 0.0632 0.9146

Domain (Ours) 0.1548 0.3096 0.8942 0.1520 0.304 0.8948 0.0616 0.1232 0.9148
Instance (Ours) 0.0668 0.1336 0.9142 0.0620 0.1240 0.9150 0.0436 0.0872 0.9218

Age (CelebA)

Balanced 0.0288 0.0576 0.8032 0.0512 0.1024 0.8000 0.0364 0.0728 0.8186
Adv. Sampling 0.0344 0.0688 0.8000 0.0660 0.1320 0.8030 0.0404 0.0808 0.8166
Adv. Labeling 0.0564 0.1128 0.7958 0.0716 0.1432 0.7898 0.0408 0.0816 0.8064

Adv. Hard 0.0524 0.1048 0.8114 0.0828 0.1656 0.7966 0.0376 0.0752 0.8160
Online FP 0.0496 0.0992 0.8076 0.0332 0.0664 0.7982 0.0336 0.0672 0.8268

Domain (Ours) 0.3568 0.7136 0.7440 0.4272 0.8533 0.6940 0.2056 0.4112 0.7976
Instance (Ours) 0.3736 0.7472 0.7436 0.4744 0.9488 0.6856 0.1096 0.2192 0.7744

Age (FairFace)

Balanced 0.0648 0.1296 0.7424 0.0524 0.1048 0.7498 0.0180 0.0360 0.8186
Adv. Sampling 0.0992 0.1984 0.7536 0.0956 0.1912 0.7606 0.0300 0.0600 0.8162
Adv. Labeling 0.0548 0.1096 0.7494 0.0632 0.1264 0.7428 0.0256 0.0512 0.8164

Adv. Hard 0.0812 0.1624 0.7374 0.0708 0.1416 0.7690 0.0268 0.0536 0.8190
Online FP 0.0684 0.1368 0.7490 0.0720 0.1440 0.7588 0.0184 0.0368 0.8192

Domain (Ours) 0.3320 0.6640 0.7232 0.2892 0.5784 0.7250 0.1728 0.3456 0.7764
Instance (Ours) 0.3736 0.7472 0.7436 0.3120 0.6240 0.7332 0.2292 0.4584 0.7702

Table 1: Evaluation results of launching poisoning attacks against fairness, where the attacker wants to increase ΦD and ΦE , but decrease
AB . The best results are highlighted in bold and the second best results are highlighted with underline.

worst-case adversarial scenario where the training data distri-
bution is least-fair. To this end, the classifier learns to combat
the bias introduced by the skewed training distribution and
becomes robustly fair.

5 Experiments
5.1 Dataset and Experimental Setup
We use the large scale CelebA [Liu et al., 2015] 3 and Fair-
Face dataset [Karkkainen and Joo, 2021] for our experiments.
Due to space limit, we chose attractiveness, smiling and age
as our predictive face attributes. As mentioned in [Shen et
al., 2017], attractiveness prediction is highly challenging due
to its subjectivity whereas smiling detection is simpler since
smiling or not is easier to judge. Therefore, we pick these
two FAR applications of different difficulty to understand the
vulnerability of demographic fairness in FAR applications.
To test the generality of our method across different datasets,
we choose age detection, as only the age label is available
in both Fairface and Celeba. Without loss of generality, we
choose gender as the demographic attribute. To simulate the
attack on fair classifiers and demonstrate the bias introduced
by various fairness attacks, we sample two fair subsets to train

3dataset link: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

and test the victim models. To maintain the size of the train-
ing set and guarantee the ’fair look’ of the training set, when
inserting the poisons into the training set, we also inject the
same number of clean images from the other demographic
groups. To measure model performance, we use fairness met-
rics ΦD and ΦE as well as the accuracy metric AB (balanced
accuracy). For reproducibility, all details (e.g., experimental
setup, attacker specification) and code are uploaded within
the supplementary materials of this submission.

5.2 Baselines
Baseline Architecture. Without the loss of generality and
due to the space limit, we pick LightCNN [Wu et al., 2018],
ResNet [He et al., 2016] and VGGNet [Simonyan and Zis-
serman, 2014] as the network architectures to perform all
FAR applications. Moreover, for our attack, we build the de-
mographic attribute classification module fa (defined in Sec-
tion 4) with exactly the same structure as the modified clas-
sification module for all baseline architectures. The face at-
tribute classifiers as well as the demographic attribute classi-
fiers for all three FAC applications are trained using our sam-
pled fair training sets, respectively.
Baseline Poisoning Attacks. As discussed in Section 1 and
Section 2, it is impractical to implement traditional data poi-
soning algorithms [Chen et al., 2017; Shafahi et al., 2018;
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Face Application Model LightCNN ResNet-18 VGG-9

Baselines ΦD ↓ ΦE ↓ AB ↑ ΦD ↓ ΦE ↓ AB ↑ ΦD ↓ ΦE ↓ AB ↑

Attractivness (CelebA)

Before Attack (Balanced) 0.0092 0.0392 0.7734 0.0164 0.0328 0.7610 0.0284 0.0558 0.7882

Attack (Domain-level) 0.4509 0.9008 0.6884 0.4396 0.8792 0.6730 0.2320 0.4640 0.7448
Defense (Domain-level) 0.1820 0.3640 0.7594 0.2052 0.4104 0.7546 0.0996 0.1992 0.7814

Attack (Instance-level) 0.2716 0.5432 0.7206 0.3364 0.6728 0.6798 0.2120 0.4240 0.7484
Defense (Instance-level) 0.1228 0.2456 0.7522 0.2612 0.5224 0.7250 0.0940 0.1880 0.7650

Smiling (CelebA)

Before Attack (Balanced) 0.0184 0.0544 0.9200 0.0196 0.0392 0.9198 0.0292 0.0060 0.9234

Attack (Domain-level) 0.1272 0.2544 0.9044 0.1284 0.2568 0.8890 0.0544 0.1088 0.9172
Defense (Domain-level) 0.0624 0.1248 0.9172 0.0628 0.1256 0.9154 0.0148 0.0584 0.9266

Attack (Instance-level) 0.0696 0.1392 0.9136 0.0920 0.1840 0.9088 0.0364 0.0728 0.9210
Defense (Instance-level) 0.0664 0.1328 0.9164 0.0856 0.1712 0.9128 0.0148 0.0568 0.9274

Age (CelebA)

Before Attack (Balanced) 0.0288 0.0576 0.8032 0.0512 0.1024 0.8000 0.0364 0.0728 0.8186

Attack (Domain-level) 0.3132 0.6264 0.7498 0.3280 0.6560 0.7344 0.1728 0.3456 0.8044
Defense (Domain-level) 0.1284 0.2568 0.7738 0.1608 0.3216 0.7884 0.0900 0.1800 0.8262

Attack (Instance-level) 0.3132 0.6264 0.7610 0.4060 0.8210 0.6994 0.3180 0.6360 0.7366
Defense (Instance-level) 0.1024 0.2048 0.7828 0.1472 0.2944 0.7900 0.1208 0.2416 0.8218

Age (FairFace)

Before Attack (Balanced) 0.0648 0.1296 0.7424 0.0524 0.1048 0.7498 0.0180 0.0360 0.8186

Attack (Domain-level) 0.3284 0.6568 0.7246 0.3172 0.6344 0.7218 0.1760 0.3520 0.7916
Defense (Domain-level) 0.1428 0.2856 0.6654 0.1408 0.2816 0.7660 0.0664 0.1328 0.8028

Attack (Instance-level) 0.3504 0.7008 0.7152 0.3300 0.6600 0.7170 0.2372 0.4744 0.7594
Defense (Instance-level) 0.1580 0.3160 0.6847 0.1544 0.3088 0.7563 0.0796 0.1592 0.8109

Table 2: Evaluation results of defending against the fairness poisoning attacks, where the defender aims to decrease ΦD and ΦE , and increase
AB . The bold results suggest that the defender improves the robustness of fairness under each attack case.

Huang et al., 2020] and the test-data-required fairness attack
[Mehrabi et al., 2020] for comparison in our setting. Firstly,
our attack is at group-level while the standard poisoning is
at instance-level. Second, our attack does not use test data
information that is used by existing fairness poisoning work
[Mehrabi et al., 2020]. To build baseline comparisons, we
adopt the baseline fairness poisoning attacks (Adv. sampling,
Adv. labeling, Adv. Hard) and the fairness poisoning algo-
rithm (Fairness Poisoning) in [Chang et al., 2020].

5.3 Evaluation Results
Attack Evaluation. The results on attacking fairness of face
attribute classifiers are shown in Table 1. In this set of exper-
iments, 5% of the training data is poisoned. We selected 5%
because the attack efficacy of all baseline methods would be
too marginal when fewer poisons are used. We observe that
both our domain-level attack and instance-level attack outper-
form all baseline methods in terms of corrupting the fairness
of the face attribute classifiers. For instance, in attractive-
ness prediction, the equalized odds of LightCNN-9 is raised
from 0.0392 to 0.3272 (domain-level) and 0.3896 (instance-
level). Similar trends are observed for other FAR applications
and datasets. In addition, we also perform a robustness study
to investigate two important aspects of the proposed fairness
attack, namely the number of poisons and the perturbation
radius ϵ (the results of robustness study are in Appendix).
Defense Evaluation. The results on defending the proposed
attack are reported in Table 2. To show the efficacy of the pro-
posed robust-fair training method, we doubled the number of
poisons to attack the fairness of the face attribute classifiers. It

is observed that the defense could effectively reduce the bias
introduced by the proposed fairness attack. For instance, in
attractiveness prediction, the equalized odds of the LightCNN
classifier was 0.5432 after the attack (instance-level). With
robust-fair training (our defense), the attacked classifier be-
comes more fair with an equalized odds of 0.2456. The im-
proved fairness as well as the model accuracy could also be
observed for other network architectures and FAR applica-
tions. However, we acknowledge that the model’s fairness
after defense is still worse than the unattacked model, which
indicates that future work is needed to further increase the
robustness of the fairness in FAR applications.

6 Conclusion

In this work, we present a novel poisoning attack against de-
mographic fairness of face attribute classifiers. To the best of
our knowledge, our work is the first to explore test-data-free,
cross-attribute and clean-label poisoning attacks against fair-
ness of face attribute classifiers at group level. Experiments
on various FAR applications show that our method could eas-
ily bias the fairly trained models. Motivated by the observed
vulnerability of fairness, we further propose an efficient de-
fense mechanism to increase the robustness of the fairness.
Through this work, we stress the significance of studying ro-
bustness of fairness for AI models, as the fairness obtained
with traditional fair algorithms could be vulnerable under
fairness attacks. Therefore, decent efforts should be made
to improve the robustness of the fairness of ML/AI models.
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