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Abstract
The performance of existing supervised neuron
segmentation methods is highly dependent on the
number of accurate annotations, especially when
applied to large scale electron microscopy (EM)
data. By extracting semantic information from
unlabeled data, self-supervised methods can im-
prove the performance of downstream tasks, among
which the mask image model (MIM) has been
widely used due to its simplicity and effectiveness
in recovering original information from masked im-
ages. However, due to the high degree of struc-
tural locality in EM images, as well as the ex-
istence of considerable noise, many voxels con-
tain little discriminative information, making MIM
pretraining inefficient on the neuron segmentation
task. To overcome this challenge, we propose
a decision-based MIM that utilizes reinforcement
learning (RL) to automatically search for optimal
image masking ratio and masking strategy. Due to
the vast exploration space, using single-agent RL
for voxel prediction is impractical. Therefore, we
treat each input patch as an agent with a shared be-
havior policy, allowing for multi-agent collabora-
tion. Furthermore, this multi-agent model can cap-
ture dependencies between voxels, which is bene-
ficial for the downstream segmentation task. Ex-
periments conducted on representative EM datasets
demonstrate that our approach has a significant ad-
vantage over alternative self-supervised methods
on the task of neuron segmentation. Code is avail-
able at https://github.com/ydchen0806/dbMiM.

1 Introduction
Neuron segmentation is a crucial task for neuroscientists that
allows for the analysis of the distribution and morphology of
neurons, providing valuable insights into the connectomics
research [Sheridan et al., 2022; Krasowski et al., 2017]. Elec-
tron microscopy (EM) is the mainstream method for accu-
rately identifying neural structures, but the dense nature of
neurons and the presence of artifacts and deformations in
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Figure 1: A comparison of the reconstruction effectiveness of our
proposed method with MAE. The first column shows the original
EM image, the second column shows the image after masking 85%
of the voxels, the third column shows the reconstruction using the
MAE method, and the fourth column shows the reconstruction using
our method.

EM images make the labeling process costly and decrease
the credibility of existing annotation data [Deng et al., 2022;
Zhou et al., 2019]. Therefore, fully supervised neuron seg-
mentation methods meet great challenges, especially when
applied to large scale EM data.

Self-supervised methods have emerged as a solution to
the limitations of fully supervised methods, which can be
roughly divided into two categories: contrastive learning-
based approach and mask image model (MIM)-based ap-
proach. The former requires a large number of positive
and negative samples [Chen et al., 2020; Grill et al., 2020;
You et al., 2022; Chen et al., 2023] and relies heavily on
data augmentation [Caron et al., 2021], making it a high-
cost option for 3D biomedical images. The latter aims to
learn useful structural information in images by masking and
recovering certain voxels, which has been recently applied
to pretraining biomedical images, showing improvements in
downstream tasks [Zhou et al., 2022; Tang et al., 2022;
Huang et al., 2022a]. However, the highly localized and
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structured nature of EM data, as well as the existence of con-
siderable noise, make it inefficient to directly employ the ex-
isting MIM in extracting useful information for neuron seg-
mentation. It has also been observed that the masking ratio
and masking strategy of MIM are highly sensitive and the op-
timal ones vary greatly across different datasets. Adjusting
these configurations to train large models requires significant
manual efforts and resources.

In this paper, targeting the neuron segmentation task, we
propose a novel decision-based MIM relying on multi-agent
reinforcement learning (MARL) [Littman, 1994] for auto-
matically selecting the appropriate masking ratio and mask-
ing strategy, which consists of a target network and a policy
network. Our approach partitions the input EM volume into
patches and treats each patch as a basic control unit. The over-
all multi-agent task is modeled as a search process for patch
masking strategies, where the action space for each patch is
to either keep the original voxels or mask them. The feedback
of the target network, in the form of the reconstruction loss,
serves as the team reward signal for guiding the policy net-
work to adaptively learn masking strategies that are beneficial
for the pretraining task [Foerster et al., 2016]. To improve
the stability of training and achieve optimal joint decision-
making for the entire volume, all agent networks share pa-
rameters and are trained in parallel. Furthermore, we intro-
duce the HOG feature as an additional reconstruction loss to
enable the target network to learn more structure information.
Finally, following a UNETR decoder design [Hatamizadeh et
al., 2022], we add a segmentation head to the pretrained tar-
get network in the finetuning stage. Experimental results in
Figure 1 show that our decision-based MIM achieves clearer
reconstruction results than the original MAE [He et al., 2022]
in the pretraining phase.

Overall, our main contribution lies in the following aspects:
1) We propose an efficient self-supervised method, named

decision-based MIM, for EM neuron segmentation using un-
labeled EM data. To the best of our knowledge, it is the first
effort that large-scale transformer pretraining is conducted on
this task.

2) We propose a MARL-based approach for searching the
optimal masking ratio and masking strategy by treating each
patch as an agent with a shared policy, effectively exploring
the search space and capturing dependencies between voxels.

3) We introduce the HOG feature as an additional recon-
struction loss of our decision-based MIM, improving the con-
vergence speed of network training and the performance of
the downstream segmentation task.

4) We comprehensively demonstrate the effectiveness of
our proposed method on two representative EM datasets, es-
pecially against alternative self-supervised methods on the
task of neuron segmentation.

2 Related Work
2.1 Neuron Instance Segmentation
In the field of EM image processing, neuron instance seg-
mentation is an important task. [Turaga et al., 2010] first pro-
posed a convolutional neural network based on affinity gener-
ation, followed by clustering voxels in the affinity graph into

instances based on post-processing methods such as water-
shed and LMC [Beier et al., 2017]. In recent years, there
have been more advanced networks for the affinity-based
approach. Funke et al.[Funke et al., 2018] introduced the
MALIS loss[Briggman et al., 2009] during the training pro-
cess to encourage the network to generate correct topological
segmentation. [Huang et al., 2022b] introduced an embed-
ding pyramid module to simulate affinity at different scales.
[Liu et al., 2022] incorporated both embedding and affinity
information and combined it with the graph neural network
to further improve the distinguishability of adjacent objects in
the feature space. However, due to the anisotropic resolution
of 3D EM images in lateral and axial directions, the usage
of transformer structures remains unexplored in the field of
neuron segmentation. In this paper, we use an affinity-based
setup and upgrade the decoder of UNETR [Hatamizadeh et
al., 2022] to adapt to the anisotropic EM features.

2.2 Mask Image Model (MIM)
The MIM is an important branch of self-supervised learning.
Masked autoencoders (MAE) [He et al., 2022] used an asym-
metric encoding-decoding structure, encoding only the un-
masked patches and using a lightweight decoder to recover
the masked patches, which greatly reduced the resources re-
quired for computation and quickly became a mainstream
structure for MIM. [Feichtenhofer et al., 2022] and [Tong
et al., 2022] separately validated the effectiveness of MAE
on video datasets and proved that higher image masking ra-
tios can be used in 3D datasets. [Zhou et al., 2022] was the
first to introduce MAE to the medical image field. [Bach-
mann et al., 2022] introduced a multi-modal multi-task adap-
tation to MAE, resulting in better performance than the orig-
inal MAE. [Gao et al., 2022] proposed a multi-scale mixed
convolution to encode images and achieved improved results
on fine-grained downstream tasks such as image segmenta-
tion. [Wei et al., 2022] focused on the reconstruction target
of the decoder and found that reconstructing artificial features
such as HOG and SIFT can facilitate the network to classify
and localize objects.

In summary, existing MIM-based methods mainly focus on
the design of the encoder architecture, prediction head, and
prediction target. Although many works have demonstrated
the impact of masking strategies on downstream tasks, there
has been little research along this line, and the latest method
also requires a search-based masking strategy with a fixed
masking ratio [Bandara et al., 2022]. This paper proposes
a novel MARL-based approach for adaptively learning the
optimal masking ratio and masking strategy, making the pre-
trained model more robust and achieving better performance
on downstream tasks.

2.3 Multi-Agent Reinforcement Learning (MARL)
In the field of deep RL, multiple agents working together can
improve the efficiency and robustness of the model due to the
limited observation and action space of a single agent. Given
the complexity of computer vision tasks, MARL is often used
to interact with the common environment to make decisions.
[Liao et al., 2020] proposed a method for iteratively refining
medical image segmentation using interactive MARL, where
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Figure 2: Our proposed network architecture is divided into two main components: (a) the decision-based Mask Image Model (MIM)
pretraining process, which employs our proposed decision module to select appropriate patches for masking and then utilizes a 3D Vision
Transformer (ViT) encoder to encode the visible patches. The resulting tokens are then passed through a lightweight decoder to reconstruct the
original voxels and histograms of oriented gradient (HOG) features. (b) The fine-tuning process for the downstream segmentation task utilizes
the encoder weights from the pretraining process and adds a UNETR segmentation head to output the affinity map. The final segmentation
results are obtained through post-processing methods such as waterz.

rough image segmentation is initially provided and the net-
work is iteratively refined through user feedback in the form
of rewards until the segmentation is sufficient. [Lin et al.,
2021a] proposed a method for augmenting images through
the use of blocks, with each block acting as an agent and
working together to produce optimal data augmentation. Still,
the application of MARL in computer vision suffers from the
large decision space and difficulty in obtaining rewards. In
this paper, to reduce the complexity of the state and the dif-
ficulty of searching for RL policies, we first segment the im-
age into patches through a transformer-encoder and treat each
patch as an agent. The action space for each patch is limited
to only two options, masking or keeping the original voxels,
and the rewards are obtained through the reconstruction loss
of MAE. Therefore, the masking decision can be naturally
modeled as a Markov process and optimized through MARL.

3 Proposed Method
Our decision-based MIM consists of two stages of training:
pretraining and finetuning. Figure 2 illustrates the overall
flow of the network training. In this section, we will first in-
troduce some basic theories of Vision Transformer (ViT) and
MARL, and then explain in detail the encoders, decoders, and
loss functions of the two stages, as well as specific MARL
modeling methods.

3.1 Encoder-Decoder Design
We use ViT [Dosovitskiy et al., 2021] as the backbone archi-
tecture for decision-based MIM pretraining and downstream
segmentation tasks. To represent high-dimensional data in a
ViT, we must transform it into a sequence of patches. Given
an input 3D volume x ∈ RH×W×D×C , where C is the num-
ber of channels and (H,W,D) is the resolution, we reshape

it into a sequence of flattened 3D patches xp ∈ RN×(P 3·C).
The patch resolution is given by (P/4, P, P ), and the number
of patches is calculated as N = 4HWD

P 3 . These patches are
then transformed into patch embeddings via a trainable linear
projection.

Consistent with the MAE setup, we divide the image
patches into visible and masked groups. The encoder in the
MAE and ViT architectures processes only the visible blocks.
To enhance the performance of our decoder, we incorporated
a histogram-of-oriented-gradients (HOG) feature [Dalal and
Triggs, 2005], which has been shown to improve pretrain-
ing. This is achieved by providing the decoder with various
markers, including a patch representation from the encoder
and learnable position embeddings. By incorporating posi-
tional embedding in all input markers, we enable the decoder
to simultaneously recover both the HOG feature and the orig-
inal voxels, resulting in superior performance compared to
the MAE method.

In our pretraining process, we utilize a loss function that
combines both the mean squared error (MSE) loss for recon-
structing the original voxels and the HOG loss for recovering
the HOG features. The HOG feature can be calculated using
the following equation

HOGi,j =

∑
x∈Si,j

w(x)g(x)∑
x∈Si,j

w(x)
, (1)

where HOGi,j is the histogram of oriented gradients for the
cell located at position (i, j), Si,j is the set of voxels in the
cell (i, j), w(x) is a weighting function that assigns a weight
to each voxel x in the cell, and g(x) is the gradient orientation
of the voxel x.

Our overall loss function can be expressed as
Lpretrain = λ1LMSE + λ2LHOG, (2)
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where λ1 and λ2 denote the weights assigned to the MSE and
HOG losses, respectively. We set λ1 to 0.1 and λ2 to 1.

3.2 Decision Module
In our proposed decision module, we model the masking
strategy of image patches in MAE as a multi-agent cooper-
ative decision-making problem and adopt a multi-agent rein-
forcement learning method to solve it. Here, we will intro-
duce in detail the modeling methods of model states, obser-
vations, actions, the design of multi-agent team rewards, and
the learning method used to update the policy network.

As shown in Figure 3, given the original input batch of
image x, according to the ViT setup, we divide the image into
equal-sized and non-overlapping patches. Our MARL policy
aims to determine the overall joint masking policy based on
the current input state and the observation of each agent. Our
basic setup is as follows.
State. The enhancement policy for each patch is closely
related to the information of the context, so the decision-
making process of MARL requires perceiving the semantic
information of the image rather than directly inputting the
patches of the raw image. In order to ensure the consistency
and convergence of training, we use the target network, i.e.
ViT, as the backbone to extract deep semantic features of the
image. The global state at time step t is denoted as St and is
visible to all agents.
Observation. In addition to capturing global information
St, each agent needs to make a masking policy decision based
on its own local observation. In general, the observation in
MARL tasks is often a part of the global state. Considering
these factors, we take the deep feature ViT(Pi) of patch Pi

as the current observation value Ot
i for the i-th agent. The

feature extractor for local features is the same as the one for
global features, both using the ViT backbone.
Action. The action of the i-th agent aims to output whether
patch Pi needs to be masked. We define the action of the
i-th agent as a vector Ai. The joint action space can be rep-
resented as A = {A1, A2, ..., AN}, where N represents the
total number of patches. Since the action space only has two
possibilities, masking or keeping the original voxels, the di-
mension of Ai is 2. Given the current state St and observation
Ot

i , each agent i will determine an action ai(S
t, Ot

i) ∈ Ai

based on the current policy. The final output is the global
joint action at = {at1 ∪ at2, ...,∪atN}. After all patches have
taken their corresponding actions through the decision pol-
icy, the time step is updated to t = t + 1 and we obtain the
enhanced volume through the decision module.
Rewards. Rewards are introduced in our MARL decision-
making process in order to guide the agents to learn ex-
pected behaviors that will improve the main task’s perfor-
mance through more reasonable masking ratios and masking
strategies, allowing the target net to better learn semantic in-
formation in the volume. Previous works [Lin et al., 2021b;
Zhang et al., 2019] attempted to increase the training loss
of the target network based on rewards in order to gener-
ate deeper, more difficult-to-learn features. Inspired by these
works, we refine the reward design based on the MAE pre-
training paradigm. By comparing the loss difference between

the data obtained from the masked data x·at−1 generated
by the previous time step’s decision module and the data ob-
tained from the current decision module x·at, we compute
the reward for the MARL policy. This encourages higher
training loss during the MARL decision-making process, as
shown by the equation

rt = Lpretrain(ϕ(x·at))− Lpretrain(ϕ(x·at−1)). (3)

In the above equation, Lpretrain represents the reconstruction
loss generated by the target network, and ϕ denotes the target
network. The accumulated reward of one sequence is

Rt =
t∑

i=t−T+1

γi−1r̄i, (4)

where T represents the desired time step length to be calcu-
lated, the discount factor γ takes a value in (0, 1], and r̄t is
the mean rewards at time t.

Policy Learning. Considering that the action space for
MARL decisions is discrete, we utilize the widely used Asyn-
chronous Advantage Actor-Critic (A2C) algorithm [Mnih et
al., 2016] to perform MARL policy learning. Since the search
space for actions is not large, we use simple convolution and
pooling modules to adjust the Actor and Critic networks to
the structure shown in Figure 3. The policy network is di-
vided into an Actor and a Critic, which are adapted to the
RL training algorithm. The Actor network learns a discrete
control policy π(ati|St, Ot

i), while the Critic network aims to
estimate the value of the state Vπ(S

t). We model the central-
ized action value function Q, which takes in the state infor-
mation S and the actions of all agents, and outputs a Q value
for the team, given by

Qπ(St,at) = Eπ

[
Rt | St, at1, · · · , atN

]
, (5)

where at represents the joint action of all agents, defined as
a = {ai, · · · , aN}, and Rt is the long-term discounted re-
ward, given by equation 4. The advantage function on the
policy is then given by

Aπ(St,at) = Qπ(St,at)− V π(St), (6)

where Aπ(St,at) is the advantage of taking action at given
state St at time step t, V π(St) is the current state estimate
output by Critic. It indicates that the actual accumulated re-
ward is independent of the state and reduces the variance of
the gradient. We use θp and θv to denote the parameters of
the Actor and Critic, respectively. The squared value of the
dominance function Aπ is taken as the loss function to update
θv as

L(θv) = Aπ(St,at)2. (7)

To further achieve cooperative capability, the loss function
of the updated Actor θp is defined as

L(θp) = − log πθ(a
t | St)Aπ(St,at), (8)

where πθ(a
t | St) is the Actor output, that is, the probability

of taking each action ati. The Actor and Critic are jointly
trained in an end-to-end manner.
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Figure 3: The framework of our proposed decision module. The
first step in the process is to extract features from the encoder of the
target net. In the second step, the policy network is used to decide
whether or not the current patch needs to be masked. The output of
the joint action constitutes the final decision.

3.3 Neuron Instance Segmentation Method
The UNETR model is specifically designed for 3D segmen-
tation tasks, such as organ segmentation. It is built upon
the pretrained ViT encoder from decision-based MIM and a
randomly-initialized convolutional decoder. The UNETR ar-
chitecture is inspired by the U-Net model [Ronneberger et al.,
2015], with the inclusion of skip connections between the en-
coder and decoder at multiple resolutions. The input to the
UNETR decoder is a sequence of representations, denoted
as z3, z6, z9, z12, which are reshaped to restore the spatial di-
mension of H

P × W
P × D

P ×K, where K is the feature channel.
Starting from the deepest feature, z12, each representation

is processed through a varying number of deconvolutional
blocks to increase its resolution by a specific factor. For ex-
ample, z12 and z9 are upsampled by a factor of ×2, z6 is
upsampled by a factor of ×4, and z3 is upsampled by a factor
of ×8. Then, representations at the same spatial resolution,
such as z12 and z9, are concatenated and further upsampled
to match the shape of a shallower feature. This process of
concatenation and upsampling is repeated until the full reso-
lution of the input is restored. Finally, the output layer com-
bines the upsampled feature and the original full-resolution
input to predict the segmentation map.

In this paper, for the segmentation task of EM neurons, we
use a combination of affinity map-based and post-processing
approaches. We first create an affinity graph based on the
voxel affinity. This graph serves as the foundation for our

post-processing techniques, which utilize both waterz [Funke
et al., 2018] and LMC [Beier et al., 2017] to cluster the affin-
ity map and produce the final neuron segmentation results.
Affinity-based methods have proven to be highly effective
in accurately segmenting and analyzing these complex struc-
tures.

4 Experiments
4.1 Training Strategy
Our strategy consists of two phases: pretraining and fine-
tuning. In the pretraining phase, to improve the training ef-
ficiency of the framework, we first pretrain decision-based
MIM for 100k iterations, synchronously updating the param-
eters of MAE and the policy network in the decision module,
and then fix the parameters of policy network and only up-
date the parameters of MAE for another 100k iterations. In
the fine-tuning phase, we load the pretrained ViT weights into
the model for the downstream task and train for 200k itera-
tions.

We use the Adam optimizer in both the pretraining and
fine-tuning phases, with β1 = 0.9, β2 = 0.999. The only
difference lies in the pretraining process, where we set the
learning rate to 0.0001 and perform batch size 16 pretraining
on 8 RTX 3090s. In the fine-tuning phase, we adopt a Layer-
wise Learning Rate Decay (LLRD) training method, which
adjusts the learning rate layer by layer during training. We set
the learning rate of the last layer’s parameters to 0.001 and the
learning rate of the previous layer’s parameters to 0.95 times
the learning rate of the next layer’s parameters. We conduct
batch size 8 fine-tuning on 2 RTX 3090s.

4.2 Datasets and Evaluation Metrics
FAFB. The Full Adult Fly Brain (FAFB) dataset [Zheng et
al., 2018] is a highly valuable resource for neuroinformat-
ics research, offering a comprehensive and detailed view of
the neural architecture of the Drosophila melanogaster (fruit
fly) brain. With a size of approximately 40 terabytes, this
dataset features high-resolution 3D images with a resolution
of approximately 4 nanometers per pixel, as well as manually
annotated segmentation data identifying various brain struc-
tures such as neurons, glial cells, blood vessels, synapses, and
other neuropil regions.

In our work, we utilize the FAFB dataset as a key com-
ponent in our pretraining process. To optimize the efficiency
of our model, we first downsample the original dataset by a
factor of 4, carefully curating a selection of 60G images that
exhibit exceptional imaging quality from the entire dataset.
This strategic selection ensures that our model is trained on
the most accurate and reliable data possible, setting the foun-
dation for its future performance.

CREMI. The CREMI dataset is derived from the FAFB
dataset, which has three manually labeled subvolumes from
drosophila brain, of which CREMI A has more regular forms,
CREMI C has higher size disparities, and CREMI B has in-
between segmentation difficulty. Each sub-volume has 125
slices of 1250×1250 images, and we choose the first 60 slices
for training, 15 slices for validation, and the remaining 50
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waterz [Funke et al., 2018] LMC [Beier et al., 2017]
Dataset Method

VOIS ↓ VOIM ↓ VOI ↓ ARAND ↓ VOIS ↓ VOIM ↓ VOI ↓ ARAND ↓

superhuman [Lee et al., 2017] 0.443 0.320 0.763 0.132 0.578 0.272 0.850 0.131
MALA [Funke et al., 2018] 0.478 0.627 1.105 0.459 0.574 0.303 0.878 0.146
UNETR [Hatamizadeh et al., 2022] 0.495 0.359 0.854 0.153 0.630 0.278 0.908 0.141
MAE [He et al., 2022]+UNETR 0.463 0.324 0.787 0.144 0.563 0.268 0.831 0.139
Dino [Caron et al., 2021]+UNETR 0.482 0.351 0.833 0.150 0.580 0.287 0.867 0.147

CREMI A

ours+UNETR 0.411 0.331 0.743 0.131 0.537 0.260 0.797 0.134

superhuman [Lee et al., 2017] 0.668 0.409 1.076 0.082 0.959 0.232 1.191 0.060
MALA [Funke et al., 2018] 0.797 0.512 1.309 0.147 1.060 0.264 1.324 0.084
UNETR [Hatamizadeh et al., 2022] 0.937 0.397 1.333 0.103 1.194 0.230 1.424 0.116
MAE [He et al., 2022]+UNETR 0.776 0.391 1.167 0.099 0.994 0.224 1.218 0.102
Dino [Caron et al., 2021]+UNETR 0.916 0.396 1.312 0.104 1.167 0.229 1.396 0.111

CREMI B

ours+UNETR 0.642 0.381 1.023 0.092 0.893 0.220 1.113 0.097

superhuman [Lee et al., 2017] 0.943 0.385 1.328 0.134 1.176 0.260 1.436 0.125
MALA [Funke et al., 2018] 0.901 0.621 1.522 0.169 1.137 0.289 1.426 0.127
UNETR [Hatamizadeh et al., 2022] 0.996 0.423 1.419 0.158 1.417 0.236 1.653 0.148
MAE [He et al., 2022]+UNETR 1.001 0.298 1.299 0.120 1.272 0.214 1.486 0.113
Dino [Caron et al., 2021]+UNETR 1.011 0.412 1.423 0.156 1.364 0.234 1.598 0.146

CREMI C

ours+UNETR 0.925 0.276 1.201 0.107 1.194 0.204 1.398 0.112

superhuman [Lee et al., 2017] 0.721 0.295 1.016 0.187 0.770 0.343 1.113 0.110
MALA [Funke et al., 2018] 0.734 0.385 1.119 0.305 0.832 0.357 1.189 0.108
UNETR [Hatamizadeh et al., 2022] 0.908 0.337 1.245 0.316 1.007 0.340 1.347 0.134
MAE [He et al., 2022]+UNETR 0.791 0.306 1.097 0.254 0.888 0.298 1.186 0.120
Dino [Caron et al., 2021]+UNETR 0.889 0.329 1.218 0.298 1.001 0.314 1.315 0.129

AC4

ours+UNETR 0.647 0.285 0.931 0.243 0.795 0.284 1.079 0.113

Table 1: Results on the CREMI dataset, VOIS represents split error, VOIM represents merge error, and VOI is the sum of the two. The final
segmentation results are generated by using two classic post-processing methods, waterz and LMC.

slices for testing, which are utilized to validate our method’s
performance on segmentation tasks of varying difficulty.
AC3/AC4. AC3/AC4 [Kasthuri et al., 2015] are mouse so-
matosensory cortex datasets with 256 and 100 successive EM
images (1024×1024), respectively. The first 80 slices of AC3
are used as the training set, the following 20 slices as the vali-
dation set, and the first 50 slices of AC4 are used as the testing
set.
Evaluation Metrics. We are more interested in the model’s
performance in the downstream task in the self-supervised
training. To assess the influence of segmentation on EM
neurons, we primarily use Variation of Information (VOI)
[Nunez-Iglesias et al., 2013] and Adapted Rand Error
(Arand) [Arganda-Carreras et al., 2015] metrics. Smaller
VOI and ARAND values represent better segmentation re-
sults.

4.3 Experimental Results
Decision Making Process. Decision-based MIM is pre-
trained using the FAFB dataset. During pretraining, the pol-
icy network in the decision module is also updated, and the
real-time change in masking ratio is recorded as in Figure 4.
The decision-making process starts with random decisions,
resulting in an overall masking ratio of around 0.5. Then, us-
ing the reconstruction loss as a reward, the decision-making
principles of the agents are updated. After 50k iterations, the
decision module converges and produces better reconstruc-
tion results with less lost information. During pretraining, it
is found that starting with a lower masking ratio is more ben-
eficial for the EM dataset, and gradually increasing the mask-

Figure 4: The variation of the masking ratio in the MARL decision
process, where the final convergence result shows that the optimal
masking ratio fluctuates around 0.83.

ing ratio helps the network’s learning process progress from
easy to difficult datasets, which is effective for both upstream
reconstruction and downstream segmentation tasks.

Results on CREMI. We compare our method to the origi-
nal MAE pretraining method [He et al., 2022] and the Dino
pretraining method [Caron et al., 2021] based on contrastive
learning, as well as two affinity-based Unet structures for
instance segmentation, superhuman [Lee et al., 2017] and
MALA [Funke et al., 2018]. The outcomes of the trials are
provided in Table 1 after applying both waterz and LMC
post-processing procedures. Figure 5 shows the visualiza-
tion results. Compared to existing self-supervised methods,
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Figure 5: The visualization results in the CREMI C dataset reveal the areas of over-segmentation and under-segmentation produced by
methods such as Superhuman, MALA, and UNETR.

waterz LMCMSE HOG
VOI ↓ ARAND ↓ VOI ↓ ARAND ↓

√
1.097 0.254 1.186 0.120√
0.987 0.251 1.103 0.127√ √
0.957 0.245 1.089 0.117

Table 2: Ablation results of the multi-task reconstruction.

our decision-based MIM approach shows a significant im-
provement for the downstream task and it also performs better
than commonly used CNN-based methods in neuron segmen-
tation, as can be seen in Table 1.

Results on AC3/AC4. In order to verify the robustness and
generalizability of our pretraining method, we further con-
duct experiments on mouse cortical neural cells. The results
in Table 1 indicate that our approach leads to a clear improve-
ment in the downstream segmentation task, even when ap-
plied across different species.

4.4 Ablation Study
We use UNETR to perform a comprehensive ablation study
on the AC4 dataset.

Effectiveness of the multi-task reconstruction. We con-
duct ablation experiments on the model’s reconstruction tar-
gets. As shown in Table 2, it demonstrates that utilizing HOG
and MSE losses together for reconstruction in the MIM out-
performs using MSE or HOG alone.

Effectiveness of the decision module. We compare our
proposed method to a straightforward solution that manually

waterz LMCRate Decision
VOI ↓ ARAND ↓ VOI ↓ ARAND ↓

0.65 1.065 0.264 1.196 0.131
0.75 0.997 0.258 1.132 0.129
0.85 0.957 0.245 1.097 0.121
0.95 1.005 0.260 1.121 0.127

/
√

0.931 0.243 1.079 0.113

Table 3: Ablation results of the decision module.

adjusts the masking ratio. The ablation results, as shown in
Table 3, demonstrate that our approach not only eliminates
the need for manual adjustment of masking ratios but also
outperforms the best results achieved through manual adjust-
ment.

5 Conclusion
In this paper, we propose a decision-based MIM approach
for neuron segmentation. Our method eliminates the need for
manual adjustment of masking ratios and masking strategies,
using multi-agent cooperation to search for the optimal solu-
tion. Additionally, during the pretraining process, we incor-
porate a multi-task reconstruction and utilize HOG features
to enhance the model’s learning ability. Our method is vali-
dated on a variety of EM neuron datasets to demonstrate its
generalizability.

Acknowledgements
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62021001.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

615



References
[Arganda-Carreras et al., 2015] Ignacio Arganda-Carreras,

Srinivas C Turaga, Daniel R Berger, Dan Cireşan,
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