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Abstract
Deep convolutional neural networks (CNNs) have
achieved unprecedented success in single image
super-resolution over the past few years. Mean-
while, there is an increasing demand for single
image super-resolution with arbitrary scale fac-
tors in real-world scenarios. Many approaches
adopt scale-specific multi-path learning to cope
with multi-scale super-resolution with a single net-
work. However, these methods require a large
number of parameters. To achieve a better bal-
ance between the reconstruction quality and pa-
rameter amounts, we propose a learnable interpo-
lation method that leverages the advantages of neu-
ral networks and interpolation methods to tackle the
scale-arbitrary super-resolution task. The scale fac-
tor is treated as a function parameter for generating
the kernel weights for the learnable interpolation.
We demonstrate that the learnable interpolation
builds a bridge between neural networks and tra-
ditional interpolation methods. Experiments show
that the proposed learnable interpolation requires
much fewer parameters and outperforms state-of-
the-art super-resolution methods.

1 Introduction
The single image super-resolution (SISR) task aims to re-
cover high-resolution images from degraded low-resolution
images. To address the SISR task, there are mainly two
categories of SISR methods, namely traditional methods
[Aghighi, 2015; Akhtar et al., 2015] and deep learning based
methods [Dong et al., 2015; Lim et al., 2017; Zhang et al.,
2018b; Zhang et al., 2018a; Liang et al., 2021; Liu et al.,
2021]. In the last decades, CNN based methods [Lim et al.,
2017; Zhang et al., 2018a; Zhang et al., 2018b] have grad-
ually become the mainstream approach for SISR problems.
Nevertheless, most of them are designed as scale-specific net-
works. For real-world applications, it is not uncommon to
zoom the image to a customized scale factor instead of a spe-
cific scale factor. Thus, it is vital to design scale-arbitrary
networks to enable a wider application.

∗Corresponding author.

As we know, traditional image interpolation approaches
such as nearest-neighbor interpolation, bilinear interpolation,
lanczos interpolation and bicubic interpolation [Lin et al.,
2008; De Boor, 1962] are naturally capable of addressing
the scale-arbitrary super-resolution problem. They map the
neighboring pixels to the corresponding target pixels in HR
via the selected kernel functions. However, these kernel func-
tions are fixed, leading to mediocre performance.

Several works attempt to address scale-arbitrary super res-
olution (SR) using deep learning methods. The multi-path
learning strategy is widely employed to address super resolu-
tion with different scale factors [Lim et al., 2017; Ahn et al.,
2018; Wang et al., 2018b]. To be concrete, the principal com-
ponents of the model (i.e., the feature extraction components)
are shared and then scale-specific pre-processing paths and
upsampling paths are attached. Meta-SR [Hu et al., 2019]
applies meta-learning to tackle the super-resolution task of
different non-integer scale factors in a single network. ArbSR
[Wang et al., 2021] shares most of the parameters for different
scales and handle the SR tasks with asymmetric scale factors.
It is observed that ArbSR includes the bilinear interpolation
on the scale-specific paths which limits the capability of dy-
namic scale-aware filters. The multi-path learning strategy
requires high computational and memory costs and bears the
disadvantage of being complicated and limited when it comes
to continuous scale factors. The scale factor is used for select-
ing the path and adjusting the weight according to the paths.
The alternative is to treat the scale factor as the parameter of
the function. LIIF [Chen et al., 2021] first tries to represent
an image as a continuous function that learns the continuous
representation of images that follows the idea of implicit neu-
ral representations. However, LIIF does not make full use of
the scale factor and the LR images, thus resulting in relatively
low performance on ×2,×3,×4 scale SR tasks.

It is a tipping point to combine the simplicity of the inter-
polation and the capability of neural networks. Concretely,
the kernel weights are learned by a neural network which can
be seen as a function. And the scale factor is treated as one of
the inputs of the function. In this way, the kernel weights are
varied with different situations of the scale factor without the
heavy computation and memory cost required by multi-path
learning strategies.

In this paper, we propose a learnable interpolation mod-
ule that performs better than traditional methods while pre-
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serving its simplicity. In the learnable interpolation module,
a neural network is introduced to replace the typically fixed
interpolation kernel function. To make full use of the scale
factor, a scale-aware channel attention module is also pro-
posed for more powerful feature extraction and feature cor-
relation learning. It adjusts the weights of different feature
channels with regard to the scale factor to extract informa-
tive features and boosts the performance of the model. Be-
sides, the scale-aware channel module is carefully designed
to integrate with the widely used residual module for wider
application. These two modules are designed as plug-ins to
be easily embedded into the mainstream SR models. Baseline
networks equipped with our network achieve competitive per-
formance compared with state-of-the-art SISR approaches on
symmetric and asymmetric scale factors with almost negligi-
ble additional computation and memory costs.

Our contributions can be summarized as follows:

• We propose a learnable interpolation method that ampli-
fies the image to any size in a unified network. It retains
the simplicity of commonly-used interpolation methods
and surpasses the performance of existing methods on
scale-arbitrary SR tasks.

• We propose a scale-aware channel attention module. It
dynamically adjusts the weights of the feature channels
according to the input scale factor, contributing to better
performance for scale-arbitrary SR tasks.

• We conduct extensive experiments on five benchmark
datasets. The results show that the network equipped
with our plug-in module improves the PSNR value by
0.13dB on average and up to 0.27dB over the existing
models with only a slight increase in the number of pa-
rameters and computational cost.

2 Related Work
2.1 Learning-based Upsampling
To enhance the performance of traditional interpolation meth-
ods, several learning-based upsampling methods have been
proposed. The standard learning-based upsampling methods
are transposed convolution and sub-pixel convolution. The
transposed convolution [Zeyde et al., 2010] is essentially the
opposite of a vanilla convolution. However, it tends to pro-
duce crosshatch artifacts due to zero padding. Also, the up-
sampled feature values are fixed and redundant. The sub-
pixel convolution [Shi et al., 2016] was proposed to circum-
vent this problem. It generates features with a number of ex-
tra channels by convolution and then reshapes the features
to obtain the output image. In practice, it is difficult for the
deeper networks to ignore the repeating artifacts produced by
the sub-pixel convolution layer.

However, these methods can only handle fixed scale fac-
tor SR problems. To address this, some upsampling meth-
ods that can handle arbitrary scale factors have been pro-
posed in recent years. [Hu et al., 2019] first proposed a
Meta-Upsample module to solve the scale-arbitrary SR prob-
lem based on meta-learning. [Wang et al., 2021] proposed a
scale-aware upsampling module, which is composed of bilin-
ear sampling and conditional convolution and realizes image

super-resolution of asymmetric scale factors. [Chen et al.,
2021] proposed the LIIF to learn a continuous image repre-
sentation with a local implicit image function. LIIF achieves
state-of-the-art performance on larger-scale tasks but has no
superiority on smaller-scale tasks. In addition, several meth-
ods have been proposed for learning dynamic interpolation
under certain circumstances. [Guo et al., 2021] proposed dy-
namic interpolation that dynamically learns weights from in-
put views. In contrast to these works, our learnable interpo-
lation method replaces the fixed kernel function with a neural
network to solve the scale-arbitrary SR problem.

2.2 Single Image Super-Resolution
Due to the rapid development of deep neural networks, CNN-
based SISR approaches have a distinct advantage over tra-
ditional approaches. [Dong et al., 2015] first proposed SR-
CNN for SISR, which uses three convolution layers for super-
resolution. [Lim et al., 2017] proposed a particularly deep
network called EDSR, which removed the batch normaliza-
tion layers and used residual scaling to stabilize the training
process. [Zhang et al., 2018b] proposed a residual dense net-
work (RDN) that combined the advantages of residual blocks
and dense connection blocks to improve SR performance.
[Zhang et al., 2018a] introduced the attention mechanism to
the super-resolution task, and achieved significant improve-
ment. Recently, [Liang et al., 2021] proposed SwinIR, which
used Swin Transformer [Liu et al., 2021] and achieved state-
of-the-art performance.

To deal with the problem of scale-arbitrary super-
resolution, [Lim et al., 2017] proposed a Multi-Scale Deep
Super-Resolution (MDSR) to integrate multiple modules of
different integer scale factors. However, MDSR cannot han-
dle image super-resolution with non-integer scales. [Hu et al.,
2019] proposed Meta-SR, which utilizes the meta-upsample
module to realize scale-arbitrary super-resolution. However,
Meta-SR is also limited in that the horizontal and vertical
scale factors must be consistent. Subsequently, [Wang et al.,
2021] proposed the ArbSR, which includes feature adaptation
modules for scale perception and a scale-aware upsampling
module. In ArbSR, the height and width are decoupled, and
different features for SR are extracted from different scale
factors in the feature extraction stage. In our work, we devise
a scale-aware channel attention module that uses the mecha-
nism of co-adaption [Kong et al., 2021] and attention to ex-
tract suitable features with regard to different scale factors.
The extracted features are fed into our learnable interpolation
module, which computes the interpolation kernel and uses the
interpolation kernel to interpolate the features to obtain the
high-resolution counterparts.

3 Methods
3.1 Learnable Interpolation
Let f be the learnable interpolation function, and c denotes
the number of feature channels, Fx and Fy denote the features
before interpolation and after interpolation, of which sizes are
c×h×w and c×h′×w′, respectively. Remark that h′ > h and
w′ > w. The horizontal and vertical scale factors are rh = w′

w
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Figure 1: Overview of the learnable interpolation module. It adopts
the neural network Hk to compute the interpolation kernel ω, and
then upsamples the input feature Fx through Hi to produce the out-
put Fy . See Equation (5), (6), (7), and (7) for the description of Hi.

and rv = h′

h . Then the learnable interpolation problem can
be formulated as:

Fy = f(Fx, rh, rv). (1)

Similar to conventional interpolation methods, one may
utilize the relative offset to compute the interpolation kernel.
The relative offset tensor R with the size 2× h′ × w′, can be
seen as the mapping from high resolution (HR) space to low
resolution (LR) space, and is defined as follows:

R(:, i, j) =

({
i+ 0.5

rh

}
− 0.5,

{
j + 0.5

rv

}
− 0.5

)
, (2)

where {x} = x − ⌊x⌋, and i, j are the pixel coordinates in
HR space. To calculate the exact offset, a translation 0.5 in
Equation (2) is used to represent the pixel center.

Rather than fixed kernel functions, in our learnable inter-
polation module, we utilize a neural network denoted by Hk,
to compute the dynamic interpolation kernel,

ω = Hk(R), (3)

where ω is interpolation kernel of size k×k×h′×w′ and k is
the interpolation kernel size. Concretely, Hk consists of three
convolution layers, two LeakyReLU activation layers [Maas
et al., 2013] and a sigmoid activation layer, whose network
structure is depicted in Figure 1. ω(:, :, i′, j′) denotes that the
(i′, j′) point in the HR space corresponding to the interpola-
tion weight of the k nearest neighbors of the point (i, j) in the
LR space.

To achieve better performance, we add a multi-head mech-
anism [Vaswani et al., 2017] in the learnable interpolation
module. Suppose m is the number of heads in the multi-
head mechanism, and assume that m is a factor of c, i.e.,
m|c. One can compute m groups of different interpola-
tion kernels ω separately and get the global kernel ω̂ of size
m × k × k × h′ × w′ by concatenating kernels ω from m

groups. F̂x with the size m × c
m × h × w is obtained by

partitioning the input feature Fx into m equal subsets.
Based on the above discussion, Fy in Equation (1) can be

rewritten as:
Fy = Hi(F̂x, ω̂, rh, rv), (4)

where Hi is the interpolation operation in our learnable inter-
polation module. Suppose (i′, j′) is the coordinate of a pixel
in the HR space, let us explain Hi that computes the interpo-
lated feature Fy(i

′, j′). Let ω̄ be the local kernel with the size
m × k × k corresponding to the pixel (i′, j′). And it can be
captured by indexing on the global kernel ω̂, i.e.,

ω̄ = ω̂(:, :, :, i′, j′). (5)

For the given scale factor rh, rv , our learnable interpolation
produces the corresponding pixel (i, j) in the LR space, i.e.,

i =

⌊
i′ + 0.5

rh

⌋
, j =

⌊
j′ + 0.5

rv

⌋
. (6)

To enrich the information for every pixel, we consider the k

nearest neighbors of input feature F̂x. The concatenation of
these features is defined as:

F̄x = Concat
({

F̂x(:, :, i+ p, j + q),−
⌊
k

2

⌋
≤ p, q ≤

⌊
k

2

⌋})
,

where Concat refers to the concatenation of a set of vectors.
By performing the above operations, the weighted sum of F̄x

over ω̄ is reformulated as the interpolated feature of size m×
c
m ,

F̄y(p, q) =
k−1∑
k1=0

k−1∑
k2=0

ω̄(p, k1, k2) · F̄x(p, q, k1, k2), (7)

where p, q are the traversal of the first two dimensions in F̄x,
p ∈ [0,m − 1], q ∈ [0, c

m − 1]. Notably, the final output Fy

can be easily obtained by reshaping F̄y .
Intuitively, the goal of our learnable interpolation module

is to support the interaction and the integration of aspects
of CNN-based SISR methods and conventional interpolation
methods, i.e., the learnable interpolation module can perform
as well as the CNN-based networks on the super-resolution
task while preserving the flexibility of conventional interpo-
lation methods. Our learnable interpolation module can pro-
vide suitable kernel functions for scale-arbitrary SR tasks by
updating the parameters for the interpolation kernel functions
through backpropagation. Benefiting from these appealing
features, our proposed model can achieve considerable per-
formance.

3.2 Scale-Aware Channel Attention
Since the degradation varies for different scale factors [Si-
monyan et al., 2014; Kong et al., 2021], it is necessary to
take the scale factor into account for better performance. This
finding inspires us to take advantage of feature recalibration
in terms of different scale factors to improve the reconstruc-
tion performance. As demonstrated in Section 4.4, the fea-
tures exhibit specificity for different scaling factors. To this
end, we propose a scale-aware channel attention module by
integrating the scale factor with channel attention.

In addition, it is essential to combine the scale-aware chan-
nel attention module with the baseline network. It can be no-
ticed that a majority of feature extraction modules of super-
resolution models contain residual structures for feature ex-
traction. With the goal of wider applicability and better
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Figure 2: Overview of Scale-Aware Channel Attention block. (a)
The original residual block. (b) Scale-aware channel attention block.
(c) Scale-aware module. For a given scale factor, the scale-aware
channel attention module generates adaptive channel weights to ex-
tract suitable features in the feature extraction stage.

performance, we combine the scale-aware channel attention
module with residual structure.

We denote the input of the residual module as Fi ∈
Rc×h×w, the output as Fo ∈ Rc×h×w and the residual back-
bone as Hb. The scale-aware channel attention module takes
the scale factor into account and recalibrates features:

Fo = Fi +Hs(rh, rv) ·Hb(Fi), (8)

where Hs is a neural network consisting of two fully con-
nected layers with tanh activation function as shown in Fig-
ure 2. Hs can generate suitable channel weights in terms of
different scaling factors. Thanks to its simple structure, the
introduced parameters and additional computational cost are
negligible.

3.3 Integration with SR architectures
The integration of the learnable interpolation module and the
scale-aware channel attention into the existing networks is
easy since the residual modules are widely used and the up-
sample module is indispensable for SR architectures. De-
signed as plug-ins, the learnable interpolation module re-
places the original upsample module. Also, the scale-aware
channel attention is integrated and jointly trained with the
residual module.

As shown in Figure 3, the inference process is divided into
two stages. In the feature extraction stage, the scale-aware
channel attention module perceives the input scale factor to
dynamically adjust the weights of different channels to ex-
tract features suitable for the super-resolution task of the cur-
rent scale factor. In the upsampling stage, the learnable in-
terpolation module uses the dynamically calculated kernel to
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Figure 3: Integration with the existing network. For the given scale
factor, the scale-aware channel attention module generates adaptive
channel weights to extract suitable features in the feature extraction
stage. Instead of the fixed kernel function, our proposed learnable
interpolation module builds a DNN-type kernel function, which is
able to yield the interpolation kernel from the relative offset.

interpolate the features extracted in the previous stage and
obtain high-resolution images. In this way, we are capable of
interpolating the features and obtaining the HR image output
of the target size.

4 Experiments
4.1 Datasets and Metrics
Following Meta-SR [Hu et al., 2019], we use the DIV2K
[Timofte et al., 2017] dataset as our training dataset. For
testing, we evaluate our model on five standard benchmark
datasets, i.e., Set5 [Bevilacqua et al., 2012], Set14 [Zeyde
et al., 2010], B100 [Martin et al., 2001], Urban100 [Huang
et al., 2015] and Manga109 [Huang et al., 2015]. The PSNR
value [Wang et al., 2004] on the Y channel of the transformed
YCbCr color space is utilized to evaluate the performance of
our method. Following the settings of previous works, we do
the same border crop operation before calculating the evalua-
tion metrics for a fair comparison.

4.2 Implementation Details
Our network uses the BasicSR [Wang et al., 2018a] frame-
work. In order to improve the efficiency of the learnable in-
terpolation function, we use CUDA [NVIDIA et al., 2020;
Okuta et al., 2017] Programming language to implement the
above logic. The experiment is implemented on an NVIDIA
RTX 3090 GPU with PyTorch [Paszke et al., 2019].

We adopt two training strategies for the pretrain phase
and the finetune phase [Park et al., 2020]. During the pre-
train phase, we specify several specific symmetric scale factor
pairs (i.e., ×2, ×3, ×4) and generate LR training images to
pretrain the model based on the selected scale factors. During
the finetune phase, we select asymmetric scale factors uni-
formly and randomly in [1.5, 4.5] to generate LR training im-
ages to finetune the model based on the pretrained model.

To stabilize the memory consumption during training, we
fix the resolution of LR input patches since the extracted fea-
tures are of the same size as LR input patches before upsam-
pling. A pair of horizontal/vertical scale factors (rh, rv) is
randomly selected for each batch during training. We ran-
domly extract 16 ground-truth (GT) patches with the size of
48rv×48rh as a batch input. Then, the GT patches are down-
sampled into LR patches with the size of 48 × 48 by bicubic
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Params
(M)

FLOPs
(G)

Set5 Set14 B100 Urban100 Manga109
×2 ×1.6 ×1.55 ×2 ×1.5 ×1.65 ×2 ×1.4 ×1.85 ×2 ×1.9 ×1.95 ×2 ×1.7 ×1.95

Bicubic - - 33.66 36.10 36.24 30.24 32.87 31.83 29.56 32.95 30.11 26.88 27.25 27.05 30.80 32.91 31.12
EDSR-×2 40.7 166.8 38.19 40.39 40.71 33.95 37.10 35.95 32.36 36.79 33.02 32.95 33.06 32.69 39.18 40.88 39.13
ArbEDSR - - 38.19 40.64 40.94 34.05 37.51 36.22 32.37 36.92 33.23 33.02 33.61 33.30 39.22 41.20 39.24
LIEDSR 39.6 157.8 38.26 40.74 41.03 34.09 37.52 36.29 32.40 36.93 33.27 33.11 33.75 33.43 39.27 41.32 39.56
RDN-×2 22.1 90.6 38.24 40.51 40.53 34.01 37.24 36.10 32.34 36.83 33.15 32.89 33.05 32.79 39.18 41.06 39.31
Meta-RDN 22.4 97.2 38.23 40.66 40.94 34.03 37.52 36.24 32.35 36.93 33.21 33.03 33.60 33.26 39.31 41.33 39.60
ArbRDN - - 38.23 40.67 40.95 34.07 37.53 36.27 32.37 36.93 33.21 33.00 33.51 33.19 39.28 41.32 39.54
RDN-LIIF 21.3 112.6 38.16 40.61 41.00 34.06 37.54 36.35 32.26 36.86 33.07 32.90 33.53 33.22 39.19 41.29 39.49
LIRDN 22.1 90.3 38.29 40.77 41.08 34.16 37.59 36.38 32.40 36.98 33.27 33.08 33.70 33.38 39.32 41.38 39.62
RCAN-×2 15.4 62.8 38.27 40.53 40.77 34.12 37.23 36.08 32.40 36.86 33.16 33.18 33.17 32.84 39.42 41.15 39.39
Meta-RCAN 15.7 69.4 38.22 40.66 40.93 34.00 37.51 36.17 32.36 36.95 33.22 33.12 33.62 33.30 39.32 41.30 39.59
ArbRCAN 16.9 62.7 38.26 40.69 40.97 34.09 37.53 36.28 32.39 36.93 33.23 33.14 33.55 33.25 39.37 41.32 39.56
LIRCAN 15.8 62.4 38.29 40.78 41.09 34.33 37.65 36.42 32.42 37.01 33.30 33.13 33.77 33.45 39.56 41.59 39.84

×3 ×2.4 ×2.75 ×3 ×2.8 ×2.95 ×3 ×2.2 ×2.15 ×3 ×2.3 ×2.35 ×3 ×2.7 ×2.55
Bicubic - - 30.39 32.41 31.06 27.55 27.84 27.46 27.21 28.88 29.12 24.46 25.91 25.72 26.95 27.77 28.27
EDSR-×3 43.7 179.1 34.68 36.45 35.35 30.53 30.90 30.49 29.27 31.38 31.78 28.82 31.13 30.91 34.19 35.18 35.75
ArbEDSR - - 34.73 36.54 35.34 30.61 31.04 30.56 29.30 31.46 31.70 28.90 31.36 31.11 34.28 35.40 36.06
LIEDSR 39.6 158.0 34.76 36.50 35.38 30.68 31.15 30.67 29.34 31.51 31.75 29.03 31.55 31.29 34.37 35.53 36.18
RDN-×3 22.3 91.4 34.71 36.46 35.27 30.57 30.88 30.53 29.26 31.30 31.65 28.80 31.25 31.07 34.13 35.41 36.00
Meta-RDN 22.4 106.4 34.73 36.55 35.33 30.58 30.97 30.57 29.30 31.41 31.69 28.93 31.33 31.13 34.40 35.58 36.21
ArbRDN - - 30.71 36.55 35.35 30.59 30.98 30.58 29.30 31.45 31.69 28.86 31.33 31.14 34.43 35.60 36.20
RDN-LIIF 21.3 141.0 34.70 36.48 35.40 30.57 31.10 30.70 29.21 31.41 31.61 28.81 31.32 31.09 34.15 35.45 36.14
LIRDN 22.1 90.5 34.75 36.50 35.38 30.68 31.15 30.70 29.33 31.50 31.74 29.04 31.51 31.27 34.49 35.62 36.28
RCAN-×3 15.6 63.5 34.76 36.51 35.31 30.62 30.90 30.53 29.31 31.31 31.68 29.01 31.34 31.15 34.42 35.50 36.06
Meta-RCAN 15.7 78.5 34.76 36.58 35.36 30.58 31.00 30.56 29.29 31.44 31.70 28.96 31.43 31.20 34.40 35.55 36.21
ArbRCAN 16.9 62.8 34.76 36.59 35.39 30.64 31.01 30.59 29.32 31.48 31.72 28.98 31.48 31.26 34.55 35.64 36.27
LIRCAN 15.8 62.6 34.82 36.57 35.46 30.77 31.22 30.73 29.36 31.53 31.77 29.11 31.63 31.38 34.77 35.91 36.56

×4 ×3.1 ×3.25 ×4 ×3.2 ×3.95 ×4 ×3.2 ×3.55 ×4 ×3.7 ×3.85 ×4 ×3.4 ×3.65
Bicubic - - 28.42 29.89 29.21 26.00 26.98 25.68 25.96 26.91 26.32 23.14 23.38 23.14 24.89 25.97 25.41
EDSR-×4 43.1 205.8 32.47 34.25 33.35 28.81 29.95 28.63 27.73 28.84 28.25 26.65 27.06 26.69 31.04 32.51 31.79
ArbEDSR - - 32.51 34.48 33.92 28.83 30.07 28.72 27.74 28.91 28.30 26.62 27.12 26.73 31.26 32.90 32.14
LIEDSR 39.6 158.3 32.59 34.52 34.00 28.91 30.18 28.81 27.79 28.95 28.35 26.81 27.34 27.02 31.38 33.00 32.24
RDN-×4 22.3 93.1 32.47 34.36 33.91 28.81 30.01 28.69 27.72 28.85 28.25 26.61 27.17 26.83 31.00 32.70 31.99
Meta-RDN 22.4 119.1 32.49 34.42 33.93 28.86 30.06 28.75 27.75 28.90 28.31 26.70 27.24 26.91 31.34 33.02 32.24
ArbRDN - - 32.42 34.43 33.92 28.82 30.08 28.71 27.73 28.90 28.30 26.61 27.15 26.85 31.35 32.99 32.24
RDN-LIIF 21.3 180.6 32.54 34.49 34.16 28.85 30.12 28.93 27.70 28.85 28.29 26.67 27.19 26.92 31.15 32.84 32.09
LIRDN 22.1 90.8 32.56 34.50 33.97 28.94 30.16 28.86 27.80 28.95 28.35 26.80 27.34 27.01 31.55 33.12 32.39
RCAN-×4 15.6 65.3 32.63 34.37 33.92 28.85 30.00 28.72 27.75 28.86 28.27 26.75 27.20 26.89 31.20 32.76 32.04
Meta-RCAN 15.7 91.2 32.56 34.46 33.98 28.85 30.08 28.73 27.75 28.86 28.30 26.71 27.25 26.93 31.33 33.00 32.22
ArbRCAN 16.9 63.0 32.55 34.50 34.03 28.87 30.08 28.74 27.76 28.93 28.33 26.68 27.22 26.90 31.36 33.12 32.29
LIRCAN 15.8 62.9 32.68 34.57 34.12 28.97 30.23 28.85 27.82 28.98 28.38 26.88 27.43 27.10 31.71 33.36 32.58

Table 1: The PSNR (dB) results of our network with symmetric scale factors. Bold indicates the best result.

downsampling for training. In addition, random flipping is
utilized for data augmentation.

We use EDSR [Lim et al., 2017], RDN [Zhang et al.,
2018b] and RCAN [Zhang et al., 2018a] as the baseline net-
work and our plug-in module is embedded in the baseline
networks to generate three scale-arbitrary networks, namely
LIEDSR, LIRDN and LIRCAN. For each model, it is pre-
trained for 300K iterations and finetuned for 300K iterations.
We set L1 loss between SR results and HR images as the loss
function. For optimization, we use Adam [Kingma and Ba,
2015] with β1 = 0.9 and β2 = 0.999. In order to stabilize
the training process, we use the exponential moving average
(EMA) strategy. The initial learning rate is set to 1 × 10−4

and halved at 200K iterations for both the pretrain and fine-
tune phases.

4.3 Experimental Results
We compare our LISR with state-of-the-art methods includ-
ing Meta-SR [Hu et al., 2019], ArbSR [Wang et al., 2021] and
LIIF [Chen et al., 2021]. We present the quantitative results
including PSNR value, the total number of model parameters
and FLOPs in Table 1 and 2, where FLOPs are measured with

a 64 × 64 image as input, and the scale factor are consistent
with ArbSR. Also, we present some representative qualita-
tive comparison results in Figure 4 and 5. Since ArbSR does
not provide the models and codes of ArbEDSR and ArbRDN,
their parameters are not shown in the Tables.

Quantitative Results. It can be observed from Table 1 that
our LIEDSR, LIRDN and LIRCAN perform significantly bet-
ter than the baseline networks. For example, our LIEDSR has
better results (40.74 vs 40.39 for ×1.6 SR, 41.03 vs 40.71 for
×1.55 SR) than EDSR on Set5.

Compared to Meta-SR, ArbSR and LIIF, our LISR network
also generally achieves better PSNR performance. Among
the 135 experiments with symmetric scale factors listed in
Table 1, we get the highest PSNR metrics on 130 experi-
ments. For example, our LIRCAN exceeds ArbRCAN by
0.35dB on PSNR on Manga109 with a scale factor of 4 and
has 1.1M fewer parameters. Our LIRDN exceeds Meta-RDN
by 0.35dB on PSNR on Manga109 with a scale factor of 4 and
has 0.3M fewer parameters. Table 2 shows the experimental
results of asymmetric scale factors. On the Urban100 dataset,
the PSNR value of RCAN is 30.72 / 28.81 / 29.98 dB, the
PSNR value of Meta-RCAN is 30.73 / 29.03 / 29.67 dB, and
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Params
(M)

FLOPs
(G)

Set5 Set14 B100 Urban100 Manga109
×1.5
×4

×1.5
×3.5

×1.6
×3.05

×4
×2

×3.5
×2

×3.5
×1.75

×4
×1.4

×1.5
×3

×3.5
×1.45

×1.6
×3

×1.6
×3.8

×3.55
×1.55

×2.5
×2

×2.8
×3.5

×3.35
×2.7

Bicubic - - 30.01 30.83 31.40 27.25 27.88 27.27 27.45 28.86 27.94 25.93 24.92 25.19 29.61 26.47 26.86
EDSR 43.1 183.9 33.95 34.89 35.59 30.29 30.91 31.36 29.33 31.24 29.96 30.61 28.77 29.23 37.08 32.99 33.46
ArbEDSR - - 34.32 35.33 36.02 30.51 31.15 31.46 29.52 31.38 30.20 31.06 29.32 29.98 37.70 33.54 34.16
LIEDSR 39.6 158.0 34.48 35.36 36.12 30.62 31.27 31.58 29.63 31.42 30.27 31.25 29.54 30.17 37.81 33.67 34.30
RDN 22.3 91.7 34.12 35.04 35.63 30.32 31.02 31.16 29.34 31.29 29.98 30.68 28.75 29.30 37.43 33.27 33.77
Meta-RDN 22.4 107.6 34.19 35.17 35.79 30.39 31.06 31.36 29.43 31.28 30.09 30.77 29.04 29.63 37.74 33.61 34.22
ArbRDN - - 34.31 35.26 35.98 30.47 31.12 31.42 29.52 31.36 30.19 31.02 29.23 29.91 37.88 33.74 34.36
RDN-LIIF 21.3 144.7 33.88 34.89 35.89 30.32 30.98 31.28 29.28 31.10 29.96 30.56 28.87 29.27 37.69 33.48 34.17
LIRDN 22.1 90.5 34.45 35.38 36.08 30.66 31.30 31.56 29.63 31.42 30.26 31.21 29.49 30.16 37.92 33.78 34.40
RCAN 15.6 63.9 34.14 35.05 35.67 30.35 31.02 31.21 29.35 31.30 29.98 30.72 28.81 29.34 37.48 33.31 33.82
Meta-RCAN 15.7 79.7 34.20 35.17 35.81 30.40 31.05 31.33 29.43 31.26 30.09 30.73 29.03 29.67 37.74 33.61 34.23
ArbRCAN 16.9 62.8 34.37 35.40 36.05 30.55 31.27 31.54 29.54 31.40 30.22 31.13 29.36 30.04 37.93 33.81 34.41
LIRCAN 15.8 62.3 34.56 35.52 36.19 30.64 31.44 31.71 29.66 31.46 30.30 31.29 29.61 30.26 38.20 34.04 34.67

Table 2: The PSNR (dB) results of our network with asymmetric scale factors. Bold indicates the best result.

LIRCAN (Ours)RCAN (+bicubic) ArbRCAN GT

× 3.65

× 3.85

LR Image

Figure 4: Visual comparison for SR of non-integer scale factors with RCAN as the baseline network. Zoom in for more details.

the PSNR value of ArbRCAN is 31.13 / 29.36 / 30.04 dB.
And our LIRCAN model outperforms all their models with
the PSNR value 31.29 / 29.61 / 30.26 dB.

Specifically, our LIRCAN network performs better on the
Set14 dataset for ×2.8 SR (31.20 dB), while the PSNR value
of Meta-RCAN is 31.00 dB and that of ArbRCAN is 31.01
dB. Moreover, the number of model parameters added by our
plug-in module is minimal among the three methods, and the
number of model parameters of LIEDSR and LIRDN is even
fewer than that of the baseline network.

Qualitative Results. We compare the visual results on im-
age Belmondo from Manga109 dataset and img 032 from Ur-
ban100 dataset as shown in Figure 4. From the upper half of
Figure 4, we can see that our network can handle complex
textures better than RCAN and ArbRCAN. From the bottom
part, it can be observed that RCAN and ArbRCAN models in-
troduce unpleasant artifacts. Figure 5 shows the visual results
on img 009 and img 037 from the Urban100 dataset. From
the upper part of Figure 5, we can observe that our model
produces fewer artifacts than other models. The bottom part
of Figure 5 shows that the railway details generated by our
model are more realistic and natural than that of RCAN and
ArbRCAN. This demonstrates that our network achieves bet-
ter visual quality with fewer artifacts and more realistic and
natural textures than state-of-the-art approaches.

4.4 Ablation Studies
Ablation experiments are performed on Set5 and Manga109
to analyze the relative importance of each component in our

method. We use EDSR as the baseline network and intro-
duce two variants. In the case of variant 1, we replace the
learnable interpolation module with bicubic interpolation and
in the case of variant 2, we remove the scale-aware channel
attention module. All variants are trained under the same set-
tings.

The PSNR comparison results of LIEDSR and the two
variants on Set5 are shown in Table 3. And the curves of
PSNR on the Belmondo image from the Manga109 dataset
for factors from 1.5 to 4.5 with a step of 0.01 are shown in
Figure 6.

Ablation Study on Learnable Interpolation. From Ta-
ble 3 and 6, we can conclude that in the case of variant 1,
which replaces our learnable interpolation module with bicu-
bic interpolation, is of relatively low PSNR value. When our
learnable interpolation module is added, the improvement in
PSNR results is significant (e.g., 40.74 vs 37.37 for ×1.6
SR, 34.48 vs 30.95 for ×1.5

×4 SR). This shows that ordinary
interpolation methods have poor performance due to their
fixed and simple kernel functions. The learnable interpolation
modifies the kernel function of ordinary interpolation, which
increases the learnability and thus improves the performance.

Channel Importance Analysis. We first sequentially mask
each channel of the feature, then compute their PSNR value.
The experiment is conducted on the butterfly images in the
Set5 dataset. It can be seen from Figure 7 that there are hor-
izontal gradient stripes in the figure, which indicates that the
feature importance value exhibits specificity with respect to
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Model learnable interpolation scale-aware channel attention ×1.6 ×2 ×2.75 ×3 ×3.25 ×4 ×1.5
×4

×1.5
×3.5

×1.6
×3.05

EDSR ✗ ✗ 40.39 38.19 35.35 34.68 33.35 32.47 33.95 34.89 35.59
Variant 1 bicubic ✓ 37.37 35.91 33.05 30.72 31.75 29.16 30.95 32.69 33.73
Variant 2 ✓ ✗ 40.49 38.11 35.23 34.57 33.83 32.33 34.13 35.06 35.94
LIEDSR ✓ ✓ 40.74 38.26 35.38 34.76 34.00 32.59 34.48 35.36 36.12

Table 3: Quantitative ablation study on design choices of our network. Bold indicates the best result.

LR Image

LIRCAN (Ours)RCAN (+bicubic) ArbRCAN GT

× 3.8

×
 1

.6

×
 3

.5
5

× 1.55

Figure 5: Visual comparison for SR of asymmetric scale factors with RCAN as the baseline network. Zoom in for more details.
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Figure 6: The horizontal axis represents the scale factor and the ver-
tical axis represents the PSNR value of the model on the correspond-
ing scale factor super-resolution task.

different scale factors. Therefore, for a specific scale factor,
the scale-aware channel attention module can extract more
suitable features.

Ablation Study on Scale-Aware Channel Attention.
From Table 3 and Figure 6, we can see that our LIEDSR
achieves higher PSNR values (e.g., 35.38 vs 35.23 for ×2.75
SR, 36.12 vs 35.94 for ×1.6

×3.05 SR) compared with variant 2.
As the only difference is that the scale-aware channel atten-
tion module is removed in the case of variant 2, we specu-
late that the scale-aware channel attention module can extract
more suitable features with regard to the scale factor to im-
prove the performance of the model.

Figure 7: Feature channel importance heat map. The horizontal
axis represents the scale factor, and the vertical axis represents the
masked index of the channel. The feature channel is more influential
on the PSNR results as the color becomes yellower and less impor-
tant as it becomes bluer.

5 Conclusion
This paper presents a novel plug-in module that includes a
learnable interpolation module and scale-aware channel at-
tention modules. Notably, the learnable interpolation mod-
ule can amplify an image to any size in a unified network.
Moreover, the scale-aware channel attention module can ex-
tract features suitable for any corresponding scale factor. Our
plug-in module can be easily embedded in existing single-
image super-resolution methods. Experiments demonstrate
that baseline networks equipped with our plug-in module pro-
vide excellent quantitative and qualitative results for scale-
arbitrary tasks with a relatively small increase in parameters
and computational cost.
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