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Abstract
This article proposes a novel spectral domain based
solution to the challenging polyp segmentation.
The main contribution is based on an interesting
finding of the significant existence of the middle
frequency sub-band during the CNN process. Con-
sequently, a Sub-Band based Attention (SBA) mod-
ule is proposed, which uniformly adopts either the
high or middle sub-bands of the encoder features to
boost the decoder features and thus concretely im-
prove the feature discrimination. A strong encoder
supplying informative sub-bands is also very im-
portant, while we highly value the local-and-global
information enriched CNN features. Therefore, a
Transformer Attended Convolution (TAC) module
as the main encoder block is introduced. It takes
the Transformer features to boost the CNN features
with stronger long-range object contexts. The com-
bination of SBA and TAC leads to a novel polyp
segmentation framework, SBA-Net. It adopts TAC
to effectively obtain encoded features which also
input to SBA, so that efficient sub-bands based at-
tention maps can be generated for progressively
decoding the bottleneck features. Consequently,
SBA-Net can achieve the robust polyp segmenta-
tion, as the experimental results demonstrate.

1 Introduction
Polyp segmentation of colonoscopy images is very importan-
t for the treatment of colorectal cancer which is one of the
severe diseases of the world [Sawicki et al., 2021]. Howev-
er, polyps usually look like the surrounding tissues and al-
so have various shapes and sometimes blurry boundaries. It
is very difficult to recognize them, even though there have
been impressive results in the literature [Tomar et al., 2022a;
Tomar et al., 2022b; Guo et al., 2022; Guo et al., 2023;
Li et al., 2022].

One recent trend attracts us is the spectral domain fea-
ture boosting methods [Huang et al., 2022; Suvorov et al.,
2022]. Based on the global spectrum analysis, they sup-
plement important frequency distributions to spatial signals
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Figure 1: Example of polyp segmentation results from two state-
of-the-arts methods, TGANet [Tomar et al., 2022a] and SSFormer-
L [Wang et al., 2022a], and ours (SBA-Net). Note: These two polyp-
s have quite different sizes and shapes and similar appearances to the
background.

for high performances. Existing ideas often take the com-
plete frequency band [Huang et al., 2022; Liu et al., 2021;
He et al., 2022], high or low frequencies [Zhou et al., 2022;
Liu et al., 2022]), or special frequency channels [Xu et al.,
2020; Huang et al., 2021] for further feature engineering.

However, the polyp images call for a new spectral domain
based method. They are often low contrasted with low reso-
lutions and almost flatten textures that the polyps are insignif-
icant from their surroundings (Figure 1). These appearances
make them lack of enough high-frequency local details and
significant low-frequency global polyp contexts.

Even worse, our experiment (Figure 2) show that the lim-
ited high and low frequencies will be further reduced after
recursive CNN convolutions and, therefore, those frequen-
cies may mess up the polyps and background tissues when
doing final decoding. But, interestingly, the magnitude ra-
tio of middle sub-band frequencies between the high and the
low ones to the whole spectrum gets higher and higher after
passing the convolution stages. As global data, these strong
sub-band frequencies contain the rich global information on
polyps. Therefore, this finding let us think of the middle sub-
band for effective feature boosting.

Furthermore, the high frequencies of the features from the
first network stage include salient object details and thus they
can also be taken as a sub-band to boost features. Conse-
quently, a unified module called the Sub-Band based Atten-
tion (SBA) module is proposed, so that the middle sub-band
and the initial high one from encoding features can all be uti-
lized to enhance the features.
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Apparently, the encoder supplying features to SBA for sub-
bands is very important for robust recognition [Fang et al.,
2021]. One of the popular ways is to combine CNN and
Transformer [Shamshad et al., 2022] together, as either a se-
rial branch [Chen et al., 2021; Ye et al., 2022] or two parallel
branches [Li et al., 2022; Lin et al., 2022].

We highly value the CNN based encoder because it can
discover rich local and global information through layer-by-
layer convolution. But Transformer has been demonstrated
to be very good at extracting the long-range information or
global object contexts by the self-attention mechanism. Ap-
parently, if taking Transformer to attend the CNN features,
the global object contexts can be augmented while the local
details can still be kept for efficient recognition. Therefore,
we argue that Transformer can act as an attention tool to en-
hance CNN features for better polyp recognition.

Consequently, a new SBA based polyp segmentation
framework SBA-Net is proposed, where a novel Transformed
attended CNN encoder is proposed to obtain strong features
for the SBA based decoder. A new module called Trans-
former Attended Convolution (TAC) module is introduced as
the main building block of the encoder to boost the CNN fea-
tures with Transformer ones. The features from this encoder
are input to SBAs for extracting their concrete sub-bands to
attend the progressive decoding of the bottleneck features.
Experiments including the comparisons with the state-of-the-
arts methods on public colonoscopy image datasets show the
effectiveness of the proposed method.

In summary, the contributions of our work are as follows:

• A spectral based feature augmentation module SBA
which builds on the finding on the significant existence
of the middle frequency sub-bands and uniformly treats
the high and middle sub-bands from encoder features as
attention maps to boost feature discrimination.

• A Transformer attended CNN module TAC which takes
the Transformer features as attention map to boost the C-
NN features and, therefore, enhances the rich CNN fea-
tures with stronger long-range object contexts.

• A polyp image segmentation method SBA-Net which
takes TAC as the main block to supply boosted CNN
features and empower SBA with concrete sub-bands for
progressive decoding and final robust segmentation.

2 Related Work
2.1 Spectral Domain Based Deep Methods
Spectral domain based deep methods have been proved to
be effective [Frank et al., 2020; Xu et al., 2020]. For ex-
ample, Xu et al. [Xu et al., 2020] showed the high accura-
cies from learning in the frequency domain with static chan-
nel selection. More specific methods with frequency based
ideas are also proposed, either by Fourier transform [Huang
et al., 2022; Liu et al., 2021; Xu et al., 2020], discrete con-
sine transform (DCT) [Magid et al., 2021; Huang et al., 2021;
Frank et al., 2020] or discrete wavelet transform (DWT) [Ji
et al., 2021; He et al., 2022].

Some methods [Huang et al., 2022; Frank et al., 2020;
Ji et al., 2021; Liu et al., 2021; He et al., 2022; Huang et al.,

2021] take the complete frequency band as the source for fur-
ther processing. For example, FECNet [Huang et al., 2022]
takes a Spatial-Frequency Interaction (SFI) block for the am-
plitude sub-network and the phase sub-network respectively
as complementary learning; Ji et al. [Ji et al., 2021] targeted
at the frequency inconsistency of super-resolution and pro-
posed the frequency density comparator and the wavelet dis-
criminator as guidance for consistency.

Some researchers recognized the difference between dif-
ferent frequencies and built their methods based on the high
and low frequencies [Yin et al., 2019; Magid et al., 2021;
Zhou et al., 2022; Liu et al., 2022]. For example, Magid et
al. [Magid et al., 2021] noticed that super-resolution methods
often bias toward low-frequency signals and thus proposed a
dynamic high-pass filtering (HPF) module to preserve high-
frequency signals. An additional matrix multi-spectral chan-
nel attention (MMCA) module is also introduced to predict
the attention maps in frequency domain.

More refined frequency division based methods are also
proposed [Xu et al., 2020; Huang et al., 2021]. Xu et al. [Xu
et al., 2020] introduced a learning based frequency channel s-
election strategy which can achieve higher accuracy than spa-
tial methods. Their argument is that some frequency channels
are less informative than others for a specific task. Frequency
Space Domain Randomization (FSDR) [Huang et al., 2021]
further separates frequency components into domain variant
and invariant ones for more generalized models.

As far as we know, few researchers apply spectral domain
based methods to medical image segmentation [Zhou et al.,
2022; Liu et al., 2021]. Zhou et al. [Zhou et al., 2022] in-
troduced a random amplitude mixup (RAM) module incor-
porating low-level frequency from different source images to
synthesize new images as data augmentation. FedDG [Liu et
al., 2021] uses federated learning and incorporates a continu-
ous frequency space interpolation mechanism to transmit the
distribution information across clients.

2.2 Deep Learning Based Polyp Segmentation
Early deep polyp segmentation methods [Brandao et al.,
2017] use fully convolutional networks (FCN), while, later
on, U-Net [Ronneberger et al., 2015] based methods become
popular, such as PolypSeg [Zhong et al., 2020] and SCR-
Net [Wu et al., 2021]. Multiple parallel branches are often
adopted for robust features, either from the decoder [Tomar
et al., 2021] or intermediate stages [Yin et al., 2022]. Bound-
aries and contours are often adopted as constraints explicit-
ly [Du et al., 2022] or implicitly [Nguyen et al., 2021].

Recently, Transformer based ideas turn popular [Shamshad
et al., 2022]. Some take pure Transformers for feature ab-
straction [Wang et al., 2022a; Dong et al., 2021] or gener-
ation [Li et al., 2021]. Many studies combine both Trans-
former and CNN, either serially by taking Transformer as an
intermediate layer for better performance [Ye et al., 2022;
Chen et al., 2021], or in parallel before fusing them togeth-
er [Li et al., 2022; Zhang et al., 2021; Lin et al., 2022]. For
example, TransFuse [Zhang et al., 2021] uses both in parallel
to capture global dependencies and low-level details.

Various feature boosting methods have been pro-
posed [Kim et al., 2021; Nguyen et al., 2021; Tomar et al.,
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(a) (b) (c) (d) (e)

Figure 2: Demonstration of frequency spectra and informative sub-bands in the CNN stages. The row shown in blue crossing the foreground
polyp of the image in (a) is extracted for this demo, where the typical double-3×3-convolution based CNN stage is applied twice. (a): Image;
(b) GT; and (c), (d) and (e) are the frequency distributions and their corresponding histograms on their top right before CNN convolutions,
after one CNN stage, and after two CNN stages, respectively. Note that the frequency histograms of (c), (d) or (e) are generated according to
three adjacent frequency sub-bands, i.e., low (l), middle (m) and high (h) sub-bands.

2022a; Tomar et al., 2022b]. For example, the PAA mod-
ule [Kim et al., 2021] takes several axial attentions for both
horizontal and vertical axes so that global dependencies and
local representation can be obtained; TGANet [Tomar et al.,
2022a] adopts text guided attention to learn different features
according to the polyp number and size.

There are also other approaches except the general
encoder-decoder style, such as Generative Adversarial Net-
works (GAN) based methods [Ahmed and Ali, 2020] and
Mask R-CNN based methods [Kang and Gwak, 2019]. Nanni
et al. [Nanni et al., 2021] leveraged on differences of various
classifiers by an ensemble of CNNs with different methods.

3 Sub-Band Based Attention
3.1 Why Sub-Band?
Our common view is that the high frequencies include the lo-
cal object details while the low ones depict the global object
contexts. However, the high frequencies will gradually de-
crease to be less significant during the CNN stages; and (2)
the low frequencies are not so important for polyps because
those from the polyps and their surroundings are difficult to
distinguish due to their similar looks.

Experiment on the spectrum (Figure 2) further shows that
the high and low frequencies all become less and less sig-
nificant after several CNN stages. Here, the frequency dis-
tributions along the 250th row in blue across the foreground
polyp of the 384 × 288 image (Figure 2a) are collected. The
spectra are obtained from the typical CNN stages for the im-
age [Ronneberger et al., 2015], with each stage consisting of
two 3× 3 convolutions. This experiment shows that more in-
formative frequency band different from the high-frequency
or low-frequency band is expected.

Further checking these spectra show that the middle fre-
quencies between the high and the low ones seem almost un-
changed. It means their overall contributions to the whole sig-
nal band increase during the CNN stages. This inspires us to
further check their collective distributions through histograms
(Figure 2), where three bins according to the low (frequencies
between 0 and 30), middle (frequencies between 31 and 353)
and high sub-bands (frequencies between 354 and 384) are
computed for each spectrum.

We can see that the middle frequency band always goes up
after the CNN stages and reaches 0.546 proportionately in the
histogram of Figure 2e after two CNN stages, even though it
is only 0.242 proportionately in the histogram of Figure 2c.
This interesting finding justifies our intuition that the middle
sub-band turns more and more important for subsequent CNN
stages.

Considering this middle sub-band globally depicts the
scene, we believe the rich information from this increasingly-
important sub-band should be adopted to boost the features
for robust recognition. Note that the detail preserved high
frequencies are also very useful for object discovery and can
also be considered as a sub-band. Therefore, we unify the ef-
fective sub-bands from the middle and high-frequency ones
and propose the sub-band base attention method, SBA, for
utilizing both the high and middle frequencies.

3.2 The Structure of SBA
Figure 3 shows the structure of SBA which mainly relies on
two Gaussian filters to obtain the sub-band frequencies.

Figure 3: The structure of SBA. Two Gaussian filters are applied
to FFT converted features of the encoder ones fE to obtain the sub-
band via subtraction. This sub-band is then converted back to spatial
features which act as attention map to boost the target features fDi .

SBA works as follows. The input encoder features fE is
first transformed by fast Fourier transform (FFT) and then
processed by two Gaussian filters to obtain two frequency
spectra with different high-frequency bounds. Then these
spectra subtract each other to obtain the sub-band which is
restored to spatial features by the inverse fast Fourier trans-
form (IFFT). These spatial features then act as attention map

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

738



Figure 4: The pipeline of SBA-Net. It takes three TACs as encoder block to boost CNN features with PVT defined Transformer features and
uses three SBAs to gradually decode bottleneck features attended by the sub-bands of the TAC boosted features. First two SBA S1 and S2

take the middle sub-bands of corresponding encoding features with the last SBA S3 using the high sub-band of the coarsest encoding features.
Note the numbers denote the zooming ratios of the original image size.

to augment the upsampled features of target features fDi
and

finally obtain the sub-band attended ones fDi+1 . The process
can be formulated as:

fDi+1 = I((Ku −Kd)⊗ F(fE))⊗U(fDi) (1)

where: F, I and U represent the FFT, IFFT and upsampling
operations respectively; Ku and Kd are the two Gaussian fil-
ters; and ⊗ denotes the Hadamard product. Experimentally,
the mean values of the two Gaussian Filters are all set to the
mean width and height of the image, while their standard de-
viations are set to 7 Hertz and 10 Hertz, respectively.

SBA generally computes the middle sub-band. For the
high-frequency sub-band, the real highest frequencies are un-
stable according to our experiment, perhaps due to the affec-
tion of noise. Therefore, in practice, this sub-band can be ob-
tained by SBA with only one Gaussian filter having the high-
er up-frequency bound, i.e., Ku. More details on the possible
ways to compute the high sub-band in SBA can be found in
the supplementary document.

4 SBA-Net: Application of SBA to Polyp
Image Segmentation

Intuitively, SBA can be directly deployed into existing meth-
ods by replacing their decoders or individual decoding blocks
with SBA. Experiments in Section 6.4 demonstrate the possi-
bility of such a design.

However, we want a more efficient framework with SBA.
Specifically, we need a powerful encoder, considering that the
robust encoder features can provide SBA with concrete sub-
bands for augmentation. We are interested in the locally-and-
globally rich CNN features but also impressed with Trans-
former’s strong long-range discovery ability. Consequently, a
Transformer boosted CNN encoder is proposed, which main-
ly consists of three TAC modules using PVT [Wang et al.,
2022b] defined lower-stage Transformers as attention maps
to progressively augment the CNN features. Combining TAC
and SBA leads to the new framework SBA-Net (Figure 4)
whose decoder consists of three SBA modules for progres-
sively decoding the bottleneck features under the enhance-
ment of the sub-bands from the encoder features.

Note that the first stage of the encoder is a convolution lay-
er because it is already rich with the high-frequency object
details. This layer is obtained directly from 1/2 downsam-
pled input images by two 3 × 3 convolutions and max pool-
ing. Also note that the Transformer and CNN features input
to each TAC are the same sizes as the correspondingly double
downsampled PVT features (Figure 4).

Now let’s discuss the new Transformer attended CNN en-
coder, especially its core block TAC.

4.1 Transformer Attended CNN Encoder
Transformer and CNN are typically combined in serial [Ye et
al., 2022; Chen et al., 2021] (Figure 5(b)) or parallel [Li et
al., 2022; Zhang et al., 2021; Lin et al., 2022] (Figure 5(c)).
For the serial encoder, CNN and Transformer blocks are sub-
sequently applied to obtain the encoded features, while, for
the parallel encoder, both CNN and Transformer are indepen-
dently applied before fuse their features. Both types of meth-
ods demonstrate impressive results by the fused features.

Figure 5: Different types of CNN and Transformer combined en-
coders.

However, CNN features contain rich global and local infor-
mation which are all important for the global contexts and lo-
cal details of polyps, while Transformer features focus more
on the long-range information. Therefore, CNN can be taken
as the main informative contributor and we opt to consider
Transformer as supplementary of the long-range distribution
to CNN. Consequently, the Transformer features can be tak-
en as attention maps to enhance the CNN features with more
global object contexts while maximally keeping the existing
information of CNN features (Figure 5(a)). Then, a Trans-
former attended CNN encoder can be obtained.
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As shown in Figure 4, the core part to fulfill this decoder
is TAC (Figure 6) which uses the Transformer features as the
attention maps to augment the convolution features. Here,
the input features fC is convolved by 3× 3 (C3×3) two times
and then max pooled (M) to obtain the convolution features,
which are then attended by the corresponding Transformer
features fT from PVT to obtain augmented features f ′

E ,

f ′
E = M(C3×3(C3×3(fC)))⊗ fT (2)

Figure 6: The structure of TAC. The input convoluted features fC

are first convoluted again, then augmented by Transformer features
fT and further non-linearly processed as the output features fE .

Then, f ′
E are non-linearly enhanced by 1× 1 convolutions

(C1×1), ReLU activation (R) and residual connection to ob-
tain the final boosted convolution features fE which are also
the input features fC of the next TAC in SBA-Net. Formally,
fE is computed as

fE = f ′
E +C1×1(R(C1×1(f

′
E))) (3)

With TAC, SBA-Net can obtain strong encoder features for
SBA to do further boosting and discriminative recognition.

5 Losses
Three losses are considered: The binary cross entropy loss
(BCE) [Murphy, 2012], Intersection over Union loss (IoU)
[Rahman and Wang, 2016] and inverse-transformation loss
(IF) [Borse et al., 2021]. BCE is most widely used based on
pixel-level constraints and IoU optimizes the global structure
rather than individual pixels. We take their weighted form-
s [Dong et al., 2021] to estimate. IF estimates the boundary
loss with an inverse-transformation network.

Assuming the prediction and ground truth are P and P̂ re-
spectively, the complete loss function can be formulated as

L = Lw
BCE(P, P̂ ) + Lw

IoU (P, P̂ ) + γLIF (P, P̂ ), (4)

where: Lw
BCE , Lw

IoU and LIF are the weighted BCE and IoU
losses, and the IF loss, respectively; and γ is the weight which
is set to 0.5 experimentally.

6 Experiments
This section reports some experimental results. For the com-
plete codes and more experimental settings, results and abla-
tion studies, please check the supplementary document.

SBA-Net is implemented in PyTorch with the CUDA li-
brary, a GeForce RTX 3090 Ti GPU and an Intel Core i7-
12700KF Processor. Adam optimizer is adopted with the
learning rate 5e-5. Batch size is set to 8 with the epoch 80.

Eight methods with open codes are taken for performance
comparison, including U-Net [Ronneberger et al., 2015],
PraNet [Fan et al., 2020], TransUNet [Chen et al., 2021],
Polyp-PVT [Dong et al., 2021], FedDG [Liu et al., 2021],
MKDCNet [Tomar et al., 2022b], TGANet [Tomar et al.,
2022a] and SSFormer [Wang et al., 2022a]. Especially, Fed-
DG is the spectral augmentation method. All the experimen-
tal results are taken directly from their provided ones, ex-
cept for FedDG, TransUNet, MKDCNet and TGANet whose
original experimental datasets are different from our polyp
datasets and, therefore, re-trained by us for polyp segmenta-
tion according to their directions.

6.1 Datasets and Data Augmentation
Five colonoscopy image datasets are adopted, including
ETIS [Silva et al., 2014], CVC-ClinicDB [Bernal et al.,
2015], CVC-ColonDB [Tajbakhsh et al., 2015], CVC-
300 [Vázquez et al., 2017] and Kvasir [Jha et al., 2020].

The same training and testing data as PraNet [Fan et al.,
2020] are adopted for fair comparison. The training set con-
tains 1450 images selected from Kvasir [Jha et al., 2020] and
CVC-ClinicDB [Bernal et al., 2015] with all the left images
taken as testing image. The sizes of training images are set to
352× 352 and normalized with means {0.485, 0.456, 0.406}
and variances {0.229, 0.224, 0.225}. Images are augmented
with three scales {0.75, 1, 1.25} and color exchange.

6.2 Evaluation Metrics
Several popular metrics used by previous studies [Fan et al.,
2020; Dong et al., 2021] are adopted, including the Dice
Similarity Coefficient (DSC), Intersection over Union (IoU),
Weighted F-measure (Fw

β ), S-measure (Sα), E-measure (Eξ)
and Mean Absolute Error (MAE).

DSC and IoU are similarity measures at the regional level,
focusing on the internal object consistencies. Fw

β comprehen-
sively considers the recall and precision with all pixels and
thus is affected less by the individual pixels. Sα measures the
structural similarities, while Eξ evaluates the segmentation
results at both image and pixel levels. MAE is a pixel-by-
pixel comparison index, denoting the average absolute error
between the predicted value and the true value.

This paper additionally takes mDSC and mIoU to separate-
ly represent the means of DSCs and IoUs of all test images,
and the max value of E-measure, maxEξ, to represent the
segmentation similarity. All measures tell better models with
bigger values, except MAE: The lower MAE, the better.

6.3 Qualitative Results

Figure 7: The effectiveness of SBA. Bottleneck features gradually
boosted by different SBAs in SBA-Net (Figure 4).
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Figure 8: Qualitative comparison for the challenging images with very blurry polyp boundaries and low contrasts among PraNet [Fan et
al., 2020], TransUNet [Chen et al., 2021], Polyp-PVT [Dong et al., 2021], FedDG [Liu et al., 2021], MKDCNet [Tomar et al., 2022b],
TGANet [Tomar et al., 2022a], SSFormer-L [Wang et al., 2022a] and our method SBA-Net.

Figure 7 shows the feature boosting performances of SBAs
in SBA-Net. The features are gradually augmented with the
polyps more and more salient after passing different decod-
ing stages, thanks to the discriminative booster SBA and its
robust feature supplier TAC.

Figure 8 shows experimental results with challenging
polyp images of very blurry polyp boundaries and low con-
trasts, which demonstrate the efficiency of SBA-Net.

The statistical comparisons on learning ability are under-
taken first on CVC-ClinicDB and Kvasir (Table 1). SBA-Net
is generally the best among all methods, with eight times be-
ing the best and the left four times being the second best.

The generalization abilities are experimented with unseen
datasets, CVC-ColonDB, ETIS and CVC-300 (Table 2). A-
gain, SBA-Net is generally the best.

DSCs under different thresholds on four datasets are also
collected (Figure 9), which shows that SBA-Net consistently
outperforms other models.

6.4 Ablation Study
The effectivenesses of the SBA, TAC and proposed full SBA-
Net are evaluated on CVC-ColonDB, ETIS and CVC-300
(Table 3). Six different configurations are included for this
evaluation:

• CNN: It takes the typical CNN stage as the encoder with
max pooling to downsample features and directly de-
codes the bottleneck features.

• Transformer: It takes the Transformer, i. e., PVT, as the
encoder and directly decodes as CNN.

• CNN+SBA: It replaces the decoder of CNN with the S-
BA based decoder in SBA-Net..

• Transformer+SBA: It replaces the decoder of TRANS
with the SBA based decoder in SBA-Net.

• CNN+Transformer+TAC: It takes TAC as the main
block of the encoder, i. e., the same encoder as SBA-
Net and directly decodes as CNN.

Method
CVC-ClinicDB Kvasir

mDSC mIoU Fw
β Sα maxEξ MAE mDSC mIoU Fw

β Sα maxEξ MAE

U-Net [Ronneberger et al., 2015] 0.879 0.818 0.876 0.917 0.964 0.017 0.811 0.726 0.780 0.848 0.897 0.051
PraNet [Fan et al., 2020] 0.899 0.849 0.896 0.936 0.979 0.009 0.898 0.84 0.885 0.915 0.948 0.030
TransUNet [Chen et al., 2021] 0.828 0.771 0.822 0.887 0.941 0.023 0.807 0.725 0.756 0.880 0.892 0.053
Polyp-PVT [Dong et al., 2021] 0.937 0.889 0.936 0.949 0.989 0.006 0.917 0.864 0.911 0.925 0.962 0.023
FedDG [Liu et al., 2021] 0.853 0.791 0.844 0.892 0.928 0.026 0.817 0.731 0.792 0.849 0.899 0.055
MKDCNet [Tomar et al., 2022b] 0.872 0.813 0.861 0.911 0.951 0.018 0.877 0.817 0.869 0.898 0.932 0.039
TGANet [Tomar et al., 2022a] 0.901 0.850 0.899 0.932 0.968 0.010 0.897 0.840 0.887 0.910 0.956 0.027
SSFormer-L [Wang et al., 2022a] 0.906 0.855 0.913 0.929 0.970 0.008 0.917 0.864 0.916 0.922 0.964 0.022
SBA-Net 0.937 0.889 0.934 0.951 0.990 0.006 0.922 0.871 0.913 0.928 0.963 0.023

Table 1: Statistical comparisons of different methods for CVC-ClinicDB and Kvasir. The best results are shown in bold.
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Method
CVC-ColonDB ETIS CVC-300

mDSC mIoU Fw
β Sα maxEξ MAE mDSC mIoU Fw

β Sα maxEξ MAE mDSC mIoU Fw
β Sα maxEξ MAE

U-Net [Ronneberger et al., 2015] 0.584 0.493 0.559 0.740 0.807 0.052 0.395 0.320 0.357 0.662 0.714 0.034 0.743 0.648 0.708 0.840 0.902 0.015
PraNet [Fan et al., 2020] 0.712 0.640 0.699 0.820 0.872 0.043 0.628 0.567 0.600 0.794 0.841 0.031 0.871 0.797 0.843 0.925 0.972 0.010
TransUNet [Chen et al., 2021] 0.617 0.529 0.583 0.760 0.828 0.052 0.416 0.348 0.373 0.659 0.688 0.073 0.801 0.704 0.756 0.880 0.931 0.016
Polyp-PVT [Dong et al., 2021] 0.808 0.727 0.795 0.865 0.919 0.031 0.787 0.706 0.750 0.871 0.910 0.013 0.900 0.833 0.884 0.935 0.981 0.007
FedDG [Liu et al., 2021] 0.652 0.550 0.609 0.755 0.813 0.069 0.407 0.338 0.358 0.618 0.645 0.114 0.832 0.737 0.787 0.892 0.953 0.014
MKDCNet [Tomar et al., 2022b] 0.741 0.658 0.721 0.829 0.870 0.038 0.667 0.582 0.615 0.797 0.831 0.030 0.880 0.810 0.865 0.928 0.971 0.008
TGANet [Tomar et al., 2022a] 0.739 0.661 0.724 0.829 0.868 0.035 0.663 0.586 0.633 0.800 0.865 0.017 0.885 0.819 0.869 0.931 0.959 0.007
SSFormer-L [Wang et al., 2022a] 0.802 0.721 0.798 0.860 0.909 0.031 0.796 0.720 0.771 0.873 0.912 0.014 0.895 0.827 0.881 0.933 0.976 0.007
SBA-Net 0.815 0.737 0.799 0.871 0.919 0.029 0.790 0.712 0.748 0.878 0.912 0.016 0.903 0.840 0.887 0.941 0.981 0.007

Table 2: Statistical comparisons of different methods for CVC-ColonDB, ETIS and CVC-300. The best results are shown in bold.

Figure 9: Comparison of the DSC curves under different thresholds for different datasets.

Method
CVC-ColonDB ETIS CVC-300

mDSC mIoU Fw
β Sα maxEξ MAE mDSC mIoU Fw

β Sα maxEξ MAE mDSC mIoU Fw
β Sα maxEξ MAE

CNN 0.576 0.481 0.551 0.735 0.811 0.053 0.485 0.380 0.425 0.700 0.755 0.032 0.745 0.653 0.715 0.842 0.892 0.015
CNN+SBA 0.639 0.549 0.615 0.769 0.843 0.048 0.499 0.409 0.447 0.719 0.754 0.030 0.841 0.760 0.818 0.895 0.956 0.010
Transformer 0.793 0.706 0.771 0.860 0.908 0.030 0.779 0.695 0.737 0.873 0.912 0.018 0.890 0.820 0.868 0.933 0.977 0.008
Transformer+SBA 0.814 0.736 0.799 0.871 0.920 0.029 0.777 0.697 0.733 0.872 0.910 0.018 0.896 0.829 0.877 0.935 0.978 0.008
CNN+Transformer+TAC 0.799 0.711 0.777 0.862 0.914 0.031 0.775 0.687 0.731 0.869 0.907 0.017 0.871 0.798 0.845 0.921 0.965 0.011
CNN+Transformer+TAC+SBA 0.815 0.737 0.799 0.871 0.919 0.029 0.790 0.712 0.748 0.878 0.912 0.016 0.903 0.840 0.887 0.941 0.981 0.007

Table 3: Statistical comparisons of SBA-Net under different configurations for CVC-ColonDB, ETIS and CVC-300. The best results are
shown in bold.

• CNN+Transformer+TAC+SBA: The full SBA-Net
which includes the TAC based encoder and the SBA
based decoder.

SBA consistently improves CNN and also achieves bet-
ter performances than Transformer in almost all cases.
The same observation can be found for TAC by CN-
N+Transformer+TAC, thanks to the rich CNN features and
the boosting efforts of TAC. The performances of TAC alone
are not significant when comparing to SBA empowered re-
sults, especially those from Transformer+SBA, showing SBA
is very important for better performance. The best perfor-
mances generally belong to the full SBA-Net as expected.

7 Conclusions
This paper proposes a spectral domain based polyp segmenta-
tion framework, SBA-Net. A unified sub-band based feature
attention module, SBA, is adopted, which boosts the object
recognition by high or middle sub-bands from encoder fea-
tures. A strong Transformer attended CNN encoder is also
incorporated, which takes TAC as the main block to enhance
the CNN features with stronger long-range information by
Transformer and supply robust features to SBA. Experimen-
tal results show the efficacy of the proposed method.

SBA-Net adopts fixed Gaussian filters for the sub-bands.
An adaptive way to extract the sub-bands is expected so that
the SBA can be easily applied to more applications. TAC is

simple but effective. However, a more effective fusion oper-
ation other than the Hadamard product perhaps can improve
the performances further. These are the future directions for
more robust polyp segmentation.
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