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Abstract
The performance of nighttime semantic segmen-
tation has been significantly improved thanks to
recent unsupervised methods. However, these
methods still suffer from complex domain gaps,
i.e., the challenging illumination gap and the in-
herent dataset gap. In this paper, we propose
the illumination-coupled domain adaptation frame-
work(ICDA) to effectively avoid the illumination
gap and mitigate the dataset gap by coupling day-
time and nighttime images as a whole with seman-
tic relevance. Specifically, we first design a new
composite enhancement method(CEM) that con-
siders not only illumination but also spatial con-
sistency to construct the source and target do-
main pairs, which provides the basic adaptation
unit for our ICDA. Next, to avoid the illumina-
tion gap, we devise the Deformable Attention Rel-
evance(DAR) module to capture the semantic rel-
evance inside each domain pair, which can cou-
ple the daytime and nighttime images at the fea-
ture level and adaptively guide the predictions
of nighttime images. Besides, to mitigate the
dataset gap and acquire domain-invariant semantic
relevance, we propose the Prototype-based Class
Alignment(PCA) module, which improves the us-
age of category information and performs fine-
grained alignment. Extensive experiments show
that our method reduces the complex domain gaps
and achieves state-of-the-art performance for night-
time semantic segmentation. Our code is available
at https://github.com/chenghaoDong666/ICDA.

1 Introduction
Nighttime semantic segmentation aims to label each pixel of
an image in the nighttime with a corresponding class, which
is as essential as daytime for safety-critical tasks such as au-
tonomous driving[Geiger et al., 2012] but more difficult due
to scarce labeled datasets and poor illumination. Limited by
the difficulty of building high-quality pixel-level annotations,
unsupervised domain adaptation(UDA) is widely adopted in
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Figure 1: The differences between our ICDA and existing methods.
(a) The existing methods perform adaptation from domain to domain
with a separate view by curriculum learning or spatial alignment.
(b) Our ICDA performs adaptation from domain pair to domain pair
with a united view by coupling daytime and nighttime images.

nighttime semantic segmentation to utilize the knowledge
from daytime images. However, simply adopting the general
UDA models[Tsai et al., 2018; Vu et al., 2019; Li et al., 2019;
Toldo et al., 2021] increases little performance due to the
complex domain gaps, i.e., the challenging illumination gap
and the inherent dataset gap. Compared to the dataset gap
which is usual in UDA tasks[Toldo et al., 2020], the illumi-
nation gap is generated by poor illumination in nighttime im-
ages and is more difficult and critical.

There have already been some works focusing on solving
the performance drop caused by the complex domain gaps as
Figure 1 (a). Some works[Dai and Van Gool, 2018; Sakaridis
et al., 2019; Sakaridis et al., 2020; Xu et al., 2021] adopt cur-
riculum learning which decomposes the complex gaps into
the dataset gap and several smaller illumination gaps, e.g.
day-twilight and twilight-night, to achieve smoother adap-
tation. Other works[Wu et al., 2021a; Wu et al., 2021b;
Bruggemann et al., 2023; Gao et al., 2022] utilize the pseudo
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supervision from the adaptation under the dataset gap to the
adaptation under the dataset and illumination gaps, which is
constructed by the spatial alignment, to provide additional su-
pervision information and facilitate the knowledge transfer.
However, these methods all treat the daytime and nighttime
images with a separate view when performing adaptation and
thus have to face knowledge transfer under difficult illumina-
tion gap, which limits their performance.

In this paper, we propose a novel illumination-coupled do-
main adaptation(ICDA) framework for nighttime semantic
segmentation, which treats the corresponding daytime and
nighttime images with a united view and couples them as a
whole through semantic relevance, thereby largely simplify-
ing the complex domain gaps, as Figure 1 (b). Specifically,
we first propose the Composite Enhance Method(CEM),
which maintains the consistency of illumination and spa-
tial differences during image enhancement to construct the
source and target domain pairs. Our CEM provides the ba-
sic adaptation unit since it ensures the illumination gap ex-
ists only inside each domain pair while the dataset gap ex-
ists only between the two domain pairs. Next, we propose
the Deformable Attention Relevance(DAR) module, which
adopts the cross-domain deformable attention to fully cap-
ture semantic relevance inside each domain pair. With it,
each domain pair is coupled at the feature level, and the pre-
dictions of nighttime images can be adaptively guided, thus
avoiding the illumination gap. Moreover, to mitigate the
dataset gap and facilitate the transfer of semantic relevance,
we propose the Prototype-based Class Alignment(PCA) mod-
ule, which performs fine-grained class alignment by control-
ling the distances between features and prototypes. Finally,
we evaluate our ICDA on Dark Zurich[Sakaridis et al., 2019]
and BDD100k-night[Yu et al., 2020; Sakaridis et al., 2020]
datasets. Our main contributions are summarized as follows:

1. The proposed CEM considers not only illumination but
also spatial consistency to construct the source and target do-
main pairs, which provides the basic adaptation unit.

2. The proposed DAR adopts cross-domain deformable at-
tention to capture the semantic relevance, which acts as the
link to coupling daytime and nighttime images and adaptively
guides the predictions of nighttime images, thus avoiding the
illumination gap.

3. The proposed PCA utilizes category information and
performs fine-grained class alignment which mitigates the
dataset gap and acquires the domain-invariant semantic rel-
evance between the two coupled domain pairs.

4. Extensive experiments verify that our ICDA achieves a
new state-of-the-art performance on nighttime benchmarks.

2 Related Work
2.1 Domain Adaptation for Semantic

Segmentation
The goal of domain adaptation for unsupervised seman-
tic segmentation is to transfer the knowledge learned from
the source to the target domain, despite the inconsistent
data distributions between them. Some works adopt adver-
sarial learning to diminish the distribution shift at image-
level[Hoffman et al., 2018; Yang and Soatto, 2020], feature

level[Pan et al., 2020; Huang et al., 2020] or output level[Tsai
et al., 2018; Vu et al., 2019]. However, these works are less
stable since they only align the distribution from the holistic
view while ignoring category information. Therefore, other
works[Luo et al., 2019; Wang et al., 2020; Ma et al., 2021;
Zhang et al., 2021; Jiang et al., 2022] perform the feature
alignment in a class-wise manner to achieve a more fine-
grained domain adaptation. Besides, a line of works[Wang
et al., 2021; Hoyer et al., 2022] adopt the self-training strat-
egy which assigns pseudo labels for unlabeled target data to
enrich the training data. Although these methods achieve
competitive performance, they are all designed for daytime
scenes, and their performance drops dramatically when faced
with the complex domain gaps of nighttime scenes. In this pa-
per, our ICDA adopts class-level alignment and self-training
strategy but focuses on the complex domain gaps between
daytime and nighttime images.

2.2 Nighttime Semantic Segmentation
An early idea to solve the nighttime semantic segmentation is
to adopt curriculum learning thus achieving smoother adap-
tation. For example, some works[Dai and Van Gool, 2018;
Sakaridis et al., 2019; Sakaridis et al., 2020; Xu et al., 2021]
leverage the intermediate twilight domain to decompose the
complex gaps into the dataset gap and several smaller illu-
mination gaps, e.g. day-twilight and twilight-night, thus re-
ducing the difficulty by gradual adaptation. Although the dif-
ficulty of each stage adaptation is reduced, the multi-stage
training needs additional data and is time-consuming. An-
other line of works instead utilize the pseudo supervision
from the adaptation under the dataset gap to the adapta-
tion under the dataset and illumination gaps, which is con-
structed by the static loss[Wu et al., 2021a; Wu et al., 2021b;
Gao et al., 2022] or spatial alignment[Wu et al., 2021b;
Bruggemann et al., 2023], to provide additional supervision
information and improve the performance. However, the per-
formance of spatial alignment is restricted by dynamic and
small static object regions. More importantly, the above two
types of methods all treat the daytime and nighttime images
with a separate view when performing the adaptation and thus
have to perform the knowledge transfer under the difficult il-
lumination gap. In this paper, our ICDA instead addresses the
complex domain gaps with a united view by coupling daytime
and nighttime images as a whole, which successfully avoids
the illumination gap and mitigates the dataset gap.

3 Method
In this section, we first introduce our ICDA framework which
largely simplifies the complex domain gaps in general. We
then introduce the CEM which constructs the source and tar-
get domain pairs. Subsequently, we introduce the DAR and
PCA which captures the semantic relevance and facilitates
the transfer of it in class-level separately. Finally, the overall
objective functions are presented.

3.1 Overview
The whole framework of our ICDA is depicted as Figure 2,
which consists of three parts: the CEM part, the input part,
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Figure 2: The overall framework of our ICDA.

and the training process part. The CEM part generates the
enhance domain DE from the source domain DS to consti-
tute the source domain pair, which is consistent with the tar-
get domain pair in illumination and spatial differences. In the
input part, our method takes the source domain pair and tar-
get domain pair as the input unit, which contains the source
domain DS , enhance domain DE and reference domain DR,
target domain DT , respectively. Only the source domain pair
has semantic labels. In the training process part, our ICDA
adopts the DAFormer[Hoyer et al., 2022] as the backbone,
which extracts and decodes the features by encoder E and
decoder D, and performs the online self-training with the
Mean teacher[Tarvainen and Valpola, 2017] strategy to gen-
erate convincing pseudo labels ỸT using teacher model Mθ

and improve the robustness of the model. Based on this,
the proposed DAR captures the semantic relevance features
FS→E /FR→T from domain pair features F[S,E]/F[R,T ] then
uses them to guide the nighttime features FE /FT and gets the
remedied features F̃E /F̃T . And the PCA module mitigates
the dataset gap and captures the domain-invariant semantic
relevance by aligning the remedied prediction maps P̃E and
P̃T at the class level. The CEM, DAR, and PCA will be in-
troduced in detail next.

3.2 Composite Enhancement Method
Apart from the illumination consistency focused on by the ex-
isting methods[Sakaridis et al., 2019; Sakaridis et al., 2020;
Xu et al., 2021; Wu et al., 2021a; Gao et al., 2022] in im-
age enhancement, we also take the spatial consistency into
account. Without spatial consistency, the semantic relevance
captured from the source domain pair is not robust to the spa-
tial differences when transferred to the target domain pair,
since the corresponding reference and target domain images
are captured from different viewpoints of the same scene.
Therefore, our CEM composes two types of enhancement:
illumination and spatial enhancement.
Illumination Enhancement. For illumination enhancement,
we adopt the CycleGAN[Zhu et al., 2017] which is widely
used for unsupervised image enhancement to generate the il-
lumination changes from daytime to nighttime.
Spatial Enhancement. For spatial enhancement, similar to
[Truong et al., 2021; Rocco et al., 2017], we construct spa-

tial changes by randomly sampling three transformations: ho-
mography, Thin-plate Spline(TPS), and affine-TPS. The ho-
mography and TPS generate perspective changes and smooth
deformation separately while the affine-TPS further extends
the TPS using affine transformations to bring larger scale, an-
gle, and shape changes. Note that different from [Truong et
al., 2021; Rocco et al., 2017], our spatial enhancement is not
only applied to images but also semantic labels so that the
source domain pair can perform supervised learning.

Benefiting from our CEM, the illumination and spatial dif-
ferences inside the source domain pair are consistent with
those inside the target domain pair. In this way, our CEM
ensures that the illumination gap exists only inside each do-
main pair while the dataset gap exists only between the two
domain pairs, which provides the basic adaptation unit and is
necessary to perform the DAR and PCA.

3.3 Deformable Attention Relevance
In this section, we propose the DAR module to capture the
semantic relevance inside each domain pair, which acts as
the link to couple daytime and nighttime images as a whole
and can adaptively guide the predictions of nighttime im-
ages. As shown in Figure 3, our DAR constructs a lightweight
transformer with its basic block ×2, which contains the local
window attention(LWA) and cross-domain deformable atten-
tion(CDDA). The LWA aggregates local features and is only
applied to nighttime features to achieve the trade-off between
performance and efficiency. And the CDDA captures cross-
domain semantic relevance against the illumination and spa-
tial differences inside each domain pair, which is the core of
our DAR and will be described in detail below.

Our CDDA mainly contains the deformed feature resam-
pling and the cross-domain multi-head attention. For the de-
formed feature resampling, we first get the fusion of the day-
time and nighttime features and then feed it to our offset gen-
erator. Different from DCN[Dai et al., 2017] that uses convo-
lution to predict local spatial offset, our offset generator con-
sists of a basic transformer block to acquire a global receptive
field and a depthwise separable convolution to downsample
the channels, thus getting the global spatial offset. We then
acquire the deformed sampling points by adding the uniform
grid of reference points similar to the DAT[Xia et al., 2022]
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Figure 3: The deformable attention relevance module DAR.

with our global spatial offset. With the deformed sampling
points, our CDDA gets the deformed feature by using bilin-
ear interpolation to resample the fused feature. The process
can be formulated as follows:

Ff = D(C(FE/T , FS/R)), Fd = ϕ(Ff , p+△p) (1)

where FE/T , FS/R ∈ RH×W×C denotes the nighttime and
daytime features, respectively. The fused feature Ff ∈
RH×W×C is acquired by the concatenation C and downsam-
ple convolution D. The △p, p ∈ RH×W×2 are the global
spatial offset and the reference points. With the guidance of p
and △p, the fused feature Ff is resampled towards important
regions using the bilinear interpolation ϕ and the deformed
feature Fd ∈ RH×W×C is acquired.

As for the cross-domain multi-head attention, different
from the traditional attention whose query, key, and value are
the same, our CDDA instead uses the nighttime feature as
the query and the deformed feature as the deformed key and
value in the multi-head attention as below:

q = FE/T ×Wq, k̃ = Fd ×Wk, ṽ = Fd ×Wv (2)

where Wq,Wk,Wv are projection matrices, and q, k̃, ṽ are
the query, deformed key, and deformed value. Hence, the
features of different domains can interact with each other and
we finally get the semantic relevance feature FS→E/FR→T ∈
RH×W×C , which couples the daytime and nighttime images
at the feature level.

To sum up, compared to general attention, our CDDA
has two main advantages: deformable and cross-domain.
(1)Deformable. Our CDDA first extends the DCN with
global spatial offset and feature resampling to model the ge-
ometric transformation caused by viewpoint shift and adap-
tively aggregate the features under the guidance of the im-
portant regions inside each domain pair in a global range.
(2)Cross-domain. Based on the deformed feature which is
acquired by resampling the fusion of daytime and nighttime
features, our CDDA then adopts cross-domain attention to
connect the nighttime feature with the deformed feature, thus
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Figure 4: Illustration of the global and class alignment effects of
DAR and PCA.

getting cross-domain semantic relevance. By transferring the
learned semantic relevance from the source domain pair to
the target domain pair against the dataset gap, the difficult il-
lumination gap can be avoided since the prediction of target
images can be guided by the semantic relevance without the
need for additional adaptation.

As for the reason that semantic relevance can remedy the
prediction of nighttime images, we use Figure 4 to clarify it.
According to the illumination conditions and prediction dif-
ficulty, the source, reference, enhance and target domain fea-
tures FS , FR, FE , FT lie in the discriminant space from left
to right as Figure 4 (a). Benefiting from the semantic rele-
vance, the nighttime features FE/FT can refer to the daytime
features FS/FR to remedy itself, and the remedied feature
distributions are globally aligned in the discriminant space as
Figure 4 (b), which improves the model’s performance.

3.4 Prototype-Based Class Alignment
With the two semantic-coupled domain pairs, the only ob-
stacle to knowledge transfer is the inherent dataset gap. To
further mitigate the dataset gap and capture domain-invariant
semantic relevance, we propose the PCA to make use of the
category information and perform the adaptation in a fine-
grained way. As depicted in Figure 2, we first build the pro-
totypes P using the exponential moving average which can
be calculated as:

P̂c,t =

∑H
i=1

∑W
j=1 P̃

t,i,j
E 1[Y t,i,j

E = c]∑H
i=1

∑W
j=1 1[Y

t,i,j
E = c]

Pc,t+1 = ξPc,t + (1− ξ)P̂c,t

(3)

where ξ ∈ [0, 1] is a momentum coefficient, P̃ t,i,j
E , Y t,i,j

E de-
note the remedied predictions and the labels of enhance do-
main images respectively, t is the current iteration, i, j denote
the index of the height H and width W , c is the index of cat-
egory number C, 1 is the indicator function.
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After getting the prototypes P , we perform class alignment
not only between the prototypes P and the remedied enhance
domain predictions P̃E , but also between the prototypes P
and the remedied target domain predictions P̃T . The former
facilitates the correctness of semantic relevance in the source
domain pair, and the latter facilitates its transfer at the class
level. We adopt the pixel contrastive loss proposed in [Jiang
et al., 2022] to perform the class-centered distribution align-
ment for adaptation as below:

Lcal =−
H∑
i=1

W∑
j=1

C∑
c=1

O(P̃ i,j,c
E ) log Si,j,c

E→E

−
H∑
i=1

W∑
j=1

C∑
c=1

O(P̃ i,j,c
T ) log Si,j,c

T→E

(4)

where O denotes one-hot encoding. Si,j,c
E→E and Si,j,c

T→E denote
the similarity of features P̃ i,j,c

E , P̃ i,j,c
T with prototypes Pc as

below:

Si,j,c
x→E =

exp
(
Pc · P̃ i,j

x /τ
)

∑C
c=1 exp

(
Pc · P̃ i,j

x /τ
) (5)

where τ is the temperature.
With the Lcal, our PCA forces the features to be close to

the prototypes belonging to the same category while staying
away from the prototypes belonging to a different category.
Through the backpropagation, the remedied features of en-
hance and target domain images are further aligned at the
class level as shown in Figure 4 (c) and (d). And the domain-
invariant semantic relevance can be captured, which can pro-
vide better guidance for the prediction of target domain im-
ages, thus further mitigating the dataset gap.

3.5 Objective Functions
The overall loss of our ICDA can be formulated as follows:

L = L[S,E]
seg + LẼ

seg + Lcal + Lstl (6)

The L[S,E]
seg and LẼ

seg are both the cross-entropy losses, where

L[S,E]
seg extract the semantic knowledge of the source domain

pair, and the LẼ
seg ensures the correctness of the remedied en-

hance domain features. The class alignment loss Lcal is as
mentioned before, and the self-training loss Lstl is the same
as the backbone DAFormer which exploits unlabeled target
data via pseudo labels. With the help of these losses, our
ICDA efficiently transfers the knowledge from source to tar-
get domain pair by coupling the daytime and nighttime im-
ages to avoid the illumination gap and performing the class-
level alignment to mitigate the dataset gap, thus improving
the performance of nighttime semantic segmentation.

4 Experiments
4.1 Datasets
CityScapes[Cordts et al., 2016] is a large dataset of urban
street scenes with pixel-level annotations of 19 semantic cat-
egories. Both the images and labels of it are at a resolution of

2,048 × 1,024. During the training, we only use its training
set which contains 2,975 images as the source domain.
Dark Zurich[Sakaridis et al., 2019] is the mainly used unsu-
pervised nighttime semantic segmentation dataset with a res-
olution of 1,920 × 1,080. During the training process, we
only use the coarsely aligned 2,416 day-night image pairs
to be the target domain pair, which are all unlabeled. The
dataset also contains another 201 annotated nighttime images,
including 50 images for validation and 151 for testing. Since
the test set is not publicly available, we submit the segmenta-
tion results to the online evaluation website to get the perfor-
mance of the test set. And we show the qualitative compari-
son and perform the ablation study on the validation set.
BDD100k-night[Sakaridis et al., 2020; Yu et al., 2020]. To
verify the generalization of our model, we directly use our
model trained from CityScapes to Dark Zurich-N to predict
the test set of BDD100k-night without additional training.
The BDD100k-night contains 87 images with a resolution of
1,280 × 720 and has the same semantic labels as CityScapes.

4.2 Implementation
Network. We adopt the DAFormer[Hoyer et al., 2022] as our
backbone, whose encoder is MiT-B5[Xie et al., 2021] pre-
trained on the ImageNet-1k. When backpropagating through
the DAR, the parameters of the encoder and decoder are
frozen to avoid overfitting. For the self-training, we use the
teacher model to produce the pseudo label with the momen-
tum of EMA set to 0.999 and the threshold of the pseudo label
set to 0.968. At the inference stage, our ICDA only takes the
nighttime images as input and adopts the encoder E and de-
coder D to output the final prediction results, improving the
prediction accuracy without additional inference time.
Training details. For all experiments, we use the mean
of category-wise intersection-over-union (mIoU) as the eval-
uation metric. The whole framework is implemented us-
ing PyTorch on a single RTX 3080-Ti GPU. We use the
AdamW[Loshchilov and Hutter, 2019] as the optimizer with
a weight decay of 0.01. The base learning rate is 6×10−5 for
the encoder, DAR and 6 × 10−4 for the decoder. We use the
linear learning rate warmup strategy with twarm = 1.5k and
ttotal = 40k. After warmup iterations, the learning rate is de-
creased using the poly policy with a power of 0.9. The batch
size is set to 2 for each domain. Following refign[Brugge-
mann et al., 2023], we apply random cropping with a crop
size of 512 for the source domain pair, and a crop size of 960
first, then 512 for the target domain pair.

4.3 Comparison with State-of-the-art Methods
Comparison on Dark Zurich. We compare our ICDA with
four types of models including the baseline models trained
on CityScapes only, the general adaptation models trained
from CityScapes to Dark Zurich-N, and the state-of-the-art
models based on CNN and transformer which are customized
for nighttime scenes on the Dark Zurich test set. For cus-
tomized models based on CNN, they all adopt one of Re-
fineNet, Deeplab-v2, or PSPNet as their backbone which uses
the ResNet101[He et al., 2016], while all the transformer-
based models use DAFormer as the backbone.
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DeepLab-v2[Chen et al., 2017] 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8
RefineNet[Lin et al., 2017] 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5
PSPNet[Zhao et al., 2017] 78.2 19.0 51.2 15.5 10.6 30.3 28.9 22.0 56.7 13.3 20.8 38.2 21.8 52.1 1.6 0.0 53.2 23.2 10.7 28.8

AdaptSegNet[Tsai et al., 2018] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4
ADVENT[Vu et al., 2019] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7
BDL[Li et al., 2019] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8
UDAclustering[Toldo et al., 2021] 85.5 40.9 59.2 31.2 19.5 24.0 29.9 29.4 30.6 11.2 18.4 39.1 49.7 61.5 34.9 0.0 25.8 23.2 19.0 33.3

DMAda[Dai and Van Gool, 2018] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1
GCMA[Sakaridis et al., 2019] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0
MGCDA[Sakaridis et al., 2020] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
CDAda[Xu et al., 2021] 91.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0
DANNet[Wu et al., 2021a] 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2
DANIA[Wu et al., 2021b] 91.5 62.7 73.9 39.9 25.7 36.5 35.7 36.2 71.4 35.3 82.2 48.0 44.9 73.7 11.3 0.1 64.3 36.7 22.7 47.0
CCDistill[Gao et al., 2022] 89.6 58.1 70.6 36.6 22.5 33.0 27.0 30.5 68.3 33.0 80.9 42.3 40.1 69.4 58.1 0.1 72.6 47.7 21.3 47.5

DAFormer[Hoyer et al., 2022] 92.0 63.0 67.2 28.9 13.1 44.0 42.0 42.3 70.7 28.2 83.6 51.1 39.1 76.4 31.7 0.0 78.3 43.9 26.5 48.5
SePiCo[Xie et al., 2022] 93.2 68.1 73.7 32.8 16.3 54.6 49.5 48.1 74.2 31.0 86.3 57.9 50.9 82.4 52.2 1.3 83.8 43.9 29.8 54.2
Refign[Bruggemann et al., 2023] 91.8 65.0 80.9 37.9 25.8 56.2 45.2 51.0 78.7 31.0 88.9 58.8 52.9 77.8 51.8 6.1 90.8 40.2 37.1 56.2

ICDA(ours) 93.3 66.5 76.7 38.9 26.9 56.3 54.7 52.8 71.0 35.8 84.2 58.8 51.7 84.0 56.3 20.6 91.7 51.1 35.2 58.2

Table 1: Comparison with the state-of-the-art approaches on the Dark Zurich-test set.

Input Image DANNet Refign Ours Ground Truth

Figure 5: The qualitative comparison between our approach and some existing state-of-the-art methods on the Dark Zurich-val set.

As shown in Table 1, our method achieves the best
performance(58.2%) among all of the methods, with around
2% increase compared to the previous highest score(56.2%)
acquired by Refign[Bruggemann et al., 2023]. For each cat-
egory, our method is optimal in 11 classes, suboptimal in 4
classes, and the rest 4 classes also have competitive perfor-
mances, which shows that our ICDA successfully simplifies
the complex domain gaps and facilitates the knowledge trans-
fer. Moreover, we can observe that our method achieves the
best results not only in large static classes such as road, fence,
and terrain but also in small static and dynamic classes such
as pole, traffic light, and car. This is because our method uses
cross-domain semantic relevance to adaptively guide the final
predictions, so it treats each class of the 19 classes equally,
unlike methods based on spatial alignment[Wu et al., 2021b;
Bruggemann et al., 2023] which are more suitable for large
static classes than the small static and dynamic classes. We

also observe that our method significantly outperforms other
methods on classes with relatively few occurrences, such as
bus and train, which once more shows that our model makes
better use of knowledge from the whole domain pair to per-
form the global alignment and the learned prototypes help to
remedy the corresponding features to perform the class align-
ment. These observations can also be verified by the qualita-
tive results on the Dark Zurich-val set, as shown in Figure 5.
Our ICDA predicts better not only in the large static area such
as sky, tree, and sidewalk (red box) but also in small static and
dynamic areas such as car, traffic sign, and pole (blue box).
Comparison on BDD100k-night. We also compare our
ICDA with other methods on BDD100k-night to verify the
generalization. Each model is trained from CityScapes to
Dark Zurich-N and directly used to predict the test set of
BDD100k-night. As shown in Table 2, our ICDA generalizes
best on the BDD100k-night test set and achieves the best per-
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Method mIoU

Deeplab-v2[Chen et al., 2017] 17.3
RefineNet[Lin et al., 2017] 20.4
PSPNet[Zhao et al., 2017] -

AdaptSegNet[Tsai et al., 2018] 22.0
ADVENT[Vu et al., 2019] 22.6
BDL[Li et al., 2019] 22.8
UDAclustering[Toldo et al., 2021] 20.0

DMAda[Dai and Van Gool, 2018] 28.3
GCMA[Sakaridis et al., 2019] 33.2
MGCDA[Sakaridis et al., 2020] 34.9
CDAda[Xu et al., 2021] 33.8
DANNet[Wu et al., 2021a] 28.0
DANIA[Wu et al., 2021b] 27.0
CCDistill[Gao et al., 2022] 33.0

DAFormer[Hoyer et al., 2022] 34.2
SePiCo[Xie et al., 2022] 36.9
Refign[Bruggemann et al., 2023] 35.2

ICDA(ours) 38.9

Table 2: Comparison with the state-of-the-art methods and baseline
models on the BDD100k-night test set.

formance of 38.9%, with an increase of 2%, which shows that
our ICDA successfully learns to perceive nighttime scenes by
transferring knowledge from the daytime scenes and is robust
to nighttime scenes of different conditions.

4.4 Ablation Study
In this section, we perform extensive experiments on several
model variants to verify the effectiveness of each proposed
component of our ICDA. We measure the performance of
each ablated version by evaluating it on the Dark Zurich-val
set, and the results are summarized in Table 3.

We first evaluate the backbone DAFormer and get the
mIoU of 31.3%. Subsequently, we use illumination enhance-
ment(IE) adopted by the existing methods[Sakaridis et al.,
2019; Sakaridis et al., 2020] to generate the stylized nighttime
domain and transfer the knowledge from it to the target do-
main. The performance improves with a gain of 8.2% which
shows its effectiveness as proved by the previous methods.
Based on this, we then add the spatial enhancement(SE) to
form our CEM(no DAFormer with single SE since it is mean-
ingless without domain pairs). The performance improves by
2.5%, which verifies SE helps to capture the geometric trans-
formation and improves the robustness. The performance is
further improved when we use the DAR to couple the day-
time and nighttime images even if without the PCA to transfer
the semantic relevance at the class level. This is because our
DAR can remedy the predictions of nighttime images thanks
to the semantic relevance, which can be seen as the global
alignment. However, when performing the class-level align-
ment between the stylized nighttime domain and target do-
main without the DAR, the performance is reduced to 40.7%.
We hypothesize this is because the target domain features are
overfitting to the stylized nighttime domain features without
the regularization provided by the global alignment of the
DAR. Finally, when all proposed modules are applied, the
performance reaches the highest value of 44.6%(higher than
43.0% of Refign[Bruggemann et al., 2023]). By performing

Method Componets mIoUIE SE DAR PCA
DAFormer[Hoyer et al., 2022] 31.3
DAFormer with ✓ 39.5
DAFormer with ✓ ✓ 42.0
DAFormer with ✓ ✓ ✓ 43.4
DAFormer with ✓ ✓ ✓ 40.7
Refign[Bruggemann et al., 2023] 43.0
Ours ✓ ✓ ✓ ✓ 44.6

Table 3: Ablation studies on Dark Zurich-val set.

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝒘𝒘/𝒐𝒐 𝑷𝑷𝑰𝑰𝑰𝑰𝒘𝒘/𝒐𝒐 𝑰𝑰𝑰𝑰𝑫𝑫

Figure 6: t-SNE analysis of our ICDA and without DAR and PCA.

the class-level alignment between the coupled domain pairs,
our ICDA successfully mitigates the dataset gap and captures
the domain-invariant semantic relevance.

4.5 Feature Analysis
To better develop intuition, we draw t-SNE visualizations of
the learned feature representations for our ICDA and with-
out the DAR or PCA in Figure 6. With this in mind, we first
randomly select an image from the target domain and then
map its high-dimensional latent feature representations to a
2D space. From the t-SNE visualizations, we can observe
that with our DAR and PCA, (1) the feature representations
of the points which belong to the same class are closer to
each other. (2) the feature representations are easier to sepa-
rate in the feature space since the margin between the feature
representations of the points which belong to the different
classes is larger and fewer feature representations are isolated
by others. These two observations further verify the global
and class-level alignment function of our DAR and PCA.

5 Conclusions
In this paper, we propose an illumination-coupled domain
adaptation framework, which treats the daytime and night-
time with a united view, to address the complex domain gaps
of nighttime semantic segmentation. We first use the CEM
to construct the source and target domain pairs as the basic
adaptation unit. Then we use the DAR to capture the semantic
relevance which couples each domain pair at the feature level
and adaptively guides the predictions of nighttime images,
thus avoiding the illumination gap. To mitigate the dataset
gap, we propose the PCA to make use of the category infor-
mation and perform the fine-grained alignment. Experimental
results show our ICDA can largely simplify the complex do-
main gaps of nighttime semantic segmentation, thus achiev-
ing state-of-the-art performance on commonly used bench-
mark datasets. In future work, we plan to extend the idea of
our ICDA to the general adverse environment.
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