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Abstract
Image ordinal regression has been mainly studied
along the line of exploiting the order of categories.
However, the issues of class imbalance and cate-
gory overlap that are very common in ordinal re-
gression were largely overlooked. As a result, the
performance on minority categories is often unsat-
isfactory. In this paper, we propose a novel frame-
work called CIG based on controllable image gen-
eration to directly tackle these two issues. Our main
idea is to generate extra training samples with spe-
cific labels near category boundaries, and the sam-
ple generation is biased toward the less-represented
categories. To achieve controllable image gen-
eration, we seek to separate structural and cate-
gorical information of images based on structural
similarity, categorical similarity, and reconstruction
constraints. We evaluate the effectiveness of our
new CIG approach in three different image ordi-
nal regression scenarios. The results demonstrate
that CIG can be flexibly integrated with off-the-
shelf image encoders or ordinal regression models
to achieve improvement, and further, the improve-
ment is more significant for minority categories.

1 Introduction
Ordinal classification, which is also widely known as ordinal
regression, is a specific type of classification task in which the
categories follow a natural or logical order. Category orders
are quite common in computer vision tasks, such as human
age, image quality, and disease degrees of lesions. There-
fore, image ordinal regression has been extensively applied
to a number of diverse scenarios, ranging from image qual-
ity ranking [Diaz and Marathe, 2019] and monocular depth
estimation [Geiger et al., 2013] to clinical image analysis
(e.g., Gleason grading of prostate cancer [Bulten et al., 2022]
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and embryo stage classification/grading [Lukyanenko et al.,
2021; Chen et al., 2022]).

In the literature, image ordinal regression studies have fo-
cused on exploiting the order of categories to boost accuracy.
Related work can be roughly divided into regression-based,
classification-based, and ranking-based methods. Regression
methods [Fu and Huang, 2008; Guo and Mu, 2013] treat cat-
egorical labels as numerical values and directly use loss func-
tions such as mean absolute/square errors to preserve cate-
gory orders. But these methods may suffer from the non-
stationary characteristics of differences between adjacent cat-
egories. Classification methods [Diaz and Marathe, 2019;
Li et al., 2021; Shin et al., 2022] cast ordinal regression
as multi-classification and leverage strategies such as soft
labeling and relative order maintenance to incorporate the
category relationships. Ranking methods [Niu et al., 2016;
Fu et al., 2018] replace the original problem with multiple
binary classifications and aggregate binary labels to derive
ordinal labels heuristically. Overall, classification methods
perform better than the other methods.

While some progress has been made, existing studies
largely neglected the issues of class imbalance and category
overlap, which are common in ordinal regression. Note that
categories in ordinal regression follow certain orders, and
it is often the case that data points are not evenly allocated
along the metrics associated with these orders. For instance,
there is only a very small fraction of images whose qual-
ity is rated as excellent or which corresponds to severe or-
gan lesions. Indeed, we find that the least-sample category
in our three datasets only accounts for 5%, 2%, and 0.2%
of the total, respectively (Table 1). Moreover, categories in
ordinal regression are often empirical rather than by defini-
tion, i.e., they are usually divided by rules. This implies
the existence of a certain amount of near- or cross-boundary
samples due to feature disturbance and inconsistent subjec-
tive judgment. As a result, adjacent categories may overlap
(e.g., see Fig. 1). The above two issues increase the difficulty
for models to learn meaningful category boundaries, espe-
cially for the less-represented minority categories. We empir-
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Figure 1: Illustrating the class imbalance and category overlap issues
(left) and controllable image generation (e.g., artificial samples of
class 2 near the boundaries) to facilitate ordinal regression (right).

ically find that existing approaches [Diaz and Marathe, 2019;
Li et al., 2021] that ignore these two issues are non-robust,
e.g., the classification accuracy of minority categories is 20 ∼
55% lower than the overall accuracy.

In this paper, we propose to tackle image ordinal regres-
sion by directly addressing the class imbalance and category
overlap issues, and develop a novel framework (namely CIG)
based on controllable image generation. Our main idea is to
generate extra training samples with specific labels near cate-
gory boundaries, and the generation is biased toward the less-
represented categories. Fig. 1 shows an example in which
our CIG generates extra samples for the minority class 2 near
its boundaries. As such, each category could be enriched
with generated boundary samples, which facilitate learning
more accurate and robust decision boundaries. Central to our
CIG approach is the controllable image generation process,
i.e., producing an artificial image with a specific label near
the boundaries. We leverage a separation-fusion-generation
pipeline to implement this process. More specifically, we first
separate the structural and categorical information of images.
Three objectives, i.e., structural similarity, categorical simi-
larity, and reconstruction constraints, are introduced to super-
vise the separation. As a side effect, the image encoder is
also enforced to extract better categorical features for classi-
fication. Afterward, we fuse the structural information of one
image with the categorical information of another image to
generate the required one.

We conduct extensive experiments on three highly differ-
ent image ordinal regression scenarios (datasets), i.e., age es-
timation (Adience), diabetic retinopathy diagnosis (DR), and
image quality ranking (Aesthetics), to evaluate the effective-
ness of our CIG approach. We find that CIG can be flexi-
bly integrated with off-the-shelf image encoders (VGG [Si-
monyan and Zisserman, 2015] and PVT [Wang et al., 2021])
or ordinal regression models (POE [Li et al., 2021]) to attain
improvement. CIG integrated with the PVT encoder achieves
new state-of-the-art classification accuracy and mean abso-
lute error results on all of the three tested datasets. Moreover,
we empirically show that CIG is more friendly to minority
categories and the classification accuracy overall and on mi-
nority categories is increased by (1.8%, 4.5%), (0.4%, 5.5%),
and (0.21%, 8.9%) on the three datasets, respectively, com-
pared with the best-known baselines.

The main contributions of our work are as follows:

• We tackle image ordinal regression by directly address-
ing the class imbalance and category overlap issues, and
present one of the first such methods in the literature.

• We propose a new plug-and-play framework CIG for
the problem. The main novelty behind CIG is control-
lable image generation enabled by separating and fusing
structural and categorical information of images.

• We verify the effectiveness and improved robustness of
CIG on three different image ordinal regression tasks.

2 Related Work
In this section, we review related work on image ordinal re-
gression and briefly overview the ideas of generation net-
works and self-supervised learning that inspire our work.

Image ordinal regression. Existing studies can be classi-
fied into regression-, classification-, and ranking-based meth-
ods. Regression methods treat categorical labels as numer-
ical values and apply optimization. For instance, in [Fu and
Huang, 2008; Guo and Mu, 2013], multiple linear regressions
were utilized after dimensionality redundancy of the original
image space was reduced with subspace learning. Classifi-
cation methods cast ordinal regression as multi-classification
and emphasize on properly incorporating correlation between
categories. SORD [Diaz and Marathe, 2019] replaced the tra-
ditional one-hot label encoding with soft probability distri-
butions, which allowed models to learn intra-class and inter-
class relationships. POE [Li et al., 2021] represented a data
point as a multivariate Gaussian distribution rather than a de-
terministic point in the latent space, and exploited the ordi-
nal nature of regression via an ordinal distribution constraint.
MWR [Shin et al., 2022] leveraged a moving window to re-
fine the prediction of one image based on the supervision of
its reference images from adjacent categories. Ranking meth-
ods transform an ordinal regression problem into a series of
binary classification sub-problems. In [Niu et al., 2016], a
multiple output CNN learning algorithm was proposed to col-
lectively solve these sub-problems, and the correlation be-
tween these tasks was explored. A ranking-based ordinal loss
was developed to ensure that predictions farther from the true
label would incur a larger penalty [Fu et al., 2018].

Different from the previous studies, in this paper, we study
image ordinal regression from the perspective of directly ad-
dressing the class imbalance and category overlap issues.
These two issues are very common in ordinal regression but
were largely ignored by previous work. Our work also fo-
cuses on the robustness of minority categories which we
strongly believe is worth more thorough investigations.

Generation networks aim to produce images based on
feature map vectors. U-Net [Ronneberger et al., 2015] and
MAE [He et al., 2022] are two representative generation net-
works which are commonly used in conjunction with popu-
lar CNN-based and transformer-based encoders, respectively.
During generation, U-Net connects the encoder and decoder
layers that have the same feature map shape. This design
makes it possible to contain both high-resolution information
and high-dimensional abstract information in the decoder.
MAE was originally proposed as an image auto-encoder, and
was trained by recovering an image from its masked version.
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Figure 2: An overview of our CIG framework. The encoders (E) have the same architecture and weights, and so do the classifiers (C).

We note that the lightweight decoder of MAE is very suit-
able as a generation network given feature maps produced by
transformer-based encoders.

Our CIG framework adopts a generation network to pro-
duce extra training samples. Differently, we fuse two images
to generate the artificial one and require the image genera-
tion process to be controllable. This is implemented by a
separation-fusion-generation pipeline.

Self-supervision learning can obtain representations to
help downstream tasks by learning from some auxiliary tasks.
In [Liu et al., 2021], the authors proposed to partition an
image into private and invariant domains via a domain-
separation network. The separation network was trained
based on the self-supervised orthogonality and similarity loss.
CycleGAN [Zhu et al., 2017] implemented unpaired image-
to-image translation by using a cycle loss that constrained the
content consistency between the original and corresponding
generated images. Inspired by these methods, our CIG learns
to separate structural and categorical information of images
by constraining the structural and categorical similarities be-
tween the original and generated images.

3 Methodology

In this section, we present our CIG framework with control-
lable image generation. A framework overview is given in
Fig. 2. In a nutshell, CIG generates extra training samples
with specific class labels near category boundaries, to facili-
tate learning of the task. More specifically, to classify an im-
age, referred to as a main image, CIG first samples a reference
image from its adjacent categories. Both the main and refer-
ence images are passed through the image encoder to extract
feature maps. These feature maps are then combined to gen-
erate a fusion image through a separation-fusion-generation
pipeline, such that the label of the fusion image is the same
as the reference image. We exploit both self-supervision and
classification supervision to train our CIG.

We first introduce the architecture of CIG in Section 3.1,
and then discuss model supervision in Section 3.2.

3.1 Architecture

Sampler. Without loss of generality, we assume that the cat-
egories of our target image ordinal regression task are labeled
consecutively with integers 1, 2, . . . ,K , where K is the total
number of categories. Given a main image Xm with a label
m, our CIG first samples a reference image Xr (with a label
r) from the training set such that |m − r| = 1, i.e., Xm and
Xr are from adjacent categories. CIG then generates an arti-
ficial fusion image Xf of label r based on Xm and Xr. This
adjacent sampling assures that the fusion image is near the
boundary between the categories m and r.

We allow the generation process to bias toward minority
categories that are originally less represented. We consider
two samplers for CIG. The first one is an equal sampler,
which samples Xr from adjacent categories with equal prob-
ability. The second one is called an inverse-ratio sampler. Let
Nm−1 and Nm+1 denote the numbers of raw images in cate-
gories m− 1 and m+1. The probabilities of sampling a ref-
erence image from categories m−1 and m+1 are then deter-
mined by Nm+1/Nadj and Nm−1/Nadj , respectively, where
Nadj = Nm−1 +Nm+1. Both samplers can increase the pro-
portion of training samples, i.e., the main and fusion images,
for minority categories.

Image encoder and classifier. The main and reference
images are then passed through an image encoder to extract
feature maps for subsequent generation and classification.
Technically, CIG can use all image encoder architectures,
and we explore the classic CNN-based architectures (e.g.,
VGG16 [Simonyan and Zisserman, 2015]) and the more re-
cent Pyramid Vision Transformer (PVT) [Wang et al., 2021]
architecture as the encoder in this work. A single fully-
connected (FC) layer is adopted as the classification head
which takes the extracted feature maps of images as input and
outputs the predictive probabilities of all the categories.

Controllable generator. A core of CIG is controllable im-
age generation through which we produce a fusion image Xf

with a label r using the main and reference images Xm and
Xr. We implement the generation process using a separation-
fusion-generation pipeline, and propose to separate the struc-
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Figure 3: Two types of generation networks in CIG.

tural and categorical information of images.1 Structural and
categorical information is the information for determining the
overall structure and the category of an image, respectively.

The upper-left part of Fig. 2 illustrates the separation-
fusion (S-F) operation. Specifically, we use either two 1 × 1
convolutional layers (for a CNN-based encoder) or two FC
layers (for a Transformer-based encoder) as the structural and
categorical extractors to extract relevant features from feature
maps F (4)

m and F
(4)
r . The two extracted feature maps are con-

catenated into Fsf . The channel numbers (or lengths) of the
feature maps from the structural and categorical extractors are
set as τ or 1− τ times the channel number (or length) of the
last feature map F (4) from the encoder, respectively, where
τ is a percentage value for controlling the structural infor-
mation proportion of the concatenated feature map from the
S-F module. The computed structural feature map of Xm and
categorical feature map of Xr are concatenated to generate
the fusion image Xf . As such, Xf is desired to be of class
r while being structurally similar to Xm, i.e., lying near the
boundary between categories m and r. Further, the categori-
cal feature map of Xm is extracted and concatenated with its
structural feature map for regularization (we will explain this
below). CIG adopts UNet or the decoder of MAE as the gen-
eration network, depending on the encoder architecture (i.e.,
CNN-based or Transformer-based).

As shown in Fig. 3, in UNet, the concatenated feature map
Fsf and the last feature map F

(4)
m of Xm are first input into

an up-sampling block. This up-sampling process is repeated
three times to generate Xf . In the repetitions, the concate-
nated feature map is replaced by the output of the previous
block. In the light-weight MAE decoder, a single Trans-
former block with a multi-head self-attention (MSA) layer
and a feed-forward network (FFN) is used for the generation,
and Fsf is repeated four times to ensure size consistency.

We apply three types of self-supervision to ensure the
separation-fusion-generation pipeline to behave as we desire.

3.2 Model Supervision
CIG exploits self-supervision to guide information separation
and image generation, and exploits classification supervision
to improve the overall performance.

Self-supervision. To ensure the structural extractor works
effectively, we require the fusion image Xf to be more struc-
turally similar to the main image Xm than Xr. We apply the

1The concept of structural information is borrowed from struc-
tural similarity (https://en.wikipedia.org/wiki/Structural similarity).

commonly-used structural similarity index measure (SSIM)
to quantify the perception-based similarity between two im-
ages X and Y , as:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
Xµ2

Y + c1)(σ2
X + σ2

Y + c2)
, (1)

where µX and σ2
X are the pixel sample mean and variance

of image X , σXY is the covariance of images X and Y , and
c1 = (0.01L)2 and c2 = (0.03L)2 are variables for stabiliz-
ing the division operation (L is a dynamic range of the pixel-
values of the images). The SSIM values are within (0, 1], with
larger values for higher similarity. We then minimize the fol-
lowing structural generation loss in order to enforce structural
extraction, as:

LSG = −1

2

(
log SSIM(Xm, Xf )+log(1−SSIM(Xr, Xf ))

)
.

(2)
On the other hand, the fusion image Xf should be more

categorically similar to the reference image Xr than Xm.
Thus, we require the predicted categorical probability vec-
tors Pf and Pr of Xf and Xr to be similar. Specifically,
we minimize the squared Euclidean distance between the two
un-normalized probability vectors to enforce categorical ex-
traction. The corresponding categorical generation loss is:

LCG = ||Pr − Pf ||2, (3)

where Pr ∈ RK and Pf ∈ RK are the raw probability vectors
of Xr and Xf output by the classifier.

Moreover, we desire to use “simple” structural and cate-
gorical extractors (the simpler the better). In other words, we
hope that the encoder can learn to extract categorical infor-
mation, instead of relying heavily on the extractors, as the
categorical information will benefit the subsequent classifi-
cation. Therefore, we further optimize a reconstruction loss
between the feature map F

(4)
m and the concatenated vector

Fsf = concat[hc(F
(4)
m ), hs(F

(4)
m )] of the main image, as:

LRC = ||F (4)
m − concat[hc(F

(4)
m ), hs(F

(4)
m )]||2, (4)

where hc and hs stand for the categorical and structural ex-
tractors of CIG.

Finally, the overall self-supervised generation loss is com-
puted as a weighted sum of the above three losses:

LG = α · LSG + β · LCG + LRC . (5)
Classification supervision. We use the traditional cross-

entropy (CE) loss to optimize the classification capacity of
CIG. The CE loss is evaluated and optimized only on the
main and fusion images with labels m and r, respectively.
Let Pm ∈ RK and Pf ∈ RK be the predicted categorical
probability vectors of the main and fusion images outputted
from the classifier. With some abuse of notation, the CE loss
on Xm (with label m) can be expressed as:

LCE(Pm,m) = − log
exp(Pm

m )∑K
k=1 exp(P

k
m))

, (6)

where Ph
m denotes the value of the h-th entry in Pm. The

overall classification loss of CIG is a weighted sum of cross-
entropy on the main and fusion images, as:

LC = LCE(Pm,m) + λ · LCE(Pf , r). (7)
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Dataset # of images % of images in each category
Adience 17,321 14 / 12 / 12 / 10 / 29 / 13 / 5 / 5

DR 35,126 74 / 7 / 15 / 3 / 2
Aesthetics 13,706 2 / 24 / 66 / 8 / 0.2

Table 1: Dataset statistics. The categories are arranged in order.

The complete training process of CIG is summarized as
follows. We first train the entire model (i.e., the encoder,
classifier, S-F module, and generator) in each batch. The
encoder and classifier are supervised by the classification
loss in Eq. (7) while the S-F module and generator are op-
timized by the self-supervision loss in Eq. (5). We find that
the generator-related parameters are optimized much more
slowly than the other parameters, and hence adopt two op-
timizers with different learning rates for optimization. After
the generation network has been adequately optimized, we
continue to train the encoder and classifier alone for another
8,000 to 24,000 batches. Note that with controllable image
generation, the encoder is required to also extract structural
information, while this information is not used for classifica-
tion. The continued training allows the model to better focus
on category-related features to further boost accuracy.

4 Experiments
We evaluate the effectiveness of our CIG approach on three
different image ordinal regression tasks. Four sets of experi-
ments are conducted to evaluate: (i) the overall effectiveness
of CIG compared with known state-of-the-art methods, (ii)
the robustness for minority categories, (iii) the contribution
of each component in CIG, and (iv) the parameter sensitivity.

4.1 Experimental Setup
Datasets. We use three public datasets to evaluate our CIG.

(1) Adience [Levi and Hassner, 2015] is a face image
dataset from Flickr. Its categories correspond to human ages.

(2) DR (Diabetic Retinopathy) [Liu et al., 2018a] contains
high-resolution fundus images of patients.2 These images are
classified according to the degrees of retina lesions.

(3) Aesthetics [Schifanella et al., 2015] is another Flickr
image dataset whose images are rated by the image quality.

Table 1 summarizes some statistics of these datasets, and
Fig. 4 illustrates their ordinal categories with example im-
ages. Note that image ordinal regression on the three datasets
corresponds to human age estimation, diabetic retinopathy di-
agnosis, and image quality ranking, respectively.

Metrics. We adopt classification accuracy (ACC) and
mean average error (MAE) between predicted and ground-
truth category probabilities for performance evaluation.

Implementation. Our CIG is implemented using Py-
Torch [Paszke et al., 2019], which is available at GitHub3.
The inverse-ratio sampler is used by default and image en-
coders are initialized with the weights pre-trained on Ima-
geNet1K [Deng et al., 2009]. We adopt the default Adam op-
timizer and a batch size of 18 for model training. The learning

2https://www.kaggle.com/c/diabetic-retinopathy-detection
3https://github.com/Ch3ngY1/Controllable-Image-Generation

No DR Mild DR Moderate DR Severe DR Proliferative DRNo DR Mild DR Moderate DR Severe DR Proliferative DR

Unacceptable Flawed Ordinary Professional ExceptionalUnacceptable Flawed Ordinary Professional Exceptional

0-2 4-6 8-13 15-20

25-32 38-43 48-53 60+

0-2 4-6 8-13 15-20

25-32 38-43 48-53 60+

Figure 4: Ordinal categories and example images of the Adience,
DR, and Aesthetics datasets (from top to bottom).

rates for the encoder and generator are set as 1×10−4 and 5×
10−3, respectively. We optimize hyper-parameters on Adi-
ence with α ∈ {1, 2, 5}, β ∈ {1, 2, 5}, λ ∈ {0, 0.1, . . . , 1},
and τ ∈ {0.1, 0.2, . . . , 0.9}, and choose α = 5, β = 2,
λ = 0.2, and τ = 0.2 for all our tests. We use 5-fold (on
Adience and Aesthetics) or 10-fold (on DR) cross-validation,
and report the average results. All the experiments are con-
ducted on a machine with 16 Intel(R) Xeon(R) Gold 6226R
2.90GHz CPUs and an NVIDIA RTX 3090 GPU.

4.2 Comparison with Known Methods
We first evaluate the effectiveness of our approach by compar-
ing with seven image ordinal regression methods (including
state-of-the-art ones). The results are presented in Table 2,
in which CIG-VGG and CIG-PVT denote two variants of our
approach based on the CNN and Transformer encoders, re-
spectively. From the results, we observe the following.

Overall, the more recent SORD, POE, and MWR meth-
ods perform better than the other baselines. More specifi-
cally, MWR gives the best results among these three methods
on Adience. This is because MWR further exploits the fine-
grained categorical information (e.g., concrete human ages)
to refine the results, while such information is not available
on the other two datasets. SORD attains competitive classi-
fication accuracy due to its soft label design. However, soft
labels could introduce noise in ground-truth category proba-
bilities, yielding large MAE by SORD, especially on DR and
Aesthetics. On the other hand, POE shows good classification
accuracy and MAE by aggregating results that correspond to
different samples from an estimated distribution.

Our CIG-PVT model using the Transformer encoder con-
sistently outperforms all the baselines in both ACC and MAE
on the three datasets. Indeed, our absolute improvements in
ACC (↑) and MAE (↓) are (1.8%, 0.4%, 0.21%) and (0.02,
0.008, 0.008) on Adience, DR, and Aesthetics, respectively.
The improvement on Adience by CIG is bigger. This is prob-
ably because samples in Adience are distributed more evenly
in categories and the categorical and structural information of
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Method Adience DR Aesthetics
ACC (%)↑ MAE↓ ACC (%)↑ MAE↓ ACC (%)↑ MAE↓

CNNPOR [Liu et al., 2018b] 57.4 0.55 82.87 0.335 67.48 0.354
GP-DNNOR [Liu et al., 2019] 57.4 0.54 – – – –

MT [Ratner et al., 2018] – – 82.80 0.360 – –
Poisson [Beckham and Pal, 2017] – – 77.10 0.380 – –
SORD [Diaz and Marathe, 2019] 61.03 1.49 78.67 1.421 69.97 0.567

POE [Li et al., 2021] 59.3 0.49 80.48 0.312 68.92 0.351
MWR [Shin et al., 2022] 62.6 0.45 – – – –

CIG-VGG (ours) 61.4 0.47 82.94 0.326 67.48 0.387
CIG-PVT (ours) 64.4 0.43 83.27 0.304 70.18 0.343

Table 2: Performance comparison of CIG and known methods. The best and second-best results are marked in bold and underlined, respec-
tively. ‘–’ indicates that we cannot find or reproduce the results due to private implementation of the original papers or inapplicable settings.
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Figure 5: Detailed effectiveness for each category on DR and Aesthetics. Minority categories are marked in red. The results on Adience are
given in the Supplementary Material.

Dataset Method ACC (%)↑ MAE↓

Adience
SORD 32.75 1.533
POE 36.26 0.749

CIG-PVT 41.10 0.685

DR
SORD 23.78 0.522
POE 38.63 0.824

CIG-PVT 44.16 0.794

Aesthetics
SORD 14.23 1.148
POE 16.53 0.868

CIG-PVT 25.41 0.840

Table 3: Effectiveness comparison for minority categories.

face images can be well recognized and separated, enabling
CIG to generate more reliable fusion images. On the other
hand, on DR and Aesthetics, over 2/3 of the images belong
to the same classes, thus making the overall improvements
less significant after averaging on a large quantity of rela-
tively ‘easy’ images. But, such a class imbalance issue could
severely affect the effectiveness on minority categories (Sec-
tion 4.3). Our CIG is designed to better classify those ‘hard’
images for minority categories. In this sense, the smaller im-
provements of the overall ACC and MAE are still crucial.

4.3 Robustness on Minority Categories
Next, we examine the robustness of different methods for
minority categories. Categories on which the classification
accuracy is much lower than the highest one are taken as

minorities, which are categories {4, 6, 7, 8}, {2, 3, 4, 5}, and
{1, 2, 4, 5} in our three datasets, respectively. Based on the
results in Table 2, we only compare CIG-PVT with SORD
and POE in this set of tests. The overall and detailed results
are presented in Table 3 and Fig. 5. We observe the following.

First, the performance on minority categories is worse for
all the methods. For instance, the ACCs of (SORD, POE, and
our CIG-PVT) are (29%, 20%, 22%), (54%, 42%, 39%), and
(56%, 52%, 45%) lower than the overall accuracy on the three
datasets, respectively. These results empirically support our
hypothesis that the class imbalance issue should be carefully
addressed for image ordinal regression tasks.

Second, our CIG-PVT consistently outperforms the other
two baselines on minority categories of all the datasets, ex-
cept for MAE on DR. Note that the soft labels of SORD are
prone to decreasing the MAE for the ‘middle’ categories, but
in the cost of higher MAE for the leftmost and rightmost cat-
egories (see Figs. 5b&5d). Yet, the lower MAE by SORD on
cls3 of DR does not increase its corresponding ACC (Fig. 5a).

Third, the performance improvements of CIG-PVT on mi-
nority categories are more substantial. Specifically, on DR,
CIG-PVT yields better ACC on two of the four minority cat-
egories and is on par with the best in one category (Fig. 5a).
For the minority categories of Aesthetics, our results in ACC
and MAE are consistently the best (Figs. 5c&5d). Overall,
the ACC is improved by (8.4%, 4.8%), (20.4%, 5.5%), and
(11.2%, 8.9%), and the MAE is decreased by (0.848, 0.064),
(−0.272, 0.03), and (0.308, 0.028) compared to SORD and
POE on the minority categories of the three datasets, respec-
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Method IG S-F CT ACC (%)↑ MAE↓

VGG

- - - 57.4 0.550
✓ - - 58.2 0.532
✓ ✓ - 61.0 0.485
✓ ✓ ✓ 61.4 0.471

PVT

- - - 61.6 0.468
✓ - - 63.3 0.458
✓ ✓ - 63.9 0.447
✓ ✓ ✓ 64.4 0.434

POE

- - - 59.3 0.485
✓ - - 60.5 0.475
✓ ✓ - 61.1 0.471
✓ ✓ ✓ 61.6 0.463

Table 4: Results of ablation study on Adience.

tively. These results verify that the controllable image gener-
ation process is effective in producing additional useful train-
ing samples for the less-represented categories to facilitate
learning more accurate category boundaries, and our CIG is
more robust compared with the known methods.

4.4 Ablation Study
In the third set of tests, we conduct ablation study to em-
pirically verify the rationality of our CIG approach. We
consider the following designs/variants of CIG: direct im-
age generation (IG) by simply adding the feature maps of the
images, controllable image generation with the separation-
fusion module (S-F), and continued training (CT) for the en-
coder. Moreover, we use CNN- and Transformer-based en-
coders (i.e., VGG and PVT) as well as an existing image or-
dinal regression model POE as the backbone to investigate the
applicability of CIG. Due to the page limit, we report only the
results on Adience in Table 4.

We find that the fusion-based image generation strategy is
effective to deal with the class imbalance issue in image or-
dinal regression. With IG, ACC and MAE of the three back-
bone models VGG, PVT, and POE are improved by (0.8%,
1.7%, 1.2%) and (0.018, 0.010, 0.010), respectively. More-
over, the S-F module can further improve the performances,
by (2.8%, 0.6%, 0.6%) in ACC and (0.047, 0.011, 0.004) in
MAE, indicating that our controllable image generation by
separating the structural and categorical information is more
reliable. Finally, our complete CIG with continued training
consistently yields the best results, i.e., CT increases ACC
by (0.4%, 0.5%, 0.5%) and decreases MAE by (0.014, 0.013,
0.008). This is probably because the encoder could better fo-
cus on extracting category-related information of images in
the continued training phase. Overall, we show that our de-
signs of CIG are generally useful, and together they assure
the effectiveness of CIG as a whole. In addition, one can see
that CIG is plug-and-play and flexible, and off-the-shelf im-
age encoders or models can be readily integrated with CIG to
bring further improvement for image ordinal regression.

We also test the effectiveness of two different samplers
(i.e., equal and inverse-ratio) for CIG. The results on Adience
are reported in Table 5. We find that the inverse-ratio sampler
is better since it can supplement more images for minority

Sampler ACC (%)↑ MAE↓
Equal 60.73 0.472

Inverse-ratio 61.38 0.471

Table 5: The impacts of two samplers on Adience.
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Figure 6: The impact of τ on Adience.

categories than the equal sampler.

4.5 Parameter Sensitivity
Finally, we evaluate the parameter sensitivity of CIG. To ex-
amine the impact of τ , i.e., the length parameter for the struc-
tural and categorical information vectors in the separation-
fusion module, we vary τ from 0.1 to 0.9, fix the other pa-
rameters to their default values, and test the ACC and MAE
results, as shown in Fig. 6. When increasing τ , ACC first in-
creases and then decreases in general with the increment of
τ , and MAE first decreases and then increases on the con-
trary. The best ACC and MAE are attained at τ = 0.2. This
implies that the image encoder uses more bits (in the categor-
ical information vectors) to maintain categorical information
of images. The results for the other hyper-parameters (i.e., λ,
α, and β) are given in the Supplementary Material.

5 Conclusions
In this paper, we focused on the class imbalance and cate-
gory overlap issues in image ordinal regression which have
been largely overlooked. We proposed, to our best knowl-
edge, the first image ordinal regression approach that directly
addresses these two issues. We presented a novel framework
CIG based on controllable image generation which can gen-
erate artificial images to facilitate learning more accurate and
robust decision boundaries. Each generated image contains
structural information of one image and categorical informa-
tion of another image from adjacent categories. To achieve
such controllable generation, CIG was designed to learn the
separation of the structural and categorical information of im-
ages using three self-supervised objectives. Extensive experi-
ments on three different image ordinal regression scenarios
verified the effectiveness and robustness of CIG compared
with state-of-the-art methods. More specifically, CIG based
on the Transformer encoder established new best-known per-
formances. We also empirically showed that previous meth-
ods incurred considerable robustness issues on minority cat-
egories, and our CIG approach yielded higher improvements
on such categories. It is expected that our work will inspire
further studies on robust image ordinal regression.
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sis. In Laura Leal-Taixé and Stefan Roth, editors, ECCV
Workshops, Proceedings, Part VI, volume 11134 of Lec-
ture Notes in Computer Science, pages 335–344. Springer,
2018.

[Liu et al., 2018b] Yanzhu Liu, Adams Wai-Kin Kong, and
Chi Keong Goh. A constrained deep neural network for
ordinal regression. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, pages 831–839. Computer
Vision Foundation / IEEE Computer Society, 2018.

[Liu et al., 2019] Yanzhu Liu, Fan Wang, and Adams Wai-
Kin Kong. Probabilistic deep ordinal regression based
on Gaussian processes. In 2019 IEEE/CVF International
Conference on Computer Vision, pages 5300–5308. IEEE,
2019.

[Liu et al., 2021] Lina Liu, Xibin Song, Mengmeng Wang,
Yong Liu, and Liangjun Zhang. Self-supervised monocu-
lar depth estimation for all day images using domain sep-
aration. In 2021 IEEE/CVF International Conference on
Computer Vision, pages 12717–12726. IEEE, 2021.

[Lukyanenko et al., 2021] Stanislav Lukyanenko, Won-
Dong Jang, Donglai Wei, Robbert Struyven, Yoon Kim,
Brian D. Leahy, Helen Y. Yang, Alexander M. Rush, Dalit
Ben-Yosef, Daniel Needleman, and Hanspeter Pfister.
Developmental stage classification of embryos using
two-stream neural network with linear-chain conditional
random field. In Marleen de Bruijne, Philippe C. Cattin,
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