
Abstract 
Semi-supervised deep facial expression recognition 
(SS-DFER) has recently attracted rising research in-
terest due to its more practical setting of abundant 
unlabeled data. However, there are two main prob-
lems unconsidered in current SS-DFER methods: 1) 
label ambiguity, i.e., given labels mismatch with fa-
cial expressions; 2) inefficient utilization of unla-
beled data with low-confidence. In this paper, we 
propose a novel SS-DFER method, including a La-
bel DIsambiguation module and a PrOgressive Neg-
ative Learning module, namely LION, to simultane-
ously address both problems. Specifically, the label 
disambiguation module operates on labeled data, in-
cluding data with accurate labels (clear data) and 
ambiguous labels (ambiguous data). It first uses 
clear data to calculate prototypes for all the expres-
sion classes, and then re-assign a candidate label set 
to all the ambiguous data. Based on the prototypes 
and the candidate label set, the ambiguous data can 
be relabeled more accurately. As for unlabeled data 
with low-confidence, the progressive negative 
learning module is developed to iteratively mine 
more complete complementary labels, which can 
guide the model to reduce the association between 
data and corresponding complementary labels. Ex-
periments on three challenging datasets show that 
our method significantly outperforms the current 
state-of-the-art approaches in SS-DFER and sur-
passes fully-supervised baselines. Code will be 
available at https://github.com/NUM-7/LION. 

1 Introduction 
Facial expression is one of the most common displays of hu-
man emotion, which plays an important role in interpersonal 
communications. In the past few decades, with the emergence 
of large-scale well-labeled facial datasets, e.g., AffectNet 
[Mollahosseini et al., 2017] and RAF-DB [Li et al., 2017], 
many automatic facial expression recognition (FER) ap-
proaches based on fully supervised deep learning have been 

proposed and made significant progress in distinguishing fa-
cial expressions, including surprise, fear, disgust, happiness, 
sadness, anger and neutral. However, in the real world, due 
to the expensive and tedious annotation process, it is ex-
tremely difficult to collect a large volume of high-quality la-
bels for a dataset. 

Recently, semi-supervised deep facial expression recogni-
tion (SS-DFER) methods have been developed to make use 
of the unlabeled data. For example, Ada-CM [Li et al., 2022] 
applied the common semi-supervised learning (SSL) tech-
niques, e.g., pseudo labeling and consistency regularization, 
to the FER task and learned an adaptive confidence margin to 
fully leverage unlabeled data. Nonetheless, we argue that 
there are still two main problems lacking consideration in the 
current SS-DFER methods, which impedes further perfor-
mance improvement. The first one is the label ambiguity 
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Figure 1: Clear and Ambiguous examples from RAF-DB dataset, 
including surprise (SU), fear (FE), disgust (DI), happiness (HA), 
sadness (SA), anger (AN) and neutral (NE). All the examples are re-
assessed by 35 volunteers and the confidence scores are presented 
in yellow bar. The given labels and latent truths are provided above 
the images. The sets below images are the candidate label sets con-
structed by our method.  
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problem in the labeled set. It means that the given labels may 
mismatch with the facial expressions due to (і) data variations 
in illumination, resolution, occlusion, and pose, (іі) ambigu-
ity in expressions, (ііі) crowd sourcing, and (iv) low-quality 
annotations obtained on a search engine. We present some 
clear and ambiguous examples from RAF-DB dataset in Fig.1. 
All the images are re-assessed by 35 volunteers. Taking the 
image annotated with “Surprise” (with red border) for exam-
ple, the confidence score is only 0.142, and most volunteers 
think it should be “Fear” instead, which might be the poten-
tially real label (latent truth). Training with these ambiguous 
data may result in difficulty of convergence and inevitable 
performance degradation. 

The second problem of the current SS-DFER methods con-
cerns the inefficient utilization of unlabeled data. As men-
tioned above, existing SS-DFER methods typically adopt 
strategies such as pseudo-labeling and consistency regulari-
zation to leverage the unlabeled data. To ensure that reliable 
information is mined from unlabeled data, these methods usu-
ally keep the unlabeled data with high confidence scores pre-
dicted by the models, but disregard those data with uncertain 
predictions. Such naïve operations only explore the value of 
a fraction of easy unlabeled data, wasting the rich information 
contained in low-confidence samples.  
 In this paper, we propose a novel SS-DFER approach with 
a Label DIsambiguation module and a PrOgressive Negative 
Learning module, namely LION, to simultaneously address 
the above two problems, i.e., label ambiguity and inefficient 
utilization of unlabeled data. For the former, the label disam-
biguation module is designed to screen out those ambigu-
ously labeled data and re-assign them with more accurate la-
bels. Specifically, if the given label disagrees with the class 
prediction by the classifier, we define it as an ambiguous la-
bel, otherwise a clear label. All the data with clear labels, or 
clear data, are utilized to derive class prototypes of the seven 
facial expressions, which guide the model to correct the am-
biguous labels. For the ambiguous data, considering the sub-
tle differences among different facial expressions, unlike pre-
vious methods that only assign one label to facial images, we 
maintain a candidate label set with a collection of candidate 
classes to store potentially real labels (as shown the sets be-
low the facial images in Fig. 1) and update the original labels 
based on the candidate label set and class prototypes. For the 
latter problem, we first split the unlabeled data into a reliable 
set with high-confidence and an unreliable set with low-con-
fidence. All the reliable data will also involve the calculation 
of class prototypes. As for the unreliable data, since it is dif-
ficult to give accurate class predictions directly, we consider 
negative learning [Kim et al., 2019; Duan et al., 2022] to ex-
cavate knowledge from complementary labels which indicate 
the classes the image does not belong to. Concretely, we take 
an iterative manner to progressively store all the class predic-
tions with the lowest probability, i.e., complementary labels, 
in a memory bank. Meanwhile, the model is also trained with 
the complementary labels during iteration, so as to exclude 
those impossible classes for the unreliable data. In addition, 
we design a negative consistency loss (NC-Loss) to constrain 
the complementary labels of different augmented views of 

the same unlabeled data to be consistent, intending to reduce 
the variations of complementary labels. By the above manner, 
all the unlabeled data can be fully used. Overall, our contri-
butions can be summarized as follows： 

• We propose a novel SS-DFER method LION to reduce 
the impact of ambiguous labels by exploring the poten-
tially real labels in a candidate label set. To the best of 
our knowledge, this is the first work which considers the 
label ambiguity problem in SS-DFER.  

• A progressive negative learning module is also pre-
sented in LION to draw the knowledge from the com-
plementary labels, thus fully leveraging the underesti-
mated unlabeled data with low-confidence. In addition, 
we innovatively design a NC-Loss to further improve 
the performance of the model.  

• Extensive experiments on three challenging datasets 
show the effectiveness of our proposed model. Particu-
larly, it sets new records of recognition accuracy with 
67.83% on RAF-DB and 45.61% on SFEW, which is 
much higher than the second-best SOTA method [Li et 
al., 2022] by 5.47% and 3.73%. 

2 Related Work 

2.1   Facial Expression Recognition 

FER helps computers to understand the emotional state of hu-
mans, which is meaningful for intelligent human-computer 
interaction. Previous works mainly experimented on the la-
boratory-generated dataset, including CK+ [Patrick et al., 
2010], Oulu-Casia [Zhao et al., 2011], and achieved inspiring 
recognition accuracy. However, in the wild, it is difficult to 
guarantee that all images are of high quality. Therefore, more 
and more works [Wang et al., 2020; She et al., 2021; Xue et 
al., 2021; Yang et al., 2023] have extended the research in-
terest to the in-the-wild datasets.  

A troublesome problem in the in-the-wild datasets is the 
ambiguous images, that is, the given label does not match 
with the facial expression due to various factors. To address 
this problem, [Zeng et al., 2018] introduced multiple training 
stages to solve inconsistency of annotations. [Chen et al., 
2020] explored label distribution through constructing auxil-
iary label space graphs. [Wang et al., 2020] focused on min-
ing confidence weight and the latent truth of each sample for 
smaller impact of ambiguous data. Leading performance has 
been achieved by [She et al., 2021] which tried to find latent 
distribution in the label space and estimate the pairwise un-
certainty. 

Despite the achievements in the in-the-wild FER task, most 
of the current methods are fully supervised and require a large 
scale of well-labeled dataset, which is time-cost and labor-
intensive. [Florea et al., 2020] made the first attempt to in-
vestigate semi-supervised deep FER (SS-DFER) and pro-
posed an extension of MixMatch [Berthelot et al., 2019]. [Li 
et al., 2022] proposed an adaptive thresholding approach to 
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generate reliable pseudo-labels for high-confidence unla-
beled samples. However, the SS-DFER is still mostly an un-
explored research field. This work aims to tackle two main 
challenges in SS-DFER, including label ambiguity and inef-
ficient utilization of unlabeled data with low-confidence. 

2.2   Semi-Supervised Learning 

Semi-supervised learning (SSL) appropriately frees up the 
stringent requirement of fully supervised learning for com-
pletely labeled dataset, while at the same time guaranteeing 
the performance of the model. Existing SSL methods can be 
divided into the following five main approaches: graph-based 
methods [Marino et al., 2016; Wang et al., 2020], generative 
model-based methods [Donahue et al., 2016; Denton et al., 
2016], methods using consistent regularization [Sajjadi et al., 
2016; Xie et al., 2020], methods using pseudo labeling [Rizve 
et al., 2021; Pham et al., 2021] and hybrid methods [Sohn et 
al., 2020; Zhang et al., 2021; Xu et al., 2021].  

Among them, the hybrid methods generally achieve state-
of-the-art performance on datasets such as CIFAR-10, 
CIFAR-100 [Krizhevsky et al., 2009], and ImageNet [Deng 
et al., 2009]. For example, [Xie et al., 2020] and [Sohn et al., 
2020] set fixed thresholds to obtain pseudo labels for weakly 
augmented unlabeled images, and used them to supervise the 
prediction of the strongly augmented counterpart. [Zhang et 
al., 2021] and [Xu et al., 2021] further explored the applica-
tion of dynamic thresholding in semi-supervised tasks. How-
ever, direct application of these SSL approaches to the SS-
DFER task is unsatisfactory due to the interference of ambig-
uous data and the underutilization of unlabeled data. In our 

work, we solve both the problems by proposing a disambig-
uation module and a progressive negative learning module. 

3 Method  
Our proposed LION aims to tackle the FER task in a semi-
supervised setting. Specifically, a label disambiguation mod-
ule is devised to correct the ambiguous labels in the labeled 
set, while a progressive negative learning module is designed 
to make full use of unlabeled data, especially for those low-
confidence data. In this section, we first illustrate our problem 
formulation and show the overview of our method in Sec. 3.1. 
Then, the label disambiguation module of our method is in-
troduced in Sec. 3.2. Furthermore, we describe how the pro-
gressive negative learning module works in Sec. 3.3. Finally, 
we display the whole training objective in Sec. 3.4. 

3.1   Overview 

In the semi-supervised setting, we are provided with a labeled 
set 𝐷𝐿 = {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑀  and an unlabeled set 𝐷𝑈 = {𝑥𝑖}𝑖=𝑀+1
𝑀+𝑁 , 

where 𝑥𝑖 is the input image, 𝑦𝑖  is corresponding one-hot label 
with 𝐶 classes, 𝑀 and 𝑁 are the number of data in 𝐷𝐿  and 𝐷𝑈, 
respectively. Notably, not all the labels {𝑦𝑖} are correctly as-
signed for their corresponding {𝑥𝑖}. Our purpose is to train a 
robust model to relabel the ambiguous labels and distinguish 
facial expressions accurately by fully leveraging both a large 
number of unlabeled images and few labeled images. Fig.2 
gives an overview of our model. For a labeled image, we 
firstly apply weak augmentation (WA) to it and send it to a 

 
Figure 2: Illustration of our LION model. The labeled images are divided into ambiguous and clear sets. Clear images are used to compute 
prototypes of all expression classes, and also to train the model by the 𝐿𝑆 loss. Ambiguous images are relabeled by the label disambiguation 
module. The unlabeled images are split into reliable and unreliable sets. For the reliable images, they also contribute to the computation of 
prototypes, and optimize the model by the 𝐿𝑅𝑒  loss. As for the unreliable images, we propose a progressive negative learning module to 
mine their complementary labels which are utilized to supervise the model by the 𝐿𝑁𝐿 loss. Additionally, a negative consistency loss 𝐿𝑁𝐶 
is imposed between the weakly and strongly augmented images.  
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feature extractor to obtain the feature vector 𝑞, followed by a 
softmax function to derive its prediction probability  . To 
remedy the ambiguous labels, the label disambiguation mod-
ule first screens out the clear and ambiguous images sepa-
rately according to the maximum probability in  , i.e., 
       . The clear images are used to compute the proto-
types of all the expressions, guiding the relabeling process. 
All the ambiguous images will discard the original labels and 
be assigned with a candidate label set with multiple candidate 
classes, then approach the latent truth via the candidate labels 
and the prototypes. For an unlabeled image, both WA and 
strong augmentation (SA) are applied, and the weight-sharing 
feature extractor is employed to obtain the feature vectors 𝑞 , 
𝑞 , and their prediction probabilities    and   , respectively. 
Then, based on the maximum probability in   , i.e., 
       , we divide the unlabeled images into two subsets. 
Specifically, if         is greater than a certain threshold, 
we define it as a reliable sample and the pseudo label 𝑦̃ pre-
dicted from WA version will be used to supervise the SA ver-
sion via the cross-entropy loss. Otherwise, we define it as an 
unreliable sample, and our proposed progressive negative 
learning strategy will be used to unearth the complementary 
labels which lead the learning of unreliable samples. Mean-
while, a negative consistency loss (NC-Loss) is proposed to 
enforce the consistency between the complementary labels of 
WA and SA versions, ensuring the accuracy and robustness 
of complementary labels. We will elaborate on key technolo-
gies in the following sub-sections. 

3.2   Label Disambiguation Module 

For a labeled image, we first generate a weakly-augmented 
version and obtain its prediction probability   via the feature 
extractor and softmax function. If the maximum predicted 
probability         exceeds a certain threshold   and the 
class of        is the same with the given label 𝑦, we define 
it as a clear image. Otherwise, it will be defined as an ambig-
uous one: 

𝑥𝑖 ∈ {
cle   i   e, if      ≥    nd          = 𝑦

  bi uous i   e,          othe wise
, (1)      

where   is a positive constant.  

For the clear images, we use the given label 𝑦 to supervise 
the predicted probability  :  

𝐿𝑆 =
1

𝑁𝑐𝑙
∑ 𝐶𝐸  , 𝑦 

𝑁𝑐𝑙
1 ,                       (2) 

where 𝑁 𝑙  represents the number of clear images and 𝐶𝐸 ∙  
denotes the standard cross-entropy. In addition, since clear 
images have high-confidence labels, we also employ their 
feature vectors 𝑞 to calculate prototypes {  } corresponding 
to each class 𝑐 ∈  1, … , 𝐶 . These prototypes can be viewed 
as anchors of each class, which can guide the subsequent re-
labeling process. Particularly, the prototypes are updated in 
an Exponential Moving Average (EMA) fashion: 
  = No   lize(𝜙   +  1 − 𝜙 𝑞), if 𝑐 =          , (3) 

where     is the prototype of last iteration, 𝜙 is set to 0.99 
following [Wang et al., 2022].  

As for each ambiguous image, we assign a candidate label 
set 𝑦  (i.e., a C-dimension vector) to it. Different from the one-
hot label 𝑦, 𝑦  is a multi-hot vector with multiple classes set-
ting to 1, any of which could potentially be the unique real 
label. We derive the candidate label set 𝑦  as follows:  

𝑦  = {
1 if 𝑐 =          

1 else if   ≥ 𝜇
0 othe wise

,                           (4) 

where 𝑦   is the 𝑐-th class in 𝑦 ,    is the probability score cor-
responding to the class 𝑐, 𝜇 is a threshold. In this manner, all 
possible candidate classes that could become the real label 
are selected to construct the candidate label set. To further 
approximate the real label, we make the label of each candi-
date class soft by assigning a weight    to  𝑦  , and propose 
a moving-average style strategy to update the weight: 

  = 𝜙   +  1 − 𝜙 𝑑 𝑞,     ,               (5) 
where    is initialized by the predicted probability of class 𝑐, 
    is the weight of last iteration, 𝑑 ∙  is the cosine similarity 
between the feature representation 𝑞 and the prototype corre-
sponding to the class   . When the weight of one class in the 
candidate label set exceeds the threshold   , the image will be 
relabeled as the most convinced class. 

𝑦′ =           𝑦   , if         𝑦   ≥   .      (6) 
Then it can be viewed as a clear image and optimize the 
model like Eq. 2. 

 
Figure 3: Diagram of progressive negative learning. “Cls” represents the class list (shown as a, b, c, d). “Pro” represents the predicted 
probability score corresponding to each class. “CLB” denotes the complementary label bank. “𝑦̅” stores the selected classes for the com-
plementary label. In each iteration, we choose the class corresponding to the smallest probability value less than 𝛿 (marked with red), and 
set its 𝑦̅ to 1. Then, the “𝑦̅” of CLB forms the complementary label to optimize the model by Eq. 9 and Eq. 10. In the next iteration, new 
probability scores of all classes (excluding the previous chosen ones) are predicted, and the similar operations are conducted until the 
remaining probability scores are all higher than 𝛿. 
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3.3   Progressive Negative Learning 

To fully leverage all unlabeled samples, we design a progres-
sive negative learning module to explore the knowledge con-
tained in them, especially for those low-confidence unlabeled 
samples, so as to further improve the performance of the 
model.  

For each unlabeled sample, we transform it into both WA 
and SA versions. Then, we classify the unlabeled sample into 
reliable set or unreliable set according to its maximum prob-
ability of WA version, i.e.,        . If         is larger 
than a threshold γ, the unlabeled sample is of high confidence 
for the model, thus belonging to the reliable set. Otherwise, 
the unlabeled sample with low confidence belongs to the un-
reliable set [Li et al., 2022]. We formulate this as follows: 

𝑥𝑖 ∈ {
 eli ble set,       if         ≥   

un eli ble set, othe wise
 ,         (7) 

The reliable samples have two applications. First, since 
model trusts the predictions of them with high confidence, we 
also utilize their feature vectors {𝑞 } to update the class pro-
totypes by replacing 𝑞 in Eq. 3 with 𝑞 , thereby generating 
more robust prototypes. Second, all the reliable samples will 
be used to train the model like FixMatch [Sohn et al., 2020]. 
Concretely, we pick up the class with the maximum probabil-
ity as the pseudo label 𝑦̃ =           , then harness the 
pseudo label to supervise the prediction of the SA version, as 
follows:  

𝐿𝑅𝑒 =
1

𝑁𝑟𝑒
∑ 𝐶𝐸   , 𝑦̃ 

𝑁𝑟𝑒
1  ,                   (8) 

where 𝑁𝑟𝑒 denotes the number of reliable unlabeled samples. 
As for the unreliable samples, although it is difficult to pre-

dict which expression category they belong to, there should 
be some categories with a sufficiently low probability score. 
Hence, it is easy for the model to know the classes these un-
reliable samples do not belong to, which are called comple-
mentary labels. To get as comprehensive a complementary 
label as possible, we maintain a complementary label bank 
(CLB) and update it progressively, as shown in Fig. 3. Spe-
cifically, given the prediction    of an unreliable sample, we 
find its minimum probability score  in    . If  in     is 
smaller than a threshold 𝛿, we add its corresponding class 
into the CLB, and accordingly get the complementary label 𝑦̅ 
as follows:  

𝑦̅ = {
1, if   in     ≤ 𝛿  nd  𝑐 =     in     

0, othe wise
,  (9) 

where   is a positive constant to ensure that there is suffi-
ciently strong confidence to assign 1s in the complementary 
label. Afterwards, the complementary label 𝑦̅ is used to train 
the model via negative learning as follows: 

𝐿𝑁𝐿 = −∑  𝑦̅  1 −   
   ∈𝐶 ,                    (10) 

where   
  represents the predicted probability of class 𝑐  in 

  .  
The above process will be performed iteratively until the 

remaining probabilities are all higher than the certain thresh-

old 𝛿. It is worth noting that the classes in previous comple-
mentary labels will not involve the probability prediction in 
the next iterations. 

In addition, to further reduce the variations of complemen-
tary labels and enhance the robustness of the model, we pro-
pose a negative consistency loss (NC-Loss) between the WA 
and SA versions: 

𝐿𝑁𝐶 = −∑  𝑦̅ 
 ∈𝐶 lo   1 −   

  ,              (11) 
where 𝑦̅  refers to the complementary label obtained from 
the WA version and    is the prediction of the SA version. 
For better understanding, we summarize the whole training 
process in Algrithm 1. 

3.4   Overall Objective Function 

Algorithm 1 The training process of LION 
Input: Labeled set  𝐷𝐿 = {𝑥𝑖 , 𝑦𝑖}𝑖=1

𝑀 , unlabeled set 𝐷𝑈 =
{𝑥𝑖}𝑖=𝑀+1

𝑀+𝑁 . 
Parameters: The maximum number of epochs 𝐸, the thresh-
olds  , 𝜇,  , and 𝛿. 
Output: Updated LION model.  
/* Training*/ 
1:for 𝑒 = 1: 𝐸 do 

/*For labeled set*/ 
2:  for 𝑖 = 1:𝑀 do 
3:  Weakly augment 𝑥𝑖  and obtain its feature vector 𝑞   

and prediction probability   of 𝑥𝑖.  
4:  if       ≥    nd          = 𝑦 then 
5:   Compute 𝐿𝑆 by Eq. 2. 
6:   Compute prototypes   by Eq. 3. 
7:  else 
8:  Assign a candidate label set 𝑦  by Eq. 4. 
9:     Soften the candidate labels by weights   and upd- 

ate them by Eq. 5. 
10:  Relabel 𝑥𝑖 with 𝑦′ by Eq. 6. 
11: end if 
12:  end for 
 /*For unlabeled set*/ 
13:  for 𝑖 = 𝑀 + 1: 𝑀 + 𝑁 do 
14:  Weakly and strongly augment 𝑥𝑖 and obtain its  fea-

ture vectors 𝑞  and 𝑞  as well as its prediction prob-
abilities    and   .  

15:  if        ≥   then 
16:   Update prototypes   by Eq. 3. 
17:   Compute 𝐿𝑅𝑒  by Eq. 8. 
18:  else 
19:   while  in    ≤ 𝛿 do 
20:    Obtain the complementary label 𝑦̅ by Eq.9. 
21:    Compute 𝐿𝑁𝐿 by Eq. 10. 
22:    Re-compute 𝑞 , 𝑞 ,    ,   . 
23:   end while 
24:   Compute 𝐿𝑁𝐶  by Eq. 11. 
25:  end if 
26:  end for 
27:end for 
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As mentioned above, there are four losses to optimize the pa-
rameters of our LION model: 1) 𝐿𝑆 loss on labeled clear data；
2) 𝐿𝑅𝑒  loss on unlabeled reliable data; 3) 𝐿𝑁𝐿 loss on the WA 
version of unlabeled unreliable data; 4) 𝐿𝑁𝐶  loss between the 
WA and SA versions of unlabeled unreliable data. Our LION 
model is optimized in an end-to-end process. To sum up, the 
total loss is formulated as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑆 + 𝜆1𝐿𝑅𝑒 + 𝜆 𝐿𝑁𝐿 + 𝜆 𝐿𝑁𝐶,     (12) 
where 𝜆1, 𝜆 , and 𝜆  are hyper-parameters to balance these 
terms. 

4 Experiments  

4.1   Datasets and Metrics 

Datasets. We verify the effectiveness of our LION model on 
three datasets: RAF-DB [Li et al., 2017], AffectNet [Mol-
lahosseini et al., 2017], and SFEW [Dhall et al., 2011]. RAF-
DB is constructed by 30,000 facial images which are anno-
tated by 40 experts. In the experiment, we select fear, surprise, 
sadness, happiness, disgust, anger and neutral as classifica-
tion categories. The sizes of the training and test sets are 
12,271 and 3,068, respectively. AffectNet has 420,000 face 
images containing 8 manually annotated expression labels. 
We choose the same seven categories as RAF-DB in experi-
ment and use 240,000 images for training and 3,500 images 
for validation. SFEW contains static frames extracted from 
movies including 958 training images and 436 test images. 
To simulate the semi-supervised setting, we randomly dis-
card a portion of labels at different ratios. 
Performance Metrics. We conduct experiments using dif-
ferent random seeds and calculate the mean accuracy and 
standard deviation on the test set to evaluate the performance 
of the method. 

4.2   Implementation Details 

By default, ResNet-18 is used as backbone network, which is 
pre-trained on MS-Celeb-1M face recognition dataset [Guo 

et al., 2016]. Facial images are aligned and resized to 
224×224 by MTCNN [Zhang et al., 2016]. RandomCrop and 
RandomHorizontalFlip are employed as weak augmentation. 
RandAugment [Cubuk et al., 2020] is used as strong augmen-
tation following [Li et al., 2022]. The whole network is 
trained for 20 epochs with the Adam optimizer. The initial 
learning rate is set to 5 × 10− . The batch size is 16. The 
above setting keeps consistent with that of all the compared 
methods for fairness. As for the hyperparameters, we set 
 =0.80,  =0.83, 𝛿=0.05,𝜇=0.3 and the trade-off parameters 
𝜆1, 𝜆 , 𝜆  are set to 0.85, 0.45, 0.06, respectively. 

4.3   Comparison With the State-of-the-Art  

To test the performance of LION, we compare it with several 
state-of-the-art methods, including Pseudo-Labeling [Lee et 
al., 2013], MixMatch [Berthelot et al., 2019], UDA [Xie et 
al., 2020], Margin-Mix [Florea et al., 2020], ReMixMatch 
[Berthelot et al.,2020], FixMatch [Sohn et al., 2020], and 
Ada-CM [Li et al., 2022], on all the three datasets with dif-
ferent ratios of labeled data. All these methods are highly rep-
resentative and influential in the field of semi-supervised im-
age classification, and we have tailored them to adapt our 
semi-supervised deep FER (SS-DFER) task. Particularly, we 
regard our model trained using only limited labeled data as 
the baseline. And we apply DLP-CNN [Li et al., 2019] on 
RAF-DB and SFEW, RAN [Wang et al., 2020] on AffectNet 
as fully-supervised baseline. 

Table 1 shows the comparison results. From the table, it is 
clear that all the semi-supervised methods achieve better per-
formance than baseline due to the utilization of unlabeled 
data. Compared with the second-best method Ada-CM, our 
method outperforms it overwhelmingly under all ratios of la-
beled data on all datasets. Even when only 100 images are 
labeled in RAF-DB and SFEW, our method still leads the per-
formance by 5.47% and 3.73% accuracy, showing the pow-
erful capability of our method to make use of unlabeled data. 
Furthermore, compared with the fully supervised result, our 

Method 
RAF-DB SFEW AffectNet 

100labels  400labels 2000labels 4000labels 100labels 400labels 2000labels 10000labels 

Baseline 52.43±2.24 67.75±0.95 78.91±0.43 81.90±0.48 33.76±1.84 43.85±2.83 47.52±0.75 53.18±0.68 

Pseudo-Labeling [Lee et al., 2013] 54.96±4.24 69.99±1.81 79.18±0.27 82.88±0.49 34.27±1.67 45.27±1.32 48.78±0.67 53.82±1.29 

MixMatch [Berthelot et al., 2019] 54.57±4.16 73.14±1.40 79.63±0.91 83.57±0.49 34.13±2.58 44.91±1.87 49.63±0.49 53.49±0.47 

UDA [Xie et al., 2020] 58.15±1.54 72.39±1.64 81.16±0.54 83.56±0.82 39.22±2.30 48.90±1.56 50.42±0.45 56.49±0.27 

ReMixMatch [Berthelot et al.,2020] 58.83±2.34 73.34±1.82 79.66±0.66 83.51±0.18 35.69±2.73 48.39±0.71 50.38±0.63 55.81±0.34 

MarginMix [Florea et al., 2020] 58.91±1.78 73.31±1.64 80.22±0.76 83.47±0.28 38.69±1.93 49.21±0.92 50.58±0.42 56.41±0.28 

FixMatch [Sohn et al., 2020] 60.67±2.25 73.36±1.59 81.27±0.27 83.31±0.33 38.90±1.90 50.73±0.45 50.79±0.37 56.50±0.43 

Ada-CM [Li et al., 2022] 62.36±1.10 74.44±1.53 82.05±0.22 84.42±0.49 41.88±2.12 52.43±0.67 51.22±0.29 57.42±0.43 

LION 67.83±0.64 76.43±1.12 82.39±0.13 84.81±0.16 45.61±0.32 54.18±0.52 52.71±0.21 59.11±0.38 

Fully Supervised 84.13 51.05 52.97 

Table 1: Performance comparison (%) with the state-of-the-art methods on RAF-DB, SFEW and AffectNet. The best results are in bold 
font and the second-best results are underlined. 
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method can still beat the baseline with a large margin, i.e., 
0.68% on RAF-DB, 3.13% on SFEW, 6.14% on AffectNet 
when 4000, 400, 10000 labeled samples are used. The above 
results show that our model makes fuller use of the unlabeled 
data and reduces the negative impact caused by the ambigu-
ous data. 

4.4   Ablation Study 

In this section, we carry out ablation study to verify the con-
tribution of components and investigate the optimal values of 
hyper-parameters in LION. 
Effectiveness of Components in LION. There are two im-
portant components in our LION model: 1) the label disam-
biguation module (LD for short) and 2) the progressive neg-
ative learning module. We intend to ablate them from the 
whole module to evaluate their contribution. Particularly, we 
attribute the contribution of the progressive negative learning 
module to the 𝐿𝑁𝐿 loss and the 𝐿𝑁𝐶  loss. We construct a base-
line by removing the LD module, the 𝐿𝑁𝐿 loss and the 𝐿𝑁𝐶  
loss. The experiment is performed on RAF-DB and SFEW 
with 100 labels and 400 labels, respectively. From Table 2, 
we can observe that the LD module significantly improves 
the performance (e.g., +2.98% on RAF-DB and +3.93% on 
SFEW), which signifies its capability in reducing the impact 
of ambiguous labels and optimizing the decision boundary. 
Moreover, when 𝐿𝑁𝐿 or 𝐿𝑁𝐶  is incorporated, the performance 
further rises by 3.87% on RAF-DB or 0.79% on SFEW. Both 
losses are employed simultaneously together with the LD 
module will bring greater performance gains. This is because 
both the modules are actually conducive to each other. Spe-
cifically, the progressive negative learning module enables 
the model to learn more knowledge from unlabeled data, 
which can encourage the model to give more reliable predic-
tions. These reliable predictions provide more accurate infor-
mation to the prototypes, helping the LD module correct 
more ambiguous labels. Correspondingly, more clear data 
will also optimize the decision boundary of the model, thus 
promoting the progressive negative learning module to work 
more effectively. In summary, all these results fully demon-
strate the effectiveness of the proposed components. 
Evaluation of the Parameter 𝝉 . The parameter   is the 
threshold to determine if the data is ambiguous or not. We 
investigate its effect under values in [0.6,0.9]. Figure 4(a) 
shows that the performance is positively correlated with the 

increasing   from 0.6 to 0.8. When   exceeds 0.8, the perfor-
mance degrades. This is because a large or small   will guide 
the model with either wrong ambiguous data or clear data. 
Accordingly, we set   as 0.8. 
Evaluation of the Parameter 𝜸. The parameter   is used to 
classify the unlabeled data as reliable or unreliable ones. We 
investigate its effect under values in [0.77,0.89]. From Figure 
4(b), we can see that the best result is achieved when  =0.83. 
When   is too small, more data with wrong pseudo labels are 
considered reliable and the updates of prototypes will be af-
fected. 

4.5   Visualization 

In this section, we show some ambiguous examples relabeled 
by our method. In Figure 5, the blue represents original am-
biguous label and the red represents corresponding corrected 
label by our LION model. We can observe that the corrected 
labels by our model are more in tune with human intuition. 
For example, the girl in the third column obviously has sig-
nals like a tight face and a closed mouth, which are barely 
possible to be “surprise” from the perspective of human. On 
the contrary, the corrected label “fear” is more suitable for 
these signals. 

5 Conclusion 
In this paper, we propose a novel SS-DFER method LION 
which includes a label disambiguation module and a progres-
sive negative learning module. The label disambiguation 
module corrects the given ambiguous labels based on the can-
didate label set and prototypes. Progressive negative learning 
module mines complementary labels more completely during 
iteration. In addition, a negative consistency loss (NC-Loss) 
is proposed for a more robust model by reducing the varia-
tions of complementary labels. Extensive experiments con-
ducted on three challenging datasets show that LION 
achieves state-of-the-art results and surpasses fully-super-
vised baselines. 

 
Figure 5: Visualization of the relabeling results by our LION. Blue: 
original ambiguous label. Red: corrected label by LION. 

 

 
Figure 4: Evaluation of parameters (a)   and (b)   on RAF-DB. 
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0.6 0.65 0.7 0.75 0.8 0.85 0.9

τ

65.5

66

66.5

67

67.5

68

0.77 0.79 0.81 0.83 0.85 0.87 0.89

γ

LD 𝐿𝑁𝐿 𝐿𝑁𝐶 RAF-DB SFEW 
100labels 400labels 

   58.21±2.21 47.89±1.56 
✓   61.19±1.23 51.82±1.12 
✓ ✓  65.06±0.21 53.66±0.43 
✓  ✓ 61.86±0.32 52.61±0.35 
✓ ✓ ✓ 67.83±0.64 54.18±0.52 

Table 2: Evaluation (%) of LD, 𝐿𝑁𝐿, and 𝐿𝑁𝐶  on RAF-DB and 
SFEW. 
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