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Abstract
Pansharpening is to fuse a panchromatic (PAN) im-
age with a multispectral (MS) image to obtain a
high-spatial-resolution multispectral (HRMS) im-
age. The deep learning-based pansharpening meth-
ods usually apply the convolution operation to
extract features and only consider the similarity
of gradient information between PAN and HRMS
images, resulting in the problems of edge blur
and spectral distortion in the fusion results. To
solve this problem, a multi-supervised mask pro-
tection network (MMPN) is proposed to pre-
vent spatial information from being damaged and
overcome spectral distortion in the learning pro-
cess. Firstly, by analyzing the relationships be-
tween high-resolution images and corresponding
degraded images, a mask protection strategy (MPS)
for edge protection is designed to guide the recov-
ery of fused images. Then, based on the MPS, an
MMPN containing four branches is constructed to
generate the fusion and mask protection images. In
MMPN, each branch employs a dual-stream multi-
scale feature fusion module (DMFFM), which is
built to extract and fuse the features of two input
images. Finally, different loss terms are defined for
the four branches, and combined into a joint loss
function to realize network training. Experiments
on simulated and real satellite datasets show that
our method is superior to state-of-the-art methods
both subjectively and objectively.

1 Introduction
Remote sensing images with high spatial and spectral res-
olution are widely used in various fields, such as change
detection, rescue, navigation, and mapping [Deng et al.,
2022]. However, due to the limitations of the physical prop-
erties of satellite sensors, high-spatial-resolution multispec-
tral (HRMS) images cannot be directly obtained. There-
fore, researchers proposed to fuse the spatial information

of the panchromatic (PAN) image and the spectral informa-
tion of the low-spatial-resolution multispectral (LRMS) im-
age through pansharpening methods to obtain HRMS images.
Up to now, in the pansharpening task, some related issues,
such as how to extract the spatial details of PAN images more
accurately and keep the spatial and spectral consistency be-
tween the fused HRMS image and the source images, are still
hot research topics.

At present, the existing pansharpening methods are mainly
divided into four categories [Vivone et al., 2020], i.e., com-
ponent substitution (CS) methods [Tu et al., 2001; Xu et al.,
2014; Aiazzi et al., 2002], multi-resolution analysis (MRA)
methods [Ghassemian, 2016], variational optimization (VO)
methods [Lu et al., 2021], and deep learning (DL)-based
methods [Deng et al., 2022; Peng et al., 2022]. Among them,
CS, MRA, and VO methods, called traditional methods, ob-
tain HRMS images through filter estimation or sparse repre-
sentation. Traditional pansharpening methods are simple to
implement and have physical interpretabilities, but they rely
on defined feature extraction methods and fusion rules to en-
sure the accuracy of results [Ghassemian, 2016].

Due to the powerful feature extraction ability of convo-
lutional neural networks (CNNs), numerous DL-based pan-
sharpening methods have been developed. PNN [Meng et al.,
2022] is the first CNN-based pansharpening method, which
extracts and fuses the features from PAN and LRMS im-
ages. MSDCNN [Yuan et al., 2018] proposed a multi-scale
and multi-depth CNN that adopts multi-scale feature extrac-
tion and residual connection for the pansharpening. PCDRN
[Yang et al., 2020] proposed a cascaded progressive resid-
ual network by increasing the depth of the network to ob-
tain more accurate spatial information. ColorGAN [Ozcelik
et al., 2020] provided a solution for colorizing PAN images,
which constructs a generative adversarial network (GAN) to
realize the generation of spectral information. TFNet [Liu et
al., 2020] proposed a two-stream fusion network, which ex-
tracts features of PAN and LRMS images by constructing two
different branches. FusionNet [Deng et al., 2022] proposed
a network to estimate the injection details between LRMS
and HRMS images. DSCNN [Yang et al., 2021] proposed a
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Figure 1: Pixel Distribution Curves of HP and LP.

dual-stream CNN for pansharpening by constructing an infor-
mation complementation block to extract and enhance spatial
details at different resolutions. ADKNet [Peng et al., 2022]
was proposed for pansharpening by building source-adaptive
discriminative kernels from PAN and LRMS images. TDNet
[Zhang et al., 2022] proposed a fusion network with double-
level, double-branch, and double-direction structures to fully
exploit spectral information with MRA.

The DL-based pansharpening methods can achieve better
objective performance indexes than the traditional methods.
However, their results still have the problems of spectral dis-
tortion and edge blur compared to the ideal HRMS images
[Deng et al., 2022; Meng et al., 2022]. The main reason is
that the convolution operation in CNNs can capture abundant
features by increasing the sizes of convolution kernels to ex-
pand the receptive field. However, the larger the convolution
kernel, the greater the interference of adjacent pixels to the
central pixel in the convolution area, so this operation will
weaken the gradient information of image edges. In addition,
most methods only consider the similarity of gradient infor-
mation between PAN and HRMS images, but ignore the in-
tensity change of adjacent areas at the edges between LRMS
and HRMS images, which leads to spectral distortion in the
fusion results. To solve the above problems, this paper first
analyzes the change trend of intensity values between high-
resolution images and corresponding degraded images, and
proposes a mask-protected strategy (MPS) that is used to pro-
tect edges and guide the network to separately learn the fea-
tures of different regions on both sides of image edges. Then,
based on MPS, a multi-supervised mask-protection network
(MMPN) is constructed to fuse PAN and LRMS images. Fi-
nally, to obtain better fusion results and increase the general-
ization of the network, a joint multi-supervised loss function
is defined. The contributions of this work are as follows:

1) An MPS is proposed by defining a mask protection ma-
trix to protect the edge information from the interference of
neighborhood information in feature extraction.

2) Based on MPS, an MMPN is constructed for pansharp-
ening, which contains four branches with the same structure
for multiple learning tasks. This network can obtain fusion
results with dual fidelity of spectral and spatial information.

3) In each branch of MMPN, a dual-stream multi-scale fea-

Figure 2: Structure of MPS.

ture fusion module (DMFFM) is designed to better extract
and fuse the features of two input images by constructing two
encoders and one decoder for feature extraction and fusion,
respectively.

4) To better train the network, a multi-supervised loss func-
tion based on multiple tasks is defined, in which a down-scale
loss term is designed to improve the generalization of the net-
work.

2 Definition of MPS
The current pansharpening methods mainly use the spatial in-
formation of PAN images to improve the resolution of LRMS
images. However, LRMS images exist low contrast between
adjacent target areas, that is, the difference of pixel values in
the adjacent areas on both sides of the edges is small. There-
fore, if only considering supplement details of PAN images
for LRMS images without considering the change trend of
pixel values in the neighborhoods, which may cause edge blur
and spectral distortion.

To better show the change of pixel values between a high-
resolution image and its corresponding low-resolution image,
we take PAN image and its corresponding degraded image as
an example. Figure 1 shows the change of pixel values of HP
and LP images on a horizontal line, where HP and LP de-
note PAN image and its degraded version, respectively. It can
be seen from Figure 1 that the intersection points of the two
curves are about the positions where the pixel values change
most steeply, or the positions where the gradient values are
the largest, that is, the edge positions. If the pixel values of
LP image are restored to those of HP image, on both sides
of the edges, the pixel values of one side need to be raised,
and those of another side need to be suppressed. Therefore,
to realize the reconstruction from LP images to HP images,
the pixel values of these two sides need different processing.
Based on the above analysis, this paper proposes an MPS,
which decomposes the areas on both sides of the intersection
by constructing the mask protection matrices. In this way, the
features of two sides need to be learned separately, and the
image edges can be protected from being damaged.

In our network, an MPS is proposed to decompose an input
image into two mask images, which contain adjacent regions
with different pixel changes on both sides of the edges. The
structure of MPS is shown in Figure 2. For pansharpening
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Figure 3: Overall architecture of MMPN. MPS denotes mask protection strategy, and STEM is a convolutional layer.

task, the proposed MPS is to protect the edges of the recon-
structed HRMS image from being damaged. The calculation
processes of MPS are as follows.

First, a PAN image Y HP is blurred through a modulation
transfer function (MTF) [Vivone et al., 2020] to obtain a de-
graded image with low resolution, named Y LP .

Y LP = MTF
(
Y HP

)
(1)

For Y HP and Y LP , the pixels with same values are the
intersection points. For other pixels, two mask protection
matricesMP and MP INV are defined by Formulas 2 and 3.
If the pixel values of Y HP are larger than those of Y LP , the
element of MP is set to 1, otherwise set 0.

MP (i, j) =

{
1, Y HP (i, j) ≥ Y LP (i, j)

0, Y LP (i, j) < Y LP (i, j)
(2)

MP INV = 1−MP (3)
where (i, j) represent the pixel coordinates. Then, a data
filling operation is performed on an input image (i.e., PAN,
LRMS or HRMS) and two different mask protection matri-
ces MP and MP INV to obtain two mask images named
Mask data1 and Mask data2 , which contain complemen-
tary information of different areas. The data filling operation
is defined as:

Mask data1 = Y In ∗MP (4)

Mask data2 = Y In ∗MP INV (5)
where ∗ represents an element-wise product.

Finally, the obtained mask data is used as the input of
MMPN and to guide the network to separately learn the fea-
tures of different regions on both sides of image edges.

3 Proposed MMPN
In this section, aiming at the problems of edge blur and spec-
tral distortion existing in the current pansharpening methods,
an MMPN is proposed, as shown in Figure 3. First, the input
source images and the ground truths (GT) are decomposed
by the proposed MPS to obtain the mask data and the mask
supervised images (M GT1 and M GT2), respectively. Then,
four DMFFMs with weight sharing are constructed to real-
ize four network branches, which perform the fusion of the
source images, the two mask data, and the low-resolution ver-
sion of the source images, respectively. Finally, a joint loss
function containing four loss terms is defined to train the net-
work.

3.1 Dual-stream Multi-scale Feature Fusion
Module (DMFFM)

DMFFM is constructed to realize the fusion of two images,
and its structure is shown in Figure 3. The DMFFM is de-
signed as a neural network with dual stream inputs and multi-
scale feature extraction layers to fit the distribution of super-
vised images. To reduce the confusion of two image features,
two encoders with same structure are designed to respectively
extract features from two input images, and a decoder is con-
structed to reconstruct the image features and output the fu-
sion result.

In the encoder, a STEM layer is set at the first layer of
DMFFM to extract the initial features. A feature extraction
block (FEB) is constructed to extract the features of different
scales in the encoders. The structure of FEB is shown in Fig-
ure 3, and it is designed as a residual structure, which consists
of a depth-wise convolution, a LayerNorm, a pointwise con-
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(a) GSA (b) DSCNN (c) DRPNN (d) MSDCNN (e) PCDRN (f) ColorGAN

(g) TFNet (h) FusionNet (i) TDNet (j) ADKNet (k) MMPN(Ours) (l) GT

Figure 4: Fusion results on a simulated data from the IKONOS dataset.

volution, and a ReLU function. Since the MPS used in the
network can protect the edge information of the image, the
impact of increasing the size of a convolution kernel on the
edge can be reduced. Therefore, the convolution kernels with
a large receptive field are used to extract features in the spatial
dimension. In FEB, the depth-wise convolution with kernel
size of 7×7 is adopted to extract features of spatial dimension,
and the point convolution is used to integrate channel features
and reduce the numbers of feature channels. In the decoder,
multiple FEBs are also used to fuse features of different scales
from the encoders and output the fused image.

3.2 Joint Loss Function
Since four DMFFMs generate four different fused images,
they need to be trained by different supervised images ac-
cording to different input images. The output of a DMFFM
can be defined as follows.

Youtput = DMFFM (Yinput 1 , Yinput 1 |Wθ) (6)

where Wθ represents the network parameters, Yinput 1 and
Yinput 2 represent the different network inputs, and Youtput

represents the network output. Corresponding to different
branches, Youtput represents different fused results including
the fused HRMS image YF H , two fused mask data YF MH1

and YF MH2 , and the down-scaled fused image YF DH .
To guarantee the consistency between the fused results and
supervise images, the loss items corresponding to the four
branches in MMPN are defined as follows.

Lossrec = |Yhrms − YF H | (7)

Lossmask1 = |YM GT1 − YF MH1 | (8)
Lossmask2 = |YM GT2 − YF MH2 | (9)

Lossds = |YDS GT − YF DH | (10)
where Lossrec , Lossmask1 , Lossmask2 , and Lossds repre-
sent the loss terms corresponding to four branches. Yhrms

denotes the GT image, YM GT1 and YM GT2 represent mask
images obtained by decomposing GT images using MPS, and
YDS GT denotes the down-scaled GT image. Therefore, the
joint loss function used to supervise the MMPN is defined as
follows.

Loss = Lossrec +Lossmask1 +Lossmask2 +Lossds (11)

4 Experiments

To validate the effectiveness of the proposed MMPN1, sub-
jective and objective experiments are conducted on the simu-
lated and real satellite datasets, including IKONOS (4 bands),
Pléiades (4 bands), and WorldView-3 (8 bands) In the simu-
lated dataset, the LRMS images are generated according to
the WALD protocol [Ghassemian, 2016] by using MTF and
down-sampling operations on HRMS images. The sizes of
LRMS and PAN images are 64×64 and 256×256, respec-
tively. In real datasets, the sizes of LRMS and PAN images
are 256×256 and 1024×1024, respectively.

In the experiments, the performance of the proposed
MMPN is compared with those of state-of-the-art methods.
The comparison methods include GSA [Aiazzi et al., 2007],
DRPNN [Wei et al., 2017], MSDCNN [Yuan et al., 2018],
PCDRN [Yang et al., 2020], ColorGAN [Ozcelik et al.,
2020], TFNet [Liu et al., 2020], DSCNN [Yang et al., 2021],
FusionNet [Deng et al., 2022], ADKNet [Peng et al., 2022],
and TDNet [Zhang et al., 2022]. The benchmark images are
obtained by the polynomial kernel method (EXP) [Aiazzi et
al., 2002]. Significantly, all deep learning-based methods are
retrained using the same datasets for fairness, and tested on
the environment of NVIDIA GeForce RTX 3090 and INTEL
11700K.

1The code is available at github.com/sharpeningNN/MMPN.
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Sensors Methods PSNR(↑) RMSE(↓) UIQI(↑) Qn
2 (↑) SAM(↓) ERGAS(↓) Time(s)(↓)

Pléiades

EXP 26.9511 15.7011 0.9257 0.8161 3.1093 3.9761 0.0075
GSA 27.9760 13.99327 0.9530 0.8757 3.5046 3.5725 0.0283

DSCNN 32.0029 9.0192 0.9787 0.9109 2.3126 2.4539 0.0273
DRPNN 30.1216 11.1515 0.9680 0.8636 2.6809 2.9884 0.0424

MSDCNN 29.2428 12.2007 0.9629 0.8638 2.7117 3.2713 0.0295
PCDRN 31.5914 9.7448 0.9767 0.9004 2.3488 2.6322 0.0153

ColorGAN 23.1587 13.1564 0.9320 0.8031 7.8692 8.4645 0.0180
TFNet 32.8707 8.5569 0.9805 0.9452 2.9289 2.0643 0.0201

FusionNet 31.3848 10.4311 0.9794 0.9420 2.5486 2.5394 0.0142
TDNet 31.3226 10.7110 0.9117 0.9164 3.5946 2.6642 0.0124

ADKNet 35.4673 5.5952 0.9898 0.9648 2.2762 1.4621 0.0353
MMPN(ours) 37.2155 4.8362 0.9930 0.9726 1.9946 1.1946 0.0464

IKONOS

EXP 26.0662 15.5442 0.8919 0.7523 3.4198 4.1350 0.0079
GSA 27.0956 14.2779 0.9352 0.8363 4.6886 3.9925 0.0291

DSCNN 29.0473 10.6432 0.9514 0.8646 3.4841 2.9886 0.0317
DRPNN 26.9798 13.8740 0.9273 0.8154 4.0383 3.7677 0.0454

MSDCNN 27.1694 13.5968 0.9310 0.8239 4.0121 3.6587 0.0346
PCDRN 28.8464 11.3740 0.9516 0.8650 3.5955 3.0352 0.0223

ColorGAN 24.0976 12.4628 0.9309 0.8224 8.4360 6.0984 0.0332
TFNet 30.9652 9.1658 0.9702 0.9227 3.2528 2.4465 0.0221

FusionNet 28.1699 18.4607 0.9561 0.8763 4.4868 4.0201 0.0167
TDNet 29.6391 9.2735 0.8737 0.8783 3.7885 3.0256 0.0121

ADKNet 33.3930 6.9367 0.9818 0.9477 2.4315 1.8290 0.0380
MMPN(ours) 34.6915 5.9038 0.9865 0.9572 2.1394 1.5529 0.0471

WorldView-3

EXP 23.7930 20.9737 0.8540 0.6528 5.5129 0.0149 0.0149
GSA 27.2705 14.1655 0.9358 0.8688 6.6912 4.3425 0.0459

DSCNN 28.1630 13.0162 0.9472 0.8707 5.0543 3.9331 0.0325
DRPNN 25.6762 19.5398 0.9224 0.8152 7.9339 6.1439 0.0572

MSDCNN 25.2981 19.8476 0.9171 0.8033 7.7049 6.2930 0.0469
PCDRN 27.8324 13.2502 0.9460 0.8681 5.3713 4.0870 0.0184

ColorGAN 25.3901 13.9954 0.9149 0.8302 8.3228 5.6929 0.0258
TFNet 28.2917 12.9021 0.9047 0.8921 5.3725 3.7714 0.0241

FusionNet 27.2539 15.1852 0.8999 0.8818 5.1426 4.5063 0.0197
TDNet 30.1461 12.4702 0.8504 0.8936 5.3467 3.7361 0.2931

ADKNet 31.4306 10.5339 0.9725 0.9336 4.4753 2.7267 0.0564
MMPN(ours) 33.3068 7.4569 0.9808 0.9506 3.8399 2.2621 0.0761

Table 1: Average quantitative results on the simulated data from Pléiades, IKONOS, and WorldView-3

4.1 Experiments on Simulated Dataset

As shown in Figure 4, the subjective fusion images of all
comparison methods on a pair of images from IKONOS
dataset can be observed. From the figure, we can find that
since the result of EXP is obtained by directly interpolat-
ing the LRMS image, it is the most blurred compared with
those of other methods due to the lack of spatial details.
The results obtained by other deep learning-based methods
have the problems of edge blurring and spectral distortion.
For example, the results of DSCNN, FusionNet, MSDCNN,
DRPNN, PCDRN, TDNet, ADKNet, and TFNet have more
blurry edges and lower brightness compared to GT. The result
of GSA has serious spectral distortion, and our result is the
closest to GT. To show the difference between fusion results
and GT more clearly, we calculate the residual maps between
them and GT, and show an enlarged local area and its corre-

sponding residual map below each result. From the residual
maps, it can be clearly seen that the results of comparison
methods have obvious spectral distortion and lose some spa-
tial details. The residual map of our result has the least resid-
ual information, which also indicates the effectiveness of the
proposed method.

To further compare the performance of each method, the
quantitative evaluation results are summarized in Table 1.
The evaluation metrics [Deng et al., 2022], including the
peak signal to noise ratio (PSNR), the root mean square er-
ror (RMSE), the relative average spectral error (RASE), the
universal image quality index (UIQI), Qn

2 , the spectral angle
mapper (SAM), and the erreur relative globale adimension-
nelle de synthèse (ERGAS), are used to objectively evalu-
ate the performance of different methods. For the objective
evaluation experiments, the best results are marked with bold
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(a) EXP (b) GSA (c) DSCNN (d) DRPNN (e) MSDCNN (f) PCDRN

(g) ColorGAN (h) TFNet (i) FusionNet (j) TDNet (k) ADKNet (l) MMPN(ours)

Figure 5: Fusion results on a real data from the Pléiades dataset.

Methods Dλ(↓) Ds(↓) QNR(↑) Time(s ↓) Methods Dλ(↓) Ds(↓) QNR(↑) Times(s ↓)
EXP 0.0026 0.2055 0.7924 0.0906 EXP 0.0034 0.0933 0.9036 0.1770
GSA 0.1347 0.1619 0.7259 0.4150 GSA 0.0872 0.1195 0.8053 0.5991

DSCNN 0.0242 0.0263 0.9501 0.1540 DSCNN 0.0306 0.0426 0.9283 0.1603
DRPNN 0.0533 0.0363 0.9123 0.3083 DRPNN 0.0887 0.0869 0.8341 0.4398

MSDCNN 0.0434 0.0462 0.9123 0.1907 MSDCNN 0.0872 0.0944 0.8287 0.3519
PCDRN 0.0375 0.0382 0.9256 0.0925 PCDRN 0.0602 0.0650 0.8791 0.0996

ColorGAN 0.0434 0.0618 0.8975 0.0334 ColorGAN 0.1126 0.1138 0.7892 0.0509
TFNet 0.0318 0.0310 0.9381 0.0310 TFNet 0.0163 0.0464 0.9206 0.0435

FusionNet 0.0403 0.0285 0.9328 0.0289 FusionNet 0.0625 0.0468 0.8953 0.0361
TDNet 0.1008 0.1006 0.8093 0.0637 TDNet 0.0661 0.0870 0.8534 0.0846

ADKNet 0.0143 0.0371 0.9489 0.1032 ADKNet 0.0260 0.0277 0.9471 0.1121
MMPN(ours) 0.0100 0.0379 0.9525 0.1962 MMPN(ours) 0.0154 0.0217 0.9632 0.2181

Table 2: Average quantitative results on the real data from Pléiades (4 bands, left) and WorldView-3 (8 bands, right)

fonts, and the second-best results are underlined. In addition,
the test time of all methods is given to compare the computa-
tional cost of each method. From Table 1, we can see that our
method achieves the best results in all three datasets, which
means that the proposed MMPN has a better fitting perfor-
mance than other methods.

In terms of test time, since MMPN uses many convolution
kernels with large size, the computational time is increased
compared with other deep learning-based methods. However,
due to the GPU support, MMPN still can achieve real-time
performance.

4.2 Experiments on Real Dataset
Figure 5 shows the fusion results on a pair of images on the
Pléiades dataset. To more clearly observe the difference of
spectral and detail information between different fusion re-
sults, two small regions are selected and amplified. As can be

seen from the figure, the result of EXP has the least spatial
details. The result of GSA method has the problem of over-
injection of details, but lacks of spectral information. Com-
pared with other results, the result of ColorGAN displays a
distinct color cast. It can be clearly observed from the en-
larged areas that our result has more abundant spectral infor-
mation than those of other comparison methods.

Due to the absence of GT, some non-reference quantita-
tive metrics including Dλ , Ds , and QNR [Wald, 2000] are
used to assess the similarity of spectral and spatial details be-
tween fusion images and source images. Dλ measures the
spectral similarity between the fusion results and LRMS im-
ages, Ds measures the spatial similarity between the fusion
results and PAN images, and QNR calculates the overall sim-
ilarity through Dλ and Ds . As shown in Table 2, the results
of EXP method have the lowest Dλ values, which indicates
the EXP method maintains the best spectral information.
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Accuracy(↑) Accuracy(↑)
EXP 0.4589 GSA 0.5294

DSCNN 0.7552 DRPNN 0.5964
MSDCNN 0.6581 PCDRN 0.7516
ColorGAN 0.6000 TFNet 0.7107
FusionNet 0.5488 TDNet 0.6478
ADKNet 0.7410 MMPN(ours) 0.7739

Table 3: Classification experiment performance of Figure 4.

MPS DB PSNR(↑) SAM(↓) ERGAS(↓)
Model 1 × × 34.6452 2.2031 1.9614
Model 2 � × 37.2561 2.0432 1.2590
Model 3 � � 37.2155 1.9946 1.1949

Table 4: Ablation experiment of different branches on the simulated
data from Pléiades.

The results obtained by the traditional GSA method have
lower QNR values that those of most comparison methods,
which indicates that GSA method obtains worser pansharp-
ening performance. Among the deep learning-based meth-
ods, the proposed MMPN has the highest QNR indexes on 4-
channels (Pléiades) and 8-channels (WorldView-3) datasets,
which also indicates the advanced performance in dual fi-
delity of spectral and spatial information.

In summary, the proposed MMPN achieves advanced per-
formance in both subjective visual effects and quantitative
metrics compared with other methods on different datasets.

4.3 Application Experiment
To evaluate the application property of all comparison meth-
ods, image classification experiments are implemented for all
fusion results. Referring to the reference [Lu et al., 2021], the
ENVI tool is utilized for classification. The GT images in the
simulated dataset are first fed to the classification model to
obtain classification results, which are regarded as reference
images for the classification results of other methods. The
classification accuracy value is used to quantitatively evalu-
ate the classification performance of different methods. Table
3 shows the classification results of Figure 4. As shown in
Table 3, the proposed MMPN achieves the best classification
accuracy than other comparison methods.

4.4 Ablation Experiment
In this section, some ablation experiments are conducted
to demonstrate the effectiveness of MPS, downscale branch
(DB, top branch in Figure 3), and DMFFM in MMPN. In the
experiments of validating MPS and DB, three models con-
taining different components are tested. Model 1 contains
only one DMFFM, without MPS and DB. Model 2 contains
three branches, using MPS but not DB. Model 3 denotes the
proposed MMPN with MPS and DB. Table 4 shows the quan-
titative indexes obtained by the three models on the simu-
late dataset. The performance of model 2 is significantly im-
proved compared with that of model 1, which indicates that
MPS effectively protects the spatial features from being cor-
rupted. The PSNR value obtained by model 3 is slightly lower

Dλ(↓) Ds(↓) QNR(↑)
w/o DB (Model 2) 0.0158 0.0409 0.9476
w/ DB (Model 3) 0.0100 0.0379 0.9525

Table 5: Ablation experiment of different branches on the real data
from Pléiades.

PSNR(↑) SAM(↓) ERGAS(↓)
ConvBlock 30.1345 3.5217 2.8361
ResBlock 32.9013 2.9013 2.0312

FEB 34.6452 2.2031 1.9614

Table 6: Ablation experiment of different network structure in
DMFFM on the simulated data from Pléiades.

than that of model 2, but the difference is not significant. This
is because DB can be regarded as a data enhancement, which
can increase the generalization of the network, but leads to a
slight reduction in the fitting effect for a certain distribution.
To verify that DB can improve the generalization of the net-
work, the model 2 without DB is compared with model 3 on
the real dataset , as shown in Table 5. It can be seen from
Table 5 that the indicators obtained by model 3 with DB are
all better than that of model 2. Therefore, the performance of
DB is verified.

In DMFFM, FEB plays a key role. To prove the perfor-
mance of FEB in DMFFM, the ablation experiments using
two network structures to replace FEB are performed. The
first structure uses convolutional block (ConvBlock) to re-
place FEB, and another structure uses a residual block (Res-
Block) to replace FEB. As shown in Table 6, we can find
that the DMFFM with FEB obtains the best performance than
other network structures, which indicate the effectiveness of
FEB.

5 Conclusion
In this paper, firstly, based on the analysis of the gray value
changes between the high-resolution image and the corre-
sponding degraded image, an MPS is proposed to protect the
spatial information from being destroyed in the feature learn-
ing of the network. Then, based on this strategy, an MMPN
containing four branches with the same structure is proposed
to realize the learning of multiple fusion tasks, and each task
is realized through the constructed DMFFM. Finally, differ-
ent loss items are defined for the four task branches and com-
bined into a joint loss function for network training. Exper-
imental results show that our method achieves better perfor-
mance than other advanced methods in terms of subjective
vision and objective indicators.
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