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Abstract
The core of Multi-view Stereo(MVS) is the match-
ing process among reference and source pixels.
Cost aggregation plays a significant role in this pro-
cess, while previous methods focus on handling it
via CNNs. This may inherit the natural limitation
of CNNs that fail to discriminate repetitive or incor-
rect matches due to limited local receptive fields.
To handle the issue, we aim to involve Transformer
into cost aggregation. However, another problem
may occur due to the quadratically growing com-
putational complexity caused by Transformer, re-
sulting in memory overflow and inference latency.
In this paper, we overcome these limits with an
efficient Transformer-based cost aggregation net-
work, namely CostFormer. The Residual Depth-
Aware Cost Transformer(RDACT) is proposed to
aggregate long-range features on cost volume via
self-attention mechanisms along the depth and spa-
tial dimensions. Furthermore, Residual Regression
Transformer(RRT) is proposed to enhance spatial
attention. The proposed method is a universal plug-
in to improve learning-based MVS methods.

1 Introduction
Given a series of calibrated images from different views in
one scene, Multi-view Stereo (MVS) aims to recover the
3D information of the observed scene. It is a fundamen-
tal problem in computer vision and widely applied to robot
navigation, autonomous driving, augmented reality, and etc.
Recent learning-based MVS networks [Yao et al., 2018;
Gu et al., 2020; Wang et al., 2021] have achieved inspiring
success both in the quality and the efficiency of 3D recon-
struction. Generally, deep MVS approaches consist of the fol-
lowing five steps: feature extraction from multi-view images
via CNN network with shared weights, differentiable warping
to align all source features to the reference view, matching
cost computation from reference features and aligned source
features, matching cost aggregation or regularization, depth
or disparity regression.

†Corresponding authors.
‡Appendix is presented in: https://arxiv.org/abs/2305.10320.

Figure 1: Comparison with state-of-the-art MVS methods on DTU.
Relationship between error, GPU memory and run-time with image
size 1152×864.

Current progresses in learning-based MVS primarily con-
centrate on the limitation of reconstruction quality [Wei et al.,
2021; Yang et al., 2020a], memory consumption [Yan et al.,
2020; Wei et al., 2021], and efficiency [Wang et al., 2021;
Wang et al., 2022a]. The basic network architecture of these
works is based on the pioneering backbone network called
MVSNet [Yao et al., 2018], which provides an elegant and
stable baseline. However, instead of taking the inheritance
of network design principle in MVSNet [Yao et al., 2018]
for granted, we can rethink the task of MVS problem as a
dense correspondence problem [Hosni et al., 2012] alterna-
tively. The core of MVS is a dense pixelwise correspondence
estimation problem that searches the corresponding pixel of
a specific pixel in the reference image along the epipolar
line in all warped source images. No matter which task this
correspondence estimation problem is applied to, the match-
ing task can be boiled down to a classical matching pipeline
[Scharstein and Szeliski, 2002]: (1) feature extraction, and (2)
cost aggregation. In learning-based MVS methods, the transi-
tion from traditional hand-crafted features to CNN-based fea-
tures inherently solves the former step of the classical match-
ing pipeline via providing powerful feature representation
learned from large-scale data. However, handling the cost
aggregation step by matching similarities between features
without any prior usually suffers from the challenges due to
ambiguities generated by repetitive patterns or background
clutters [Cho et al., 2021]. Consequently, a typical solution
in MVSNet and its variants [Yao et al., 2018; Gu et al., 2020;
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Wang et al., 2021] is to apply a 3D CNN or an RNN to reg-
ularize the cost volume among reference and source views,
rather than directly rely on the quality of the initial corre-
lation clues in cost volume. Although formulated variously
in previous methods, these methods either use hand-crafted
techniques that are agnostic to severe deformations or inherit
the limitation of CNNs, e.g. limited receptive fields, unable
to discriminate incorrect matches that are locally consistent.

In this work, we focus on the cost aggregation step of cost
volume and propose a novel cost aggregation Transformer
(CostFormer) to tackle the issues above. Our CostFormer
is based on Transformer [Vaswani et al., 2017], which is
renowned for its global receptive field and long-range de-
pendent representation. By aggregating the matching cost in
the cost volume, our aggregation network can explore global
correspondences and refine the ambiguous matching points
effectively with the help of the self-attention (SA) mecha-
nism in Transformer. Though the promising performances
of Vision Transformers have been proven in many applica-
tions [Dosovitskiy et al., 2020; Sun et al., 2021], the time
and memory complexity of the key-query dot product inter-
action in conventional SA grow quadratically with the spatial
resolution of inputs. Hence, replacing 3D CNN with Trans-
former may result in unexpected extra occupancy in memory
and latency in inference. Inspired by [Wang et al., 2021],
we further introduce the Transformer architecture into an it-
erative multi-scale learnable PatchMatch pipeline. It inherits
the advantages of the long-range receptive field in Transform-
ers, improving the reconstruction performance substantially.
Meantime, it also maintains a balanced trade-off between ef-
ficiency and performance, which is competitive in the infer-
ence speed and parameters magnitude compared with other
methods.

Our main contributions are as follows:
(1) In this paper, we propose a novel Transformer-based

cost aggregation network called CostFormer, which can be
plugged into learning-based MVS methods to improve cost
volume effectively. (2) CostFormer applies an efficient Resid-
ual Depth-Aware Cost Transformer to cost volume, extending
2D spatial attention to 3D depth and spatial attention. (3)
CostFormer applies an efficient Residual Regression Trans-
former between cost aggregation and depth regression, keep-
ing spatial attention. (4) The proposed CostFormer brings
benefits to learning-based MVS methods when evaluating
DTU [Aanæs et al., 2016], Tanks&Temples [Knapitsch et al.,
2017] ETH3D [Schöps et al., 2017], BlendedMVS [Yao et
al., 2020] and YFCC[Thomee et al., 2016] datasets.

2 Related Work
2.1 Learning-based MVS Methods
Powered by the great success of deep learning-based tech-
niques, many learning-based methods have been proposed to
boost the performance of Multi-view Stereo. MVSNet [Yao
et al., 2018] is a landmark for the end-to-end network that in-
fers the depth map on each reference view for the MVS task.
Feature maps extracted by a 2D CNN on each view are repro-
jected to the same reference view to build a variance-based
cost volume. A 3D CNN is further used to regress the depth

map. Following this pioneering work, lots of efforts have
been devoted to boosting speed and reducing memory occu-
pation. To relieve the burden of huge memory cost, recurrent
neural networks are utilized to regularize the cost volume in
AA-RMVSNet [Wei et al., 2021]. Following a coarse-to-fine
manner to develop a computationally efficient network, a re-
cent strand of works divide the single cost volume into several
cost volumes at multiple stages, like CasMVSNet [Gu et al.,
2020], CVP-MVSNet [Yang et al., 2020a], UCSNet [Cheng
et al., 2020], and etc. Inspired by the traditional PatchMatch
stereo algorithm, PatchMatchNet [Wang et al., 2021] inherits
the pipeline in PatchMatch stereo in an iterative manner and
extend it into a learning-based end-to-end network.

2.2 Vision Transformer
The success of Transformer [Vaswani et al., 2017] and its
variants [Dosovitskiy et al., 2020; Liu et al., 2021] have
motivated the development of Neural Language Processing
in recent years. Borrowing inspiration from these works,
Transformer has been successfully extended to vision tasks
and proven to boost the performance of image classification
[Dosovitskiy et al., 2020]. Following the pioneering work,
many efforts are devoted to boosting the development of var-
ious vision tasks with the powerful representation ability of
Transformer.

In [Li et al., 2021], the application of Transformer in
the classic stereo disparity estimation task is investigated
thoughtfully. Swin Transformer [Liu et al., 2021] involves
the hierarchical structure into Vision Transformers and com-
putes the representation with shifted windows. Consider-
ing Transformer’s superiority in extracting global content in-
formation via attention mechanism, many works attempt to
utilize it in the task of feature matching. Given a pair of
images, CATs [Cho et al., 2021] explore global consensus
among correlation maps extracted from a Transformer, which
can fully leverage the self-attention mechanism and model
long-range dependencies among pixels. LoFTR [Sun et al.,
2021] also leverages Transformers with a coarse-to-fine man-
ner to model dense correspondence. STTR [Li et al., 2021]
extends the feature matching Transformer architecture to the
task of stereo depth estimation task in a sequence-to-sequence
matching perspective. TransMVSNet [Ding et al., 2021] is
the most relevant concurrent work compared with ours, which
utilizes a Feature Matching Transformer (FMT) to lever-
age self-attention and cross-attention to aggregate long-range
context information within and across images. Specifically,
the focus of TransMVSNet is on the enhancement of feature
extraction before cost aggregation, while our proposed Cost-
Former aims to improve the cost aggregation process on cost
volume.

3 Methodology
In this section, we introduce the detailed architecture of the
proposed CostFormer which focuses on the cost aggrega-
tion step of cost volume. CostFormer contains two spe-
cially designed modules called Residual-Depth Aware Cost
Transformer (RDACT) and Residual Regression Transformer
(RRT), which are utilized to explore the relation between pix-
els within a long range and the relation between different
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Figure 2: Structure of CostFormer based on PatchMatchNet.

depth hypotheses during the evaluation process. In Section
Preliminary, we give a brief preliminary on the pipeline of
our method. Then we show the construction of RDACT and
RRT respectively. Finally, we show experiments.

3.1 Preliminary
In general, the proposed RDACT and RRT can be integrated
with arbitrary cost volume of learning-based MVS networks.
Based on the patch match architecture [Wang et al., 2021], we
further explore the issue of cost aggregation on cost volume.
As shown in Figure 2, CostFormer based on PatchMatchNet
[Wang et al., 2021] extracts feature maps from multi-view
images and performs initialization and propagation to warp
the features maps in source views to reference view. Given a
pixel p at the reference view and its corresponding pixel pi,j
at the i-th source view under the j-th depth hypothesis dj is
defined as:

pi,j = Ki · (R0,i · (K−1
0 · p · dj) + t0,i) (1)

where R0,i and t0,i denote the rotation and translation be-
tween the reference view and i-th source view. K0 and Ki are
the intrinsic matrices of the reference and i-th source view.
The warped feature maps at the i-th source view Fi(pi,j)
are bilinearly interpolated to remain the original resolution.
Then, a cost volume is constructed from the similarity of fea-
ture maps, and 3D CNNs are applied to regularize the cost
volume. Warped features from all source views are integrated
into a single cost for each pixel p and depth hypothesis dj by
computing the cost per hypothesis Si(p, j)

g via group-wise
correction as follows:

Si(p, j)
g =

G

C
< F0(p)

g, Fi(pi,j)
g >∈ RG (2)

where G is the group number, C is the channel number, <
·, · > is the inner product, F0(p)

g and Fi(pi,j)
g are grouped

reference feature map and grouped source feature map at the
i-th view respectively. Then they aggregate over the views
with a pixel-wise view weight wi(p) to get S(p, j).

Taking no account of Transformer at the cost aggregation
(CA) step, a CA module firstly utilizes a small network with
3D convolution with 1×1×1 kernels to obtain a single cost, C
∈ RH×W×D. For a spatial window of Ke pixels {pk}Ke

k=1 can
be organized as a grid, per pixel additional offsets {∆pk}Ke

k=1
can be learned for spatial adaptation. The aggregated spatial
cost C̃(p, j) is defined as:

C̃(p, j) = 1∑Ke

k=1 wkdk

Ke∑
k=1

wkdkC(p+ pk +∆pk, j) (3)

where wk and dk weight the cost C based on feature and depth
similarity. Given the sampling positions (p+ pk +∆pk)

Ke

k=1,
corresponding features from F0 are extracted via bilinear in-
terpolation. Then group-wise correlation is applied between
the features at each sampling location and p. The results are
concatenated into a volume on which 3D convolution layers
with 1×1×1 kernels and sigmoid non-linearities are applied to
output normalized weights {wk}Ke

k=1. The absolute difference
in inverse depth between each sampling point and pixel p with
their j-th hypotheses are collected. Then a sigmoid function
on the inverted differences is applied to obtain {dk}Ke

k=1.
The remarkable thing is that such cost aggregation in-

evitably suffers from challenges due to ambiguities gener-
ated by repetitive patterns or background clutters. The local
mechanisms in ambiguities exist in many operations, such as
local propagation and spatial adaptation by small learnable
slight offset. CostFormer significantly alleviates these prob-
lems through RDACT and RRT. The original CA module is
also repositioned between RDACT and RRT.
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Figure 3: Comparison of different methods on the DTU evaluation set. The backbone of CostFormer is PatchMatchNet here.

After RRT, soft argmin is applied to get the regressed
depth. Finally, a depth refinement module is designed to re-
fine the depth regression.

For CascadeMVS and other cascade architectures, Cost-
Former can be plugged into similarly.

3.2 Residual Depth-Aware Cost Transformer
In this section, we explore the details of the Residual Depth-
Aware Cost Transformer (RDACT). Each RDACT consists
of two parts. The first part is a stack of Depth-Aware Trans-
former layer (DATL) and Depth-Aware Shifted Transformer
layer (DASTL), which deal with the cost volumes to ex-
plore the relations sufficiently. The second part is the Re-
Embedding Cost layer (REC) which recovers the cost volume
from the first part.

Given a cost volume C0 ∈ RH×W×D×G, temporary inter-
mediate cost volumes C1,C2,...,CL ∈ RH×W×D×E are firstly
extracted by DATL and DASTL alternatively:

Ck = DASTLk(DATLk(Ck−1)), k = 1, 2, ..., L (4)

where DATLk is the k-th Depth-Aware Transformer layer
with regular windows, DASTLk is the k-th Depth-Aware
Transformer layer with shifted windows, E is the embedding
dimension number of DATLk and DASTLk.

Then a Re-Embedding Cost layer is applied to the last Ck,
namely CL, to recover G from E. The output of RDACT is
formulated as:

Cout = REC(CL) + C0 (5)

where REC is the Re-Embedding Cost layer, and it can be a
3D convolution with G output channels. If E = G, Cout can
be simply formulated as:

Cout = CL + C0 (6)

This residual connection allows the aggregation of different
levels of cost volumes; Cout instead of C0 is then aggregated

by the original aggregation network described in section 3.1.
The whole RDACT is shown in the red window in Figure 2.

Before introducing the construction of DATL and DASTL,
we dive into the details of core constitutions called Depth-
Aware Multi-Head Self-Attention (DA-MSA) and Depth-
Aware Shifted Multi-Head Self-Attention (DAS-MSA). Both
DA-MSA and DAS-MSA are based on Depth-Aware Self-
Attention Mechanism. In order to explain Depth-Aware
Self-Attention Mechanism, we supply the knowledge about
Depth-Aware Patch Embedding and Depth-Aware Windows
as preliminary.

Depth-Aware Patch Embedding
Obviously, directly applying the attention mechanism for fea-
ture maps at pixel-wise level is quite costly in terms of GPU
memory usage. In order to tackle this issue, we propose a
Depth-Aware Patch Embedding to reduce the high memory
cost and get an additional regularization. Specifically, given a
grouped cost volume before aggregation C ∈ RH×W×D×G, a
depth-aware patch embedding is firstly applied to C to get to-
kens. It consists of a 3D convolution with kernel size h×w×d
and a layer normalization.To downsample the spatial sizes of
cost volume and keep the depth hypotheses, we set h and w
to more than 1 and d as 1. So the sample ratio is adaptive for
memory cost and run time. Before convolution, cost volume
will be padded to fit the spatial sizes and downsampling ratio.
After layer normalization(LN), these embedded patches are
further partitioned by depth-aware windows.

Depth-Aware Windows
Beyond the nonlinear and linear global self-attention, local
self-attention within a window has been proven to be more
effective and efficient. As an example of 2D windows, Swin
Transformer [Liu et al., 2021] directly applies multi-head
self-attention mechanisms on non-overlapping 2D windows
to avoid the big computation complexity of global tokens.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

602



COLMAP UCSNet PatchmatchNet Ours

Figure 4: Comparison of different methods on Tanks&Temples. The Recall reported by official benchmark is presented.

Extended from the 2D spatial window, an embedded cost vol-
ume patch ∈ RH∗×W∗×D∗×G with depth information is par-
titioned into non-overlapping 3D windows. These local win-
dows are then transposed and reshaped to local cost tokens.
Assuming the sizes of these windows are hs × ws × ds, the
total number of tokens is ⌈H∗

hs
⌉× ⌈W∗

ws
⌉× ⌈D∗

ds
⌉. These local

tokens are further processed by the multi-head self-attention
mechanism.

Depth-Aware Self-Attention Mechanism
For a cost window token X ∈ Rhs×ws×ds×G, the query, key,
and value matrices Q, K and V ∈ Rhs×ws×ds×G are com-
puted as:

Q = XPQ,K = XPK , V = XPV (7)

where PQ, PK , and PV ∈ RG×G are projection ma-
trices shared across different windows. By introduc-
ing depth and spatial aware relative position bias B1 ∈
R(hs×hs)×(ws×ws)×(ds×ds) for each head, the depth-aware
self-attention(DA-SA1) matrix within a 3D local window is
thus computed as:

DA-SA1 = Attention1(Q1, K1, V 1) = SoftMax(
Q1K1T

√
G

+ B1)V 1

(8)

Where Q1, K1 and V 1 ∈ Rhswsds×G are reshaped from
Q, K and V ∈ Rhs×ws×ds×G. The process of DATL with
LayerNorm(LN) and multi-head DA-SA1 at the current level
is formulated as:

X̂ l = DA-MSA1((LN(X l−1)) +X l−1 (9)

By introducing depth-aware relative position bias B2 ∈
Rds×ds for each head, the depth-aware self-attention(DA-
SA2) matrix along the depth dimension is an alternative mod-
ule to DATL and thus computed as:

DA-SA2 = Attention2(Q2, K2, V 2) = SoftMax(
Q2K2T

√
G

+ B2)V 2

(10)

Where Q2, K2 and V 2 ∈ Rhsws×ds×G are reshaped from
Q, K and V ∈ Rhs×ws×ds×G. B1 and B2 will be along the
depth dimension and lie in the range of [−ds + 1, ds − 1].
Along the height and width dimension, B1 lies in the range

of [−hs + 1, hs − 1] and [−ws + 1, ws − 1]. In prac-
tice, we parameterize a smaller-sized bias matrix B1 ∈
R(2hs−1)×(2ws−1)×(2ds−1) from B1 and perform the atten-
tion functionfor f times in parallel, and then concatenate
the depth-aware multi-head self-attention (DA-MSA) out-
puts. The process of DATL with LayerNorm(LN), multi-head
DA-SA1, and DA-SA2 at the current level is formulated as:

X̂ l = DA-MSA1(LN(DA-MSA2(LN(X l−1)))) +X l−1

(11)
Then, an MLP module that has two fully-connected layers
with GELU non-linearity between them is used for further
feature transformations:

X l = MLP(LN(X̂ l))) + X̂ l (12)

Compared with global attention, local attention makes it pos-
sible for computation in high resolution.

However, there is no connection across local windows with
fixed partitions. Therefore, regular and shifted window par-
titions are used alternately to enable cross-window connec-
tions. So at the next level, the window partition configu-
ration is shifted along the height, width, and depth axes by
(hs

2 , ws

2 , ds

2 ). Depth-aware self-attention will be computed
in these shifted windows(DAS-MSA); the whole process of
DASTL can be formulated as:

X̂ l+1 = DAS-MSA1(LN(DAS-MSA2(LN(X l)))) +X l

(13)
X l+1 = MLP(LN(X̂ l+1)) + X̂ l+1 (14)

DAS-MSA1 and DAS-MSA2 correspond to multi-head
Attention1 and Attention2 within a shifted window, respec-
tively. Assuming the number of stages is n, there are n
RDACT blocks in CostFormer.

3.3 Residual Regression Transformer
After aggregation, the cost C̃ ∈ RHXWXD will be used for
depth regression. To further explore the spatial relation under
some depth, a Transformer block is applied to C̃ before soft-
max. Inspired by the RDACT, the whole process of Residual
Regression Transformer(RRT) can be formulated as:

C̃k = RSTk(RTk(C̃k−1)), k = 1, 2, ..., L (15)
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Methods Intermediate Group (F-score ↑)
Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra.

MVSNet 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
CasMVSNet 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51
UCS-Net 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89
CVP-MVSNet 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54
PVA-MVSNet 54.46 69.36 46.80 46.01 55.74 57.23 54.75 56.70 49.06
AA-RMVSNet 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90
PatchmatchNet 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81
UniMVSNet 64.36 81.20 66.34 53.11 63.46 66.09 64.84 62.23 57.53
MVSTR 56.93 76.92 59.82 50.16 56.73 56.53 51.22 56.58 47.48
TransMVS 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67
CostFormer-PM 56.27↑3.12 72.46 52.59 54.27 55.83 56.80 50.88 55.05 52.32
CostFormer-PM* 57.10↑3.95 74.22 56.27 54.41 56.65 54.46 51.45 57.65 51.70
CostFormer-Uni− 64.40↑0.04 81.45 66.22 53.88 62.94 66.12 65.35 61.31 57.90
CostFormer-Uni* 64.51↑0.15 81.31 65.51 55.57 63.46 66.24 65.39 61.27 57.30

Table 1: Quantitative results on the Intermediate group of Tanks&Temples benchmark (higher is better). * is pretrained on DTU and fine-
tuned on BlendedMVS. - is not pretrained on DTU and trained from scratch on BlendedMVS

Methods Advanced Group (F-score ↑)
Mean Aud. Bal. Cou. Mus. Pal. Tem.

CasMVSNet 31.12 19.81 38.46 29.10 43.87 27.36 28.11
AA-RMVSNet 33.53 20.96 40.15 32.05 46.01 29.28 32.71
PatchmatchNet 32.31 23.69 37.73 30.04 41.80 28.31 32.29
UniMVSNet 38.96 28.33 44.36 39.74 52.89 33.80 34.63
MVSTR 32.85 22.83 39.04 33.87 45.46 27.95 27.97
TransMVS 37.00 24.84 44.59 34.77 46.49 34.69 36.62
MVSTER 37.53 26.68 42.14 35.65 49.37 32.16 39.19
CostFormer-PM 34.07↑1.76 24.05 39.20 32.17 43.95 28.62 36.46
CostFormer-PM* 34.31↑2.00 26.77 39.13 31.58 44.55 28.79 35.03
CostFormer-Uni− 39.55↑0.59 28.61 45.63 40.21 52.81 34.40 35.62
CostFormer-Uni* 39.43↑0.47 29.18 45.21 39.88 53.38 34.07 34.87

Table 2: Quantitative results on the Advanced group of Tanks&Temples benchmark (higher is better). * is pretrained on DTU and fine-tuned
on BlendedMVS. - is not pretrained on DTU and trained from scratch on BlendedMVS

C̃out = RER(C̃L) + C̃0 (16)

where RTk is the k-th Regression Transformer layer with reg-
ular windows, RSTk is the k-th Regression Transformer layer
with shifted windows, RER is the re-embedding layer to re-
cover the depth dimension from C̃L, and it can be a 2D con-
volution with D output channels.

RRT also computes self-attention in a local window. Com-
pared with RDACT, RRT focuses more on spatial relations.
Compared with regular Swin [Liu et al., 2021] Transformer
block, RRT treats the depth as a channel, the number of chan-
nels is actually 1 and this channel is squeezed before the
Transformer. The embedding parameters are set to fit the cost
aggregation of different iterations. If the embedding dimen-
sion number equals D, C̃out can be simply formulated as:

C̃out = C̃L + C̃0 (17)

As a stage may iterate many times with different depth hy-
potheses, the number of RRT blocks should be set the same
as the number of iterations. The whole RRT is shown in the
yellow window in Figure 2.

3.4 Training
Loss Function
Final loss combines with the losses of all iterations at all
stages and the loss from the final refinement module:

Loss =
s∑

k=1

n∑
i=1

Lk
i + Lref (18)

where Lk
i is the regression or unification loss of the i-th iter-

ation at k-th stage. Lref is the regression or unification loss
from refinement module. If refinement module does not exist,
the Lref loss is set to zero.

Common Training Settings
CostFormer is implemented by Pytorch [Paszke et al., 2019].
For RDACT, we set the depth number at stages 3, 2, 1 as 4,
2, 2; patch size at height, width and depth axes as 4, 4, 1;
window size at height, width and depth axes as 7, 7, 2. If
the backbone is set as PatchMatchNet, embedding dimension
number at stages 3, 2, 1 are set as 8, 8, 4. For RRT, we set
the depth number as 2 at all stages, patch size as 1 at all axes;
window size as 8 at all axes. If the backbone is set as Patch-
MatchNet, embedding dimension number at iteration 2, 2, 1
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at stages 3, 2, 1 as 32, 64, 16, 16, 8. All models are trained
on Nvidia GTX V100 GPUs. After depth estimation, we re-
construct point clouds similar to MVSNet [Yao et al., 2018].

4 Experiments
4.1 Compared Methods
In the experiments, we compare our proposed method with
following state-of-the-art MVS methods, including: 1) Tradi-
tional MVS methods, like Furu [Furukawa and Ponce, 2010],
Tola [Tola et al., 2012], Gipuma [Galliani et al., 2015],
Colmap [Schönberger and Frahm, 2016], MVE [Fuhrmann et
al., 2014], PMVS [Furukawa and Ponce, 2010]; 2) Learning-
based MVS methods, like SurfaceNet [Ji et al., 2017], MVS-
Net [Yao et al., 2018], R-MVSNet [Yao et al., 2019], P-
MVSNet [Luo et al., 2019], Point-MVSNet [Chen et al.,
2019], Fast-MVSNet [Yu and Gao, 2020], CasMVSNet [Gu
et al., 2020], UCS-Net [Cheng et al., 2020], CVP-MVSNet
[Yang et al., 2020b], PVA-MVSNet [Yi et al., 2020], Patch-
matchNet [Wang et al., 2021], AA-RMVSNet [Wei et al.,
2021], UniMVSNet [Peng et al., 2022], PVSNet [Xu and Tao,
2020], IterMVS [Wang et al., 2022a], PatchMatch-RL [Lee
et al., 2021], MVSNet-s [Darmon et al., 2021] , VisMVSNet
[Zhang et al., 2020], and EPPMVSNet [Ma et al., 2021]. Fur-
thermore, we also conduct the comparison with Transformer
based MVS networks: MVSTR [Zhu et al., 2021], Trans-
MVSNet [Ding et al., 2022], MVSTER [Wang et al., 2022b],
and WT-MVSNet [Liao et al., 2022].

4.2 Main Settings
Our proposed CostFormer can utilize arbitrary MVS network
as backbone. We name the framework as CostFormer-PM,
CostFormer-Cas, and CostFormer-Uni, when PatchMatch-
Net, CasMVSNet, and UniMVSNet are respectively used as
backbone.

4.3 Datasets
The datasets used in the evaluation are DTU [Aanæs et al.,
2016], BlendedMVS [Yao et al., 2020], ETH3D [Schöps
et al., 2017], Tanks&Temples [Knapitsch et al., 2017], and
YFCC-100M [Thomee et al., 2016]. The DTU dataset is an
indoor multi-view stereo dataset with 124 different scenes,
there are 49 views under seven different lighting conditions
in one scene. Tanks&Temples is collected in a more com-
plex and realistic environment, and it’s divided into the in-
termediate and advanced set. ETH3D benchmark consists of
calibrated high-resolution images of scenes with strong view-
point variations. It is divided into training and test datasets.
While the training dataset contains 13 scenes, the test dataset
contains 12 scenes. BlendedMVS dataset is a large-scale syn-
thetic dataset, consisting of 113 indoor and outdoor scenes
and split into 106 training scenes and 7 validation scenes.

4.4 Results on Tanks&Temples Benchmark
For the evaluation on Tanks&Temples, we use the DTU
dataset and the Blended MVS dataset. We compare our
method to those recent learning-based MVS methods, in-
cluding PatchMatchNet and UniMVSNet which are also set
as backbones of CostFormer. The quantitative results on

Methods Acc. Comp. Overall
Furu 0.613 0.941 0.777
Tola 0.342 1.190 0.766
Gipuma 0.283 0.873 0.578
Colmap 0.400 0.644 0.532
SurfaceNet 0.450 1.040 0.745
MVSNet 0.396 0.527 0.462
R-MVSNet 0.383 0.452 0.417
P-MVSNet 0.406 0.434 0.420
Point-MVSNet 0.342 0.411 0.376
Fast-MVSNet 0.336 0.403 0.370
CasMVSNet 0.325 0.385 0.355
UCS-Net 0.338 0.349 0.344
CVP-MVSNet 0.296 0.406 0.351
PVA-MVSNet 0.379 0.336 0.357
PatchMatchNet 0.427 0.277 0.352
AA-RMVSNet 0.376 0.339 0.357
UniMVSNet 0.352 0.278 0.315
CostFormer-PM 0.424 0.262 0.343
CostFormer-Cas 0.378 0.313 0.345
CostFormer-Uni 0.301 0.322 0.312

Table 3: Quantitative results of different methods on DTU.

Method GPU Mem. Run-time Overall
CasMVSNet 262.47% 221.24% 0.355
UCSNet 195.31% 202.84% 0.344
CVP-MVSNet 273.97% 440.53% 0.351
Ours 100.00% 100.00% 0.343

Table 4: Comparison with other SOTA learning-based MVS meth-
ods on DTU. Relationship between overall performance, GPU mem-
ory and run-time.

the Tanks&Temples set are summarized in Table 1 and 2,
which indicate the robustness of CostFormer. Note that the
UniMVSNet− in the table only uses BlendedMVS for train-
ing which uses less data (no DTU) than the UniMVSNet
baseline. The qualitative results are shown in Figure 4.

4.5 Results on DTU Benchmark
Comparisons with Other Methods
For the evaluation on the DTU evaluation set, we only use
the DTU training set. During the training phase, we set the
image resolution to 640 × 512. We compare our method to
recent learning-based MVS methods, including CasMVSNet
and PatchMatchNet which are also set as backbones of Cost-
Former. We follow the evaluation metrics provided by the
DTU dataset. The quantitative results on the DTU evaluation
set are summarized in Table 3, which indicates that the plug-
and-play CostFormer improves the cost aggregation. Partial
visualization results of Table 3 are shown in Figure 3.

Complexity Analysis
For the complexity analysis of CostFormer, we plug it into
PatchMatchNet and first compare the memory consumption
and run-time with this backbone. For a fair comparison, a
fixed input size of 1152 × 864 is used to evaluate the computa-
tional cost on a single GPU of NVIDIA Telsa V100. Memory
consumption and run-time of PatchMatchNet are 2323MB
and 0.169s. They are only increased to 2693MB and 0.231s
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Method Trans Improv.(mm) Time(s) Time(%)
MVSTR +0.0140 +0.359s +78.21%
TransMVSNet +0.0160 +0.367s +135.42%
WT-MVSNet +0.0130 +0.265s -
MVSTER +0.0040 +0.016s +13.34%
Ours +0.0097 +0.062s +36.69%

Table 5: Quantitative improvement of performance and incremental
cost of run time of different Transformers on DTU evaluation set.

Methods Training Testing
F1 ↑ Time(s) ↓ F1 ↑ Time(s) ↓

MVE 20.47 1.32× 104 30.37 1.06× 104

Gipuma 36.38 5.87× 102 45.18 6.90× 102

PMVS 46.06 8.37× 102 44.16 9.57× 102

COLMAP 67.66 2.69× 103 73.01 1.66× 103

PVSNet 67.48 - 72.08 8.29× 102

IterMVS 66.36 - 74.29 -
PatchMatchNet 64.21 4.52× 102 73.12 4.92× 102

PatchMatch-RL 67.78 - 72.38 -
CostFormer-PM 68.92 5.66× 102 75.24 5.48× 102

Table 6: Quantitative results of different methods on ETH3D.

by the plug-in.
Based on the reports of PatchMatchNet, we then get the

comparison results of other state-of-the-art learning-based
methods. Memory consumption and run-time are reduced
by 61.9% and 54.8% compared to CasMVSNet, by 48.8%
and 50.7% compared to UCSNet and by 63.5% and 77.3%
compared to CVP-MVSNet. Combining the results(lower is
better) are shown in Table 4 and Figure 1, GPU memory and
run-time of CostFormer are set as 100%.

Comparison with Other Transformer-based Methods
We also compare CostFormer with other Transformers-based
networks which are used in MVS methods and not plug-and-
play. For a fair comparison, only direct improvements(higer
is better) and incremental cost of run time(low is better) from
pure Transformers under similar depth hypotheses are sum-
marized in Table 5.

4.6 Results on ETH3D Benchmark
We use the PatchMatchNet as backbone and adopt the trained
model used in the Tanks&Temples dataset to evaluate the
ETH3D dataset. As shown in Table 6, our method outper-
forms others on both the training and particularly challenging
test datasets(higher is better).

4.7 Results on BlendedMVS Benchmark
We use the model used in ETH3D. On BlendedMVS evalu-
ation set, we set N = 5 and image resolution as 576 × 768.
End point error (EPE), 1 pixel error (e1), and 3 pexels er-
ror (e3) are used as the evaluation metrics. Quantitative re-
sults(lower is better) of different methods are shown in Table
7.

4.8 Results on YFCC Dataset
Following the depth evaluation protocal in previous work, we
utilize the YFCC-100M [Thomee et al., 2016] to test the per-

Method EPE e1(%) e3(%)
MVSNet 1.49 21.98 8.32
MVSNet-s 1.35 25.91 8.55
CVP-MVSNet 1.90 19.73 10.24
VisMVSNet 1.47 18.47 7.59
CasMVSNet 1.98 15.25 7.60
EPPMVSNet 1.17 12.66 6.20
TransMVSNet 0.73 8.32 3.62
CostFormer-PM 0.84 12.37 4.59
CostFormer-Uni 0.43 7.05 2.70

Table 7: Quantitative results of different methods on BlendedMVS.

Method EPE e1(%) e3(%)
MVSNet 21.56 67.93 49.75
MVSNet-s 20.98 69.57 49.86
CVP-MVSNet 40.07 85.88 76.25
VisMVSNet 19.60 64.98 46.38
CasMVSNet 13.86 63.83 47.27
PatchMatchNet 9.97 62.51 43.62
CostFormer-PM 7.82 54.10 34.71

Table 8: Quantitative results of different methods on the YFCC test
set.

formance. YFCC100M is the largest public multimedia col-
lection that has ever been released. The dataset contains a
total of 100 million media objects, of which approximately
99.2 million are photos and 0.8 million are videos. We set
backbone as PatchMatchNet, N = 5, and image resolution
as 512x512. End point error (EPE), 1 pixel error (e1), and
3 pixels error (e3) are also used as the evaluation metrics.
Quantitative results of different methods are shown in Tabisle
8.

5 Conclusion
In this work, we explore whether cost Transformer can im-
prove the cost aggregation and propose a novel CostFormer
with the cascade RDACT and RRT modules. The experimen-
tal results on DTU , Tanks&Temples, ETH3D, BlendedMVS,
and YFCC show that our method is competitive, efficient, and
plug-and-play. Cost Transformer can be your need for better
cost aggregation in multi-view stereo.
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