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Abstract
Semi-supervised semantic segmentation methods
are the main solution to alleviate the problem of
high annotation consumption in semantic segmen-
tation. However, the class imbalance problem
makes the model favor the head classes with suf-
ficient training samples, resulting in poor perfor-
mance of the tail classes. To address this is-
sue, we propose a Decoupled Semi-Supervised
Semantic Segmentation (DeS4) framework based
on the teacher-student model. Specifically, we
first propose a decoupling training strategy to split
the training of the encoder and segmentation de-
coder, aiming at a balanced decoder. Then, a
non-learnable prototype-based segmentation head
is proposed to regularize the category representa-
tion distribution consistency and perform a better
connection between the teacher model and the stu-
dent model. Furthermore, a Multi-Entropy Sam-
pling (MES) strategy is proposed to collect pixel
representation for updating the shared prototype
to get a class-unbiased head. We conduct exten-
sive experiments of the proposed DeS4 on two
challenging benchmarks (PASCAL VOC 2012 and
Cityscapes) and achieve remarkable improvements
over the previous state-of-the-art methods.

1 Introduction
Semantic segmentation is one of the most fundamental tasks
in the computer vision field, it can be applied in many applica-
tions like autonomous vehicles and movie editing. In recent
years, remarkable progress has been made in semantic seg-
mentation based on Deep Neural Networks [He et al., 2016;
Chen et al., 2018a] as well as large-scale well-annotated seg-
mentation datasets [Everingham et al., 2015; Cordts et al.,
2016]. Existing fully-supervised deep-learning-based seg-
mentation methods are data-hungry and require large-scale
datasets for training. It is however very time-consuming and
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Figure 1: Comparison with existing semi-supervised semantic seg-
mentation methods for class-imbalance learning. (a) Common
Teacher-Student framework [French et al., 2020], (b) Combination
of re-sampling and re-weighting [Hu et al., 2021], (c) Additional
unbiased subclass regularization networks [Guan et al., 2022], (d)
Decoupling balance training network (Ours). “ // ” on “→” means
stop-gradient. P: pseudo labels. Proto.: share semantic prototype.

labor-intensive to obtain segmentation datasets because they
are dense annotations of pixel-wise masks. To alleviate this
high annotation consumption issue, semi-supervised seman-
tic segmentation has been widely concerned [French et al.,
2020; Zou et al., 2021; Chen et al., 2021], it offers the poten-
tial of leveraging limited annotations and a large set of unla-
beled images.

Many semi-supervised segmentation efforts aim at apply-
ing consistency regularization [French et al., 2020; Chen et
al., 2021; Zhang et al., 2022] and self-training [Bachman
et al., 2019; Chen et al., 2020; Fan et al., 2022a] strate-
gies. These approaches typically employ the teacher-student
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paradigm [French et al., 2020] and supervise the student
model by the pseudo label generated by the teacher model,
as shown in Figure 1 (a). However, since models are trained
using imbalanced data, most methods are limited by the pixel-
wise classification accuracy of the semantic segmentation,
which leads to the degradation of tailed categories learn-
ing. Recently, a few works attempt to alleviate the imbalance
problem in semi-supervised semantic segmentation [Guan
et al., 2022; Hu et al., 2021]. For example, Distribution
Alignment and Random Sampling (DARS) [He et al., 2021]
and UCC [Fan et al., 2022a] explore the mismatch prob-
lem between the true distribution and pseudo-labeled distri-
bution, and propose a progressive data augmentation strategy
and Dynamic Cross-Set Copy-Paste (DCSCP), respectively.
AEL [Hu et al., 2021] tackles the biased training problem
with re-sampling and re-weighting, as shown in Figure 1 (b).
It proposes two adaptive-based data augmentation methods
and a sampling strategy for the confidence bank. Differently,
USRN [Guan et al., 2022] presents a class-balance subclass
framework with clustered subclasses, which is illustrated in
Figure 1 (c). However, existing methods learn the encoder
and decoder jointly and such a learning fashion ignores the
impact of the long-tailed problem on different components.

In this work, inspired by a recent successful imbal-
anced semi-supervised classification algorithm [Fan et al.,
2022b], we propose Decoupled Semi-Supervised Semantic
Segmentation (DeS4) as an imbalanced semi-supervised se-
mantic segmentation framework, as shown in Figure 1 (d).
In the proposed DeS4, we decouple the encoder and pixel-
level representation (from the decoder) for long-tail semantic
segmentation. Specifically, the training of the encoder and
segmentation decoder are decoupled without gradient prop-
agation, and we aim to get a robust encoder and unbiased
segmentation decoder. Under the teacher-student pattern, we
connect the student model and teacher model via a shared
segmentation head for exchanging unbiased information be-
tween the two models, which is based on non-learnable pro-
totypes rather than relying only on pseudo-label supervision.
Besides, we propose a Multi-Entropy Sampling (MES) strat-
egy to update the unbiased prototype non-parametrically. The
entropy level of the category-wise representation distribution
is divided into several zones, and balance subsampling is con-
ducted for each zone of entropy level. The proposed MES
strategy greatly improves the diversity of the category-wise
representation while maintaining the balance property. Fur-
thermore, we utilize the sampled category representations to
update the prototype via exponential moving average (EMA).
Then, the pixel representations find the nearest prototype of
the same category with metric learning for classification.

We outperform other methods on two widely used
datasets: PASCAL VOC 2012 [Everingham et al., 2015] and
Cityscapes [Cordts et al., 2016]. For example, our method
achieves 81.61% and 80.64% on the VOC Aug dataset un-
der 1/2 and 1/4 partitions, which shows an improvement of
2.31% and 1.63% over the previous state-of-the-art methods.

In summary, this paper makes the following contributions:

• We propose Decoupled Semi-Supervised Semantic
Segmentation (DeS4) as an imbalanced semi-supervised

semantic segmentation framework, in which we separate
the training of the encoder and decoder.

• We propose non-learnable prototypes as a shared and
balanced segmentation head, which links the teacher
model and the student model better. Meanwhile, a
Multi-Entropy sampling strategy is proposed for updat-
ing prototypes in a balanced manner.

• We outperform existing state-of-the-art semi-supervised
semantic segmentation methods on two public datasets
consistently.

2 Related Works
Semantic segmentation. Fully Convolutional Net-
work [Long et al., 2015] learns dense features effec-
tively in an end-to-end fashion. Since it was a pi-
oneering work, several enhancements were proposed
based on FCN from various aspects, e.g. enhancing
the receptive field [Chen et al., 2018a], incorporat-
ing multi-scale contextual features [Chen et al., 2016;
Zhao et al., 2017; Ding et al., 2018], and in-
vestigating attention operations [Fu et al., 2019;
Ding et al., 2019]. Besides, significant improvements
in semantic segmentation in recent years have been made
by stronger backbone architectures, such as ResNet [He et
al., 2016] in CNN-based methods, and ViT [Dosovitskiy et
al., 2020] in Transformer-based methods. Currently, many
efforts have been made for exploring long-range dependency
with Transformers in the segmentation head [Xie et al., 2021;
Cheng et al., 2021; Zheng et al., 2021; Ding et al., 2021],
which showed remarkable results.

Semi-supervised semantic segmentation. Semi-
supervised semantic segmentation methods pay attention
to training by combining labeled images with unlabeled
images, which reduces the time-consuming of manual
annotation. Previous approaches investigate the gener-
ative adversarial networks (GANs) [Hung et al., 2018]
for unlabeled data via discriminating pseudo labels.
Recently, several works motivated by the remarkable
progress in semi-supervised learning based on consistency
regularization [Chen et al., 2021; Wang et al., 2022;
Zhang et al., 2022] and self-training [Lee, 2013;
Fan et al., 2022a]. For example, GCT [Ke et al., 2020]
enforces consistency between two models with different
initializations but the same architecture. PseudoSeg [Zou et
al., 2021] introduces Grad-CAM for better quality pseudo-
labels. CPS [Chen et al., 2021] proposes dual parallel models
and performs cross-model supervision for the training of
semantic segmentation networks. Furthermore, many works
benefited from learning pixel-level representations with
unsupervised contrastive learning. PC2Seg [Zhong et al.,
2021] enforces label-space consistency regularization and
feature contrastive property. U2PL [Wang et al., 2022]
selects pixels based on their reliability and pushes away
unreliable samples. RC2L [Zhang et al., 2022] encourages
region-level consistency and contrastive properties to solve
the false-negative problem and simplify the contrast learning
training process. Besides, many efforts [Hu et al., 2021;
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Figure 2: Illustrate the architecture of our framework. H and W are the height and width of the input image. Xl, Xw
u , and Xs

u denote the
labeled image set, unlabeled image set with weak augmentation, and unlabeled image set with strong augmentation, respectively. “ // ” on
“→” means no gradient update happen.

Guan et al., 2022] have been devoted to overcoming the
pixel class imbalance issue. AEL [Hu et al., 2021] proposes
adaptive data augmentation methods and sampling strategy,
USRN [Guan et al., 2022] trains an unbiased subclass
classifier to regularize imbalanced pseudo-labels and designs
a gate module based on the entropy. UCC [Fan et al., 2022a]
proposes Dynamic Cross-Set Copy-Paste (DCSCP) strategy
to address the misalignment and class imbalance problem.

In this work, we first propose a decoupled training strategy
for semantic segmentation in a semi-supervised fashion. It
decouples the training of the encoder and the decoder. Sec-
ond, different from [Guan et al., 2022] which performs K-
Means clustering and uses prototypes as additional class cen-
ters, we raise a non-learnable prototype-based classifier for
both the teacher model and the student model, and we also
propose a novel balance sampling strategy for the prototype
updating.

Class-imbalance learning. Class-imbalance learning is a
fundamental problem that has been widely studied. Many
works attempt to tackle the class imbalance problem via loss
function re-weighting. For example, Focal loss [Lin et al.,
2017] adjusts the loss weight of each sample to suit different
class labels for training data, resulting in much more noise
from the dataset. There are also some works that obtain re-
sampled data with a balanced number of training samples via
random linear interpolation [Chawla et al., 2002], multi-stage
training [Yin et al., 2019], etc. Besides, SPE [Liu et al., 2020]
proposes a self-paced ensemble strategy with re-sampling to
balance the dataset effectively. Recent efforts demonstrate
that decoupling the representation and classifier [Kang et al.,
2019; Tang et al., 2020] can be beneficial for long-tailed clas-
sification. Inspired by these approaches, CoSSL [Fan et al.,

2022b] proposes a Co-Learning framework for imbalanced
semi-supervised classification.

Different from SPE [Liu et al., 2020], we employ a multi-
entropy sampling on various categories rather than binary
classification. Meanwhile, CoSSL [Fan et al., 2022b] links
the teacher model and student model via pseudo-label only,
we propose a shared non-learnable prototype as a bridge
to transfer class-unbiased information to the student and
unify the category-wise embedding space for both the teacher
model and student model.

3 Method
We first describe our framework in Section 3.1, Decoupled
Semi-Supervised Semantic Segmentation (DeS4) framework.
Then, the detailed decoupled training is introduced in Sec-
tion 3.2. In Section 3.3, we develop the Multi-Entropy Sam-
pling strategy, which considers the number of inter-class sam-
ples and the entropy of intra-class samples at the same time.

3.1 Overview
The overall architecture is illustrated in Figure 2. Our method
has two training procedures: supervised training and unsu-
pervised training. Specifically, given a labeled image set
Xl = {(xi

l, y
i
l)}

Nl
i=1 and xl ∈ RH×W×3, yl ∈ RH×W for

supervised training where H and W represent the height and
the width of the image, Nl is the size of labeled dataset.
We employ the commonly used teacher-student framework,
which has two models with the same architecture. Denot-
ing S as the student model, and the pixel-level feature map
can be computed as FS

l = S(Xl). On the other hand, we
also feed Xl into the teacher model T . We get the feature
map FT

l from the teacher model following FT
l = T (Xl).
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We propose to use a shared prototype-based classifier P =
[p1, p2, ..., pC ] ∈ RC×d for predicting the probability (for
more details, see Section 3.2), where C is the total number
of classes of the dataset, and d is the dimension of proto-
types. Each pixel feature in FS

l and FT
l is projected in the

same category as the nearest prototype class centers, and then
minimizes the cross-entropy loss. The supervised loss can be
formulated as:

Lb
l =

1

Nl

Nl∑
i=1

Lce(argmin{⟨S(xi
l), pj⟩}Cj=1, y

i
l), (1)

Lub
l =

1

Nl

Nl∑
i=1

Lce(argmin{⟨T (xi
l), pj⟩}Cj=1, y

i
l), (2)

where ⟨. . . ⟩ denotes the distance measure, Lce denotes the
cross-entropy loss.

For unlabeled image set Xu = {xi
u}

Nu
i=1, where Nu is the

number of the unlabeled images, we perform weakly aug-
mentation (e.g. random flip, random crop, etc.) and strong
augmentation (consists of all weak augmentation approaches
and CutMix) to obtain Xw

u and Xs
u, respectively. As shown in

Figure 2, pseudo labels Yu = {yiu}
Nu
i=1 are generated by the

teacher model to supervise the training of the student. The
loss of the unsupervised branch can be written as:

Lu =
1

Nu

Nu∑
i=1

Lce(argmin{⟨S(xi
u)), pj⟩}Cj=1, y

i
u). (3)

Optimization goal. To optimize our model, the total loss
function consists of three components: a biased supervised
loss Lb

l , an unbiased supervised loss Lub
l , and an unsuper-

vised loss Lu. Total loss can be written as:

L = Lub
l + λ1Lb

l + λ2Lu, (4)

where λ1 and λ2 are hyper-parameters to balance losses.

3.2 Decoupled Semi-Supervised Semantic
Segmentation

Decoupling for long-tailed classification is proposed in [Kang
et al., 2019], which demonstrates that only adjusting a clas-
sifier is possible to get a good performance. We apply the
decoupling to semi-supervised semantic segmentation for the
first time, and propose a shared classifier based on non-
learnable prototypes to better connect the teacher and student
models.

Supervised training procedure. We represent the encoder
and decoder of the teacher model in terms of ET and DT .
Different from previous approaches [Hu et al., 2021; Guan
et al., 2022; Zhang et al., 2022] , only the model weights of
ET are exponential moving average (EMA) updated by the
weights of the student model’s encoder,

θt = τ1θ
t + (1− τ1)θ

s, (5)

where θt and θs donate the model parameters of ET and stu-
dent’s encoder, respectively, and τ1 ∈ [0, 1] is a constant to
control the exponential moving.

We find that separating the training of the encoder and the
decoder with the classifier achieves better performance than
only adjusting the classifier separately (experimental results
are provided in Section 4). So DeS4, with a goal of learning
a class-unbiased segmentation decoder and classifier for the
teacher model.

First, for the classifier, the learnable prototype is equiva-
lent to a linear classifier, which is hard to maintain the bal-
anced property with gradient propagation and ignores the in-
ductive bias of the feature distribution. Recent work [Zhou et
al., 2022] explores a non-learnable prototype-based method
for semantic segmentation. We propose shared non-learnable
prototypes as class centers, which can represent the feature
space of each class c ∈ {1, ..., C}. We propose a novel
pixel-level feature sampling strategy to update prototypes in
a balanced manner (for more details, see Section 3.3). More
specifically, given a pixel latent feature f , classify through
prototypes is to find the nearest element in P with argmin
operation, as shown in Eq. (1)-(3), where cosine similarity is
used as a distance measure: ⟨u, v⟩ = uTv

∥u∥∥v∥ .
Denoting the probability distribution of pixel latent feature

as: p(c|f) = exp(Sc
f )∑C

c′=1
exp(Sc′

f )
, where Sc

f is defined as the sim-

ilarity between f and closest prototype of category c. We
optimize the log-likelihood of the distribution:

Lce = Ec∈C [− log p(c|f)]. (6)

As to the training of the unbiased decoder, we introduce
the recently successful pixel-level loss re-weighting. For i-th
image, the loss weight can be computed as:

Wi =
(1− argmax(σ(zxi

l ,p
)))2

sum((1− argmax(σ(zxi
l ,p

)))2)
, (7)

where sum(·) stands for sum operation, σ denotes
Softmax, and zxi

l ,p
= argmin{⟨DT (ET (xi

l)), pj⟩}Cj=1.
Then we update Eq. (2) as:

Lub
l =

1

Nl

Nl∑
i=1

WiLce(zxi
l ,p

, yil). (8)

Note that gradient updates only happen for the teacher’s bal-
anced decoder via Lub

l .
Pseudo label supervision. Previous approaches simply
generate pseudo-labels as a signal for information interac-
tion through the teacher model. However, it is not enough
for relying only on pseudo labels, due to two reasons: 1). Ig-
noring the different feature spaces between the teacher and
student. 2). Pseudo labels cannot pass unbiased informa-
tion to the student model. We tackle this question through
the shared and balanced prototype-based classifier in both
supervised and unsupervised training. As normal, the mo-
mentum encoder and class-unbiased decoder extract pixel-
level representations from unlabeled images. Then, pseudo
labels are generated via prototype-based metric learning up-
dated by Multi-Entropy Sampling (Section 3.3) against data
imbalance. Furthermore, the student model also gets predic-
tions via the same prototype with balance property and guar-
antees identical feature space. This enhances the information
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Method VOC Train VOC Aug

1/2(732) 1/4(366) 1/8(183) 1/16(92) 1.4k(1464) 1/2(5291) 1/4(2646) 1/8(1323) 1/16(662)

MT [Tarvainen and Valpola, 2017] 69.16 63.01 55.81 48.70 - 77.61 76.62 73.20 70.59
VAT [Miyato et al., 2018] 63.34 56.88 49.35 36.92 - - - - -
AdvSemSeg [Hung et al., 2018] 65.27 59.97 47.58 39.69 68.40 - - - -
CCT [Ouali et al., 2020] 62.10 58.80 47.60 33.10 69.40 77.56 76.17 73.00 67.94
GCT [Ke et al., 2020] 70.67 64.71 54.98 46.04 - 77.14 75.25 73.30 69.77
CutMixSeg [French et al., 2020] 69.84 68.36 63.20 55.58 - 75.89 74.25 72.69 72.56
PseudoSeg [Zou et al., 2021] 72.41 69.14 65.50 57.60 73.23 - - - -
CPS [Chen et al., 2021] 75.88 71.71 67.42 64.07 - 78.64 77.68 76.44 74.48
PC2Seg [Zhong et al., 2021] 73.05 69.78 66.28 57.00 74.15 - - - -
AEL [Hu et al., 2021] - - - - - 80.29 78.06 77.57 77.20
RC2L [Zhang et al., 2022] 77.06 72.24 68.87 65.33 79.33 80.43 79.71 77.49 75.56
U2PL [Wang et al., 2022] 76.16 73.66 69.15 67.98 79.49 80.50 79.30 79.01 77.21

Supervised baseline 71.69 65.88 54.92 45.77 72.50 77.13 75.80 71.55 67.87
Ours 77.62 74.58 72.23 68.02 80.86 82.11 81.61 81.02 77.28

Table 1: Comparison with the state-of-the-art methods on VOC 2012 Val set. The supervised baseline is trained only with labeled images.
We follow [Ouali et al., 2020; Ke et al., 2020; Zhang et al., 2022] to use the encoder pretrained on COCO [Lin et al., 2014] for 1/8 and 1/16
VOC Train. For the rest, we use the backbone pretrained on ImageNet [Deng et al., 2009].

exchange with no gradient, resulting in a more balanced stu-
dent model and further leading to a stronger and more robust
momentum encoder.

3.3 Multi-Entropy Sampling
Previous strategies mainly sample pixel features randomly or
rely on the confidence of feature softmax probability distri-
bution. The former is more likely to choose high-confidence
samples, and the latter prefers to explore low-confidence sam-
ples, leading to the noise-raised problem due to the different
learning difficulties of each category. Inspired by SPE [Liu
et al., 2020], we propose a Multi-Entropy Sampling strategy
that selects features by considering both the entropy balance
of intra-class samples and the quantitative balance of inter-
class samples at the same time.

Precisely, we first account for the number of pixels in each
category in the whole labeled image set, obtaining the ratio
R = [r1, r2, ..., rC ] among categories and employing the nor-
malization based on the category cl (rcl = 1) with the lowest
number. Then, we calculate the amount of per category sam-
ples N b = [nb

1, n
b
2, ..., n

b
C ] in a batch. In the training step of a

batch, the number of samples per category can be calculated
as N̂ b = R · N b to encourage inter-class quantity balance
property.

As normal, for intra-class balance, the entropy can be for-
mulated as:

Entropy(z) = −
C∑
i=1

zi log(zi + ϵ), (9)

where z stands for the predicted probability distribution,
and ϵ is a constant which is set to 1e − 10. Differently,
it is not reasonable to focus totally on low-confidence or
high-confidence (low entropy or high entropy) samples for
prototype-based classifier updating. Furthermore, we pro-
pose a multi-entropy-based method for each category rather
than selecting randomly. Given a set of pixel feature F ĉ

l =

[f ĉ
1 , f

ĉ
2 , ..., f

ĉ
n̂b
ĉ

], and the corresponding entropy predictions

E ĉ = [eĉ1, e
ĉ
2, ..., e

ĉ
n̂b
ĉ

] of the category ĉ from the teacher
model. We split these samples into k zones according to their
entropy as the Multi-Entropy, which can be formulated as:

Zi = {[E ĉ
min + (i− 1)× L, E ĉ

min + i× L)}ki=1. (10)
Denoting that E ĉ

min and E ĉ
max are the min and max entropy in

E ĉ. k is a hyper-parameter to control the number of zones. [·)
represents the interval of left closed and right open. L denotes
the length of the zone: Eĉ

max−Eĉ
min

k .
We calculate the entropy-based sampling ratio of each zone

as follows:
Zent
i =

1

α+
∑

j∈Zi
eĉj/|Zi|

. (11)

Here, α is a constant to biasing sampling more towards diffi-
cult samples. Finally, we conduct under-sampling for F ĉ

l in
i-th zone with the number of N i

ĉ =
Zent

i∑
i∈k Zent

i
× n̂b

ĉ, which
aims to have balanced entropy in zones. We define the under-
sampling set as F ĉ

sample = [f ĉ
1 , f

ĉ
2 , ..., f

ĉ∑
i∈k Ni

ĉ
]. Note that

if there are insufficient samples in a zone, we sample from
the neighboring zones to ensure balanced entropy as much as
possible.

With sampled pixel feature set available, prototypes can be
updated via EMA. The process can be formulated as follow:

pj = τ2pj + (1− τ2)GAP (F ĉ
sample), (12)

where GAP indicates the global average pooling, τ2 ∈
[0, 1] is a hyper-parameter to control the exponential mov-
ing. Note that no gradient propagation happens at updating
non-learnable prototypes.

4 Experiment
4.1 Experimental Setup
Datasets. PASCAL VOC 2012 [Everingham et al., 2015] is
the most widely used benchmark dataset in semi-supervised
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Method 1/4(744) 1/8(372)

CutMixSeg [French et al., 2020] 68.33 65.82
CMB [Alonso et al., 2021] 65.9 64.4
CPS [Chen et al., 2021] 74.58 74.31
PseudoSeg [Zou et al., 2021] 72.36 69.81
PC2Seg [Zhong et al., 2021] 75.15 72.29
AEL [Hu et al., 2021] 77.48 75.55
USRN [Guan et al., 2022] - 75.0
RC2L [Zhang et al., 2022] 76.47 74.04
U2PL [Wang et al., 2022] 76.47 74.37

Supervised baseline 74.43 72.53
Ours 77.87 75.74

Table 2: Comparison with the state-of-the-art methods on
Cityscapes Val set. We report the results on 1/4 and 1/8 Cityscapes
dataset with the model pretrained on the COCO dataset.

semantic segmentation with a background category and 20
foreground categories. The original dataset consists of 1464
images for training and 1449 images for evaluation. Several
works combine the coarse annotated images with the original
train set (VOC Train) to get the augmented dataset (VOC
Aug) for training. Following common practice, we evaluate
our proposed model in both two settings. Cityscapes [Cordts
et al., 2016] is a high-resolution urban scene dataset with a
total of 19 classes. We follow previous works [Zhang et al.,
2022] to select 1/4 and 1/8 training images as labeled data.
Evaluation metrics. We report mean Intersection-over-
Union (mIoU) as the evaluation metric. All the experimen-
tal results are evaluated on either the VOC Val set or the
Cityscapes Val set, and ablation studies are conducted on
the 1/4 and 1/8 VOC Aug dataset.
Implementation details. We use DeepLab v3+ [Chen et
al., 2018b] as the semantic segmentation network with the
ResNet101 backbone. All experiments are trained on 8
NVIDIA RTX A6000 GPUs with a batch size of 16, and we
use stochastic gradient descent (SGD) to optimize the model,
and set balance weights λ1 and λ2 to 1 and 1.5. Empirically,
we set both the EMA decay of τ1 and τ2 to 0.99. For the
Multi-Entropy Sampling strategy, we set k and α to 5 and
0.1, respectively. For both PASCAL VOC Train and Aug
datasets, the initial learning rate is set to 0.001, and the weight
decay is 0.0001. We follow previous settings [Wang et al.,
2022] to train our model for 80 epochs with the crop size
of 513 × 513. For the Cityscapes dataset, the initial learning
rate is 0.01, weight decay is 0.0006, and the crop size is 769 ×
769. Furthermore, we employ a poly learning rate policy that
the initial learning rate is multiplied by (1 − iter

max iter )
power

with power = 0.9.

4.2 Comparison to the State-of-the-Arts
We compare DeS4 to state-of-the-art methods (e.g. [Hu et al.,
2021; Wang et al., 2022; Zhang et al., 2022], etc.) on VOC
Val set and Cityscapes Val set.
Results on PASCAL VOC 2012. We show the compari-
son results in Table 1. For VOC Train set, our proposed
DeS4 outperforms existing state-of-the-art method, for exam-
ple, we achieve the improvements of 0.56% and 0.92% with

D.T. S.H. P.R. VOC Aug (1/4) VOC Aug (1/8)

78.23 76.73
✓ 80.44 79.85
✓ ✓ 80.47 80.28
✓ ✓ ✓ 81.61 81.02

Table 3: Impact of various components, where D.T., S.H., and P.R.
stand for ‘Decoupled Training’, ‘Shared segmentation Head’, and
‘Pixel Re-weighting’, respectively.

BSS VOC Aug (1/4) VOC Aug (1/8)

Quantity balance 81.10 80.50
Confidence balance 81.17 80.66
ME balance 81.61 81.02

Table 4: Study on sampling strategies for updating prototypes,
where ‘BSS’ denotes the balance sampling strategy.

partition protocols of 1/2 and 1/4, and significantly outper-
form U2PL [Wang et al., 2022] on 1/8 partition protocol with
3.08%. As to VOC Aug set, we obtain the improvements of
1.61%, 2.31%, 2.01%, and 0.07% under 1/2, 1/4, 1/8, and
1/16 partitions compared with U2PL, respectively. We also
conduct the experiment under a 1.4k/9k split, where all the
original VOC 2012 dataset is used as labeled data and the
augmented dataset is used as unlabeled data. The perfor-
mance of DeS4 is 1.37% and 1.53% higher than U2PL and
RC2L [Zhang et al., 2022], respectively.
Results on Cityscapes. Experimental results on Cityscapes
val set are shown in Table 2. Our method improves the
supervised baseline by 3.44% and 3.21% under 1/4 and 1/8
partitions. We also outperform recent state-of-the-art ap-
proaches. In particular, DeS4 outperforms AEL [Hu et al.,
2021], RC2L [Zhang et al., 2022], and U2PL, with improve-
ments of 0.39%, 1.4%, and 1.4% under 1/4 partition, and
0.19%, 1.7%, and 1.37% under 1/8 partition.

4.3 Ablation Study
Investigating each component. We first investigate the im-
pact of three vital components of DeS4. The results are pro-
vided in Table 3. The first line is the baseline, which com-
bines MeanTeacher [Tarvainen and Valpola, 2017] and Cut-
MixSeg [French et al., 2020] based on the prototype clas-
sifier. It can be seen that adopting the decoupled training
strategy improves the baseline method by 2.21% and 3.12%.
We find that the shared prototype-based segmentation head
leads to slightly better performance under 1/4 VOC Aug,
but achieves an improvement of 0.43% under 1/8 partition.
Pixel re-weighting improves “Baseline + Decoupled Training
+ Shared segmentation head” significantly, obtaining the im-
provement of 1.14% and 0.74% under 1/4 and 1/8 partition
protocols, respectively. The studies demonstrated the effec-
tiveness of these three components.
Impact of balanced sampling strategy. In this subsection,
we study the effect of our proposed Multi-Entropy Sampling.
The quantity balance denotes that we randomly sample the
same number of pixel representations for each category, and
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Supervised 89.9 73.6 33.8 75.1 42.0 54.4 80.0 75.8 78.9 24.7 50.2 43.1 72.6 50.2 68.2 77.2 34.9 64.8 30.6 67.6 55.1
DARS [He et al., 2021] 91.3 82.6 37.4 81.9 50.5 58.6 88.5 82.9 82.8 25.5 56.3 49.1 75.3 64.6 73.6 79.7 42.2 64.0 37.1 73.4 57.9
USRN [Guan et al., 2022] 91.9 84.1 36.1 84.9 52.8 66.4 87.9 81.8 86.4 26.5 75.2 58.6 83.0 73.3 74.7 80.2 40.7 76.2 42.0 78.5 59.8
Ours 96.1 87.9 40.3 82.0 68.2 54.5 93.2 85.1 83.5 34.5 87.6 53.3 78.1 85.3 84.0 85.5 48.2 82.9 49.2 86.3 66.8

Table 5: Quantitative comparisons of DeS4 with other class-imbalance learning methods under VOC Aug 1/32 partition protocol. Red and
Blue indicate the best and the second-best result. The class name marked in “*” is the tailed-class.

Figure 3: Comparison of the class distribution among ground truth,
semi-supervised baseline, and our method on 1/2 VOC Aug unla-
beled dataset.

the confidence balance is based on the quantity balance while
class-wise representation sampling is driven by the softmax
distribution. As shown in Table 4, it can be seen that MES
achieves the best performance on both 1/4 VOC Aug and 1/8
VOC Aug sets. This suggests that the MES can generate a
more general class clustering center which leads to better per-
formance.

Analysis of the class imbalance problem. We present ex-
perimental results on the class imbalance problem. The class
distribution on 1/2 VOC Aug unlabeled dataset is shown in
Figure 3. To be fair, we also provide a per-class comparison
with USRN [Guan et al., 2022] and DARS [He et al., 2021] in
Table 5 under VOC Aug 1/32 partition protocol. Our method
outperforms the previous state-of-the-art on tailed-classes.

4.4 Visualization
Figure 4 shows visual results on PASCAL VOC 2012 Val
set [Everingham et al., 2015], and the model is trained on
1.4k/9k split. We present more visual results associated with
tail classes to demonstrate the superiority of our approach.
One can see that our DeS4 corrects more wrong predictions
compared to the supervised baseline and the semi-supervised
baseline. For example, some pixels are mistakenly classified
in the 4th row of (c) and (d). Both the supervised baseline
and the semi-supervised baseline have the mislabeling issue
in the 1st row and 5th row. Besides, our method has better
segmentation boundaries for foreground objects, which are
shown in the 2nd and 3rd rows.

(a)         (b)          (c)         (d)         (e)

Figure 4: Visual results on PASCAL VOC 2012 Val set. (a) original
image, (b) ground truth, (c) supervised baseline, (d) semi-supervised
baseline, (e) ours.

5 Conclusion
We developed a Decoupled Semi-Supervised Semantic Seg-
mentation (DeS4) framework. We proposed to decouple the
training of the encoder and decoder to achieve a balanced seg-
mentation decoder of the teacher model. Then, we proposed
a shared non-learnable prototype-based classifier to connect
and unify the category-wise embedding space of the teacher
model and student model. Furthermore, the Multi-Entropy
Sampling strategy is presented to update the shared proto-
type non-parametrically for a class-unbiased classifier of the
teacher model. Experimental results demonstrated that our
method achieved better performance than previous state-of-
the-art methods.
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