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Abstract
Scene text image super-resolution (STISR), aim-
ing to improve image quality while boosting down-
stream scene text recognition accuracy, has recently
achieved great success. However, most existing
methods treat the foreground (character regions)
and background (non-character regions) equally in
the forward process, and neglect the disturbance
from the complex background, thus limiting the
performance. To address these issues, in this pa-
per, we propose a novel method LEMMA that ex-
plicitly models character regions to produce high-
level text-specific guidance for super-resolution. To
model the location of characters effectively, we
propose the location enhancement module to ex-
tract character region features based on the atten-
tion map sequence. Besides, we propose the multi-
modal alignment module to perform bidirectional
visual-semantic alignment to generate high-quality
prior guidance, which is then incorporated into the
super-resolution branch in an adaptive manner us-
ing the proposed adaptive fusion module. Exper-
iments on TextZoom and four scene text recogni-
tion benchmarks demonstrate the superiority of our
method over other state-of-the-art methods. Code
is available at https://github.com/csguoh/LEMMA.

1 Introduction
Scene text recognition (STR) is an important computer vision
task and has a wide range of applications [Liem et al., 2018;
Khare et al., 2019]. Despite impressive progress made, cur-
rent STR methods are still struggling with low-resolution
(LR) images [Wang et al., 2020]. Several approaches [Dong
et al., 2015a; Tran and Ho-Phuoc, 2019] process LR input
by treating text images as natural images and employing a
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Figure 1: Complex background brings challenges to STISR. (a) “R”
in “SUPER” can be mistakenly reconstructed as “B” or “S”. (b)
Inaccurate character localization due to complex background leads
to poor reconstruction.

generic super-resolution network to obtain high-resolution
ones. However, as shown in previous studies [Chen et al.,
2021; Chen et al., 2022], this scheme is not that satisfactory.
Therefore, customizing super-resolution networks for scene
text images has become a popular research topic.

To improve the quality of LR images, many scene text im-
age super-resolution (STISR) approaches have recently been
proposed with promising results. For example, a location-
aware loss function is proposed in [Chen et al., 2021] to con-
sider character spatial distribution. By applying the charac-
ter probability distribution, TPGSR [Ma et al., 2021] demon-
strates the importance of using language knowledge as guid-
ance in the STISR task. To handle spatially irregular text,
TATT is proposed in [Ma et al., 2022]. Moreover, C3-STISR
[Zhao et al., 2022] achieves favorable performance by using
three perspectives of clues.

Despite many efforts, existing STISR methods typically
treat the character regions and non-character background
equally in their forward process while neglecting the adverse
impact of the complex background. Intuitively, the non-
character background is usually uninformative for the down-
stream recognition task, so it is unnecessary to reconstruct
texture details of the background. Moreover, the complex
background can bring disturbance to the reconstruction pro-
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cess. On one hand, the background may be mistakenly treated
as characters, thus producing incorrect reconstruction (see
Fig. 1 (a)). On the other hand, the background may prevent
the model from accurately locating characters, thus leading to
poor reconstruction results (see Fig. 1 (b)). Therefore, exist-
ing STISR methods usually suffer from performance degra-
dation due to the complex background, thus limiting practical
applications.

To address these issues, we propose LEMMA, a Loca-
tion Enhanced Multi-ModAl network, to treat character re-
gions and non-character background distinctly. Specifically,
we introduce a novel Location Enhancement Module (LEM)
to exploit the character location information in the attention
map generated by the text recognizer. However, adopting
the attention map for character region localization is non-
trivial, because the low quality caused by the attention drift
[Cheng et al., 2017] can produce wrong guidance. To this
end, we propose the Compression and Expansion strategy to
process the raw attention map and thus mitigate the atten-
tion drift. We then further select character region features
using the feature selection technique, which mitigates back-
ground disturbances while reducing the computational com-
plexity of the attention mechanism. In addition, we pro-
pose the Multi-modal Alignment Module (MAM) to per-
form visual-semantic bidirectional alignment, which facili-
tates better alignment between different modalities in a pro-
gressive manner. Finally, we introduce Adaptive Fusion
Module (AdaFM) to adapt different guidance to different
super-resolution blocks. By modeling character location
to distinguish character regions from the background, our
method can well handle scene text images with complex
background.

Our contributions can be summarized as follows:

• We introduce a novel approach with explicit character
location modeling to cope with the challenge from the
complex background.

• We propose a visual-semantic bidirectional alignment
and adaptive fusion strategy to generate and utilize high-
level text-specific guidance.

• Experiments on TextZoom and four STR benchmarks
show that our method achieves consistently state-of-the-
art recognition accuracy.

2 Related Work
2.1 Scene Text Image Super-resolution
Different from single image super-resolution (SISR), whose
goal is to improve image quality and obtain favorable vi-
sual effects. The main objective of STISR is to obtain
easy-to-distinguish images to boost downstream recognition
task. Early methods [Mou et al., 2020; Dong et al., 2015c;
Wang et al., 2019] used CNN architectures to perform STISR
tasks. In precisely, TextSR [Wang et al., 2019] uses adver-
sarial training to enable the model to focus more on textual
content. Based on the idea of multi-task learning, Plugnet
[Mou et al., 2020] can obtain a unified feature for super-
resolution and recognition. Recently, the TextZoom dataset
[Wang et al., 2020] was proposed to tackle real-world STISR

tasks. And they also proposed TSRN to exploit the sequen-
tial nature of scene text images. Benefiting from the global
receptive field of attention mechanism, TBSRN [Chen et
al., 2021] utilizes the content-aware loss and the position-
aware loss to improve reconstruction results. PCAN [Zhao et
al., 2021] improves performance by carefully designing SR
blocks. TPGSR [Ma et al., 2021] takes a further step to ex-
ploit text prior. TG [Chen et al., 2022] shows that fine-grained
clues can help yield more distinguishable images. TATT [Ma
et al., 2022] uses the attention mechanism to work with ir-
regular text images. C3-STISR [Zhao et al., 2022] uses clues
from three perspectives to introduce better guidance. How-
ever, existing methods still treat character regions and back-
ground equally in the model design. Although some methods
(e.g. TBSRN and TG) enable the model to focus on text by
designing related loss, this implict manner is hard to observe
whether the STISR model really focuses more on text, and in-
correct supervision can be generated due to distractions such
as attention drift. By contrast, we are the first to consider an
explicit text focus to handle the challenges posed by complex
background.

2.2 Scene Text Recognition
Scene text recognition is to recognize character sequences
from scene text images. And it is closely related to scene
text image super-resolution. Early text recognition methods
used a bottom-up approach, but often suffered from low-
resolution, small character, rotated, and illuminated scene
text images. Recently, attention-based methods have gained
interest because of their promising performance on irregu-
lar text. Specifically, SAR [Li et al., 2019] uses the 2D at-
tention mechanism to recognize irregular text. RobustScan-
ner [Yue et al., 2020] mitigates attention drift by enhancing
positional cues. SRN [Yu et al., 2020] and ABINet [Fang
et al., 2021] facilitate text recognition by using a language
model. MATRN [Na et al., 2022] benefits from visual-
semantic multi-modality. MGP-STR [Wang et al., 2022]
boosts performance by multi-granularity prediction. Despite
these advances, current scene text recognition methods still
face challenges on low-resolution scene text images, and
adapting models to low-resolution images through data aug-
mentation has been shown to be limited [Chen et al., 2022;
Chen et al., 2021]. Therefore, it is necessary to use the STISR
method to obtain easily recognizable text images.

3 Methodology
3.1 Overview
Given low-resolution image XLR ∈ RH×W×3, where H and
W are the height and width respectively, the goal for STISR is
to generate high-resolution text image XSR ∈ RfH×fW×3,
where f is the scale factor. In the proposed pipeline, XLR is
first corrected by Spatial Transformer Network (STN) [Jader-
berg et al., 2015] to tackle the misalignment problem. And
then shallow feature XI is obtained using a shallow CNN.
Then, XI will go through the guidance generation branch and
the super-resolution branch. As for the guidance generation
branch, the Location Enhancement Module (LEM) takes at-
tention map sequence and XI as input to generate the selected
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Figure 2: Our proposed method consists of two branches, the guidance generation branch uses the text prior to generate high-level guidance
which is used in the super-resolution branch to facilitate the reconstruction of high-resolution images.

feature XS . The Multi-modal Alignment Module (MAM)
then performs visual-semantic bidirectional alignment using
text distribution and XS . As for the super-resolution branch,
XI will go through N stacked blocks, each of which con-
tains an Adaptive Fusion Module (AdaFM) and a Sequential-
Recurrent Block (SRB) [Wang et al., 2020]. At last, Pix-
elShuffle is performed to increase the spatial scale to generate
XSR. Fig. 2 illustrates the architecture.

3.2 Location Enhancement Module
To improve the existing methods’ equal treatment between
character regions and background, we propose the Location
Enhancement Module (LEM) to model the location of each
character explicitly (Fig. 3 (a)).

Character Location Attention
We denote the attention map sequence generated by the pre-
trained attention-based text recognizer as hattn ∈ RT×H×W ,
where T is the max sequence length. Since the character
length of different images varies and the raw attention map
may introduce misguidance due to attention drift, we thus
propose the Compression and Expansion strategy to tackle
these problems.
Compression Strategy: Let L be the valid length of one
character sequence which can be obtained from the pre-
trained recognizer, hj

attn denotes the attention map corre-
sponding to j-th character. Since different images vary in text
lengths, we therefore remove additional paddings by choos-
ing the first L valid attention maps to get {hj

attn}Lj=1, and
then concatenate them followed by a max operator to reduce
the channel dimension to 1. The result is denoted as hscore:

hscore = Max(Concat(h1
attn, · · · , hL

attn)), (1)
Expansion Strategy: We then use C convolution kernels
to perform up-dimension on hscore followed by the Softmax
function to get the result hpos:

hpos = Softmax(Conv(hscore)), (2)

Instance Normalization: According to previous studies
[Huang and Belongie, 2017; Karras et al., 2019; Luo et al.,
2022], the mean and variance contain the style of an im-
age. To facilitate the subsequent alignment between image
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Figure 3: The detailed architecture of (a) Location Enhancement
Module and (b) Multi-modal Alignment Module. Positional encod-
ing is not represented for brevity.

and text, we perform Instance Normalization (IN) on XI to
remove the varying styles so that focus more on the text con-
tent. The normalized features are then multiplied with hpos

to obtain the location enhanced feature Xpos:

Xpos = IN(XI)⊗ hpos, (3)
where ⊗ denotes the Hadamard Product.

Feature Selection
An intuition for visual-semantic alignment is that only char-
acter regions need to be aligned, while background does not
necessarily perform expensive cross attention. Inspired by
[Tang et al., 2022], we use the feature selection technique.
Unlike [Tang et al., 2022] which uses manual annotation as
well as a separate scoring network, in this work, we perform
feature selection using the easily available attention map.
Specifically, since hscore contains the pixel-level character
confidence, we choose the top K large scores in hsocre to get
the foreground coordinate set F :

F := {(m,n) : hscore(m,n) ∈ TopK(hscore)}, (4)
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We then use the coordinates set F as an index to gather
foreground character features from Xpos. To avoid neighbor-
hood information loss, we apply the pixel-to-region strategy
before the gathering to make each indexed pixel representable
to its neighbors by weighted summation in local regions:

X ′
pos =

∑
(∆m,∆n)∈N

w(∆m,∆n)Xpos(m+∆m,n+∆n),

(5)
where N denotes the neighborhood displacements and w(·, ·)
denotes the weights at each displacement. In the practical
implementation, we use the eight-neighborhood region as N .
Note that it can be easily implemented by convolution.

Finally, we employ the coordinates in F to index X ′
pos and

get the selected feature XS = {X ′
pos(i, j)}(i,j)∈F . It is worth

noting that the proposed feature selection scheme not only
enables more focus on the foreground but also reduces the
computational complexity from the attention mechanism, see
supplementary material for analysis.

3.3 Multi-modal Alignment Module
Existing approaches either use a single modal or use unidi-
rectional multi-modal alignment to generate high-level guid-
ance. We introduce the Multi-modal Alignment Module
(MAM) to take a further step toward bidirectional visual-
semantic alignment (Fig. 3 (b)).

Semantic Extraction
We first perform Semantic Extraction on the text distribution
obtained by the text recognizer through linear projection and
self-attention block. It can generate semantically rich feature
htext which will be used to align with the visual modal.

Bidirectional Alignment
We propose a bidirectional strategy to facilitate cross-modal
alignment. For the image-to-text alignment, we use the htext

as query, XS as key and value to allow each character to find
its corresponding image region:

h′
n = LN(MHA(hn−1, XS , XS) + hn−1),

hn = LN(MLP(h′
n) + h′

n),
(6)

where n denotes the n-th attention block. hn−1 is htext if
n = 1 otherwise the output of previous block.

We denote the result of the first level alignment as hkey .
Note that hkey has the same size as htext but contains in-
formation of XS . So, it can be easily aligned with XS in
the second level alignment. For text-to-image alignment, we
use hkey to bridge visual and semantic modals. Specifically,
we use XS as query, hkey as key, and htext as value. Each
element of XS can find which text feature it should attend
by using hkey . Since the output of attention shares the same
size as query, for the subsequent fusion, we use zero to pad
XS before the second level alignment. The output high-level
guidance XG is then used to guide super-resolution. More-
over, we refer to the positional encoding in [Na et al., 2022]
to make full use of the attention map for better alignment.

It is worth noting that the previous unidirectional alignment
only uses the second-level cross attention with htext as key

and value [Ma et al., 2022]. However, without the progres-
sive transition from the first level, XS (query) and htext (key)
are difficult to align well. Related experiment can be seen in
Section 4.4.

3.4 Adaptive Fusion Module
Current guidance-based STISR approaches [Ma et al., 2021;
Zhao et al., 2022; Ma et al., 2022] use the same guidance in
different SR blocks. For this reason, we propose the Adaptive
Fusion Module (AdaFM) to adaptively incorporate high-level
guidance to different blocks. Given image feature Xn which
is XI or the output of the previous block, and high-level guid-
ance XG, we first concatenate them along channel dimension
followed by three parallel 1×1 convolution to project Xn into
three different feature spaces and denote them as X1

n, X2
n,

and X3
n respectively. We then perform the channel attention

mechanism on X1
n and multiply the resulting score with X2

n
to generate the channel attention feature, which will be added
to X3

n to get the final result. Notably, unlike the previous
channel attention [Hu et al., 2018], we use global deep-wise
convolution [Chollet, 2017] rather than global average pool-
ing to better exploit the property of the spatial distribution of
character regions in scene text images. The process can be
formalized as follows:

Xn+1 = X3
n +X2

n ⊗ Sigmoid(MLP(GDWConv(X1
n))),

(7)
where GDWConv denotes the Global Deep-Wise Convolu-
tion. The above procedure only uses 1 × 1 convolution and
therefore results in only a minimal increase in the parameter
complexity.

3.5 Training Objective
In this work, we use three loss functions, namely pixel loss,
recognition loss, and fine-tuning loss, to train our model.

For the pixel loss, we use the L2 loss to perform pixel-level
supervision:

Lpix = ||XSR −XHR||2, (8)

For the recognition loss, we use the text-focus loss [Chen
et al., 2021] to supervise the learning of language knowledge:

Ltxt = λ1||AHR − ASR||1 + λ2WCE(pSR, ylabel), (9)

where A and p are the attention map and probability distri-
bution predicted by a fixed transformer-based recognizer, re-
spectively. WCE denotes weighted cross-entropy. λ1 and λ2

are hyperparameters.
Since we use a pre-trained text recognizer for guidance

generation, as [Ma et al., 2022; Zhao et al., 2022] demon-
strated, fine-tuning is better than fixed parameters. We there-
fore use the fin-tuning loss to adapt the text recognizer to low-
resolution inputs:

Lft = CE(pPRE , ylabel), (10)

where CE denotes cross-entropy loss, pPRE denotes proba-
bility distribution predicted by the pre-trained text recognizer.
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The total loss is the weighted sum of these losses above.
L = Lpix + α1Ltxt + α2Lft, (11)

where α1 and α2 are hyperparameters.

4 Experiment
4.1 Datasets
Scene Text Image Super-resolution Dataset
TextZoom [Wang et al., 2020] is widely used in STISR
works. This dataset is derived from two single image super-
resolution datasets, RealSR [Cai et al., 2019] and SR-RAW
[Zhang et al., 2019]. The images are captured by digital cam-
eras in real-world scenes. In total, TextZoom contains 17367
LR-HR pairs for training and 4373 pairs for testing. Depend-
ing on the focal length of the digital camera, the test set is
divided into three subsets, with 1619 pairs for the simple sub-
set, 1411 pairs for the medium subset, and 1343 pairs for the
hard subset. The size of LR images is adjusted to 16 × 64,
and the size of the HR images is 32 × 128.

Scene Text Recognition Datasets
To verify the robustness of our method in the face of different
styles of text images, we adopt four scene text recognition
benchmarks, namely ICDAR2015 [Karatzas et al., 2015],
CUTE80 [Shivakumara et al., 2014], SVT [Wang et al., 2011]
and SVTP [Phan et al., 2013] to evaluate our model. Since
these datasets do not contain LR-HR pairs and most of the
images are of high quality, we therefore first perform prepro-
cess to get LR images. Specifically, we select images with
less than 16 × 64 pixels and then perform manual degrada-
tion on these selected images. One can find more information
about these datasets’ descriptions and degradation details in
the supplementary material.

4.2 Evaluation Metrics
For the text recognition accuracy evaluation, consistent with
previous work [Ma et al., 2021; Wang et al., 2020; Zhao
et al., 2022; Ma et al., 2022], we use three text recogniz-
ers namely CRNN [Shi et al., 2016], MORAN [Luo et al.,
2019], and ASTER [Shi et al., 2018] for evaluation in order
to guarantee the generalization. For image fidelity evalua-
tion, we used Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM) to assess the quality
of the generated SR images. However, as found in previous
work [Chen et al., 2022; Chen et al., 2021; Zhao et al., 2022;
Zhao et al., 2021], there is an inherent trade-off between text
recognition accuracy and image quality, and we will discuss
this observation in Section 4.6.

4.3 Implementation Details
We use ABINet [Fang et al., 2021] as the attention-based
text recognizer because of the accessibility of code and pre-
trained model. We train our model with batch size 64 for 500
epochs using Adam [Kingma and Ba, 2014] for optimization.
The learning rate is set to 1e-3 for the super-resolution and 1e-
4 for fine-tuning ABINet, both are decayed with a factor of
0.5 after 400 epochs. We refer to the hyperparameters on Ltxt

given in [Chen et al., 2021], namely λ1 = 10, λ2 = 0.0005.
For the other hyperparameters, we use α1 = 0.5, α2 = 0.01,
see supplementary material for details.

Location Enhance Recognition Accuracy
cha-attn feat-select Easy Medium Hard avgAcc

- - 60.1% 50.5% 38.0% 50.2%
- ✓ 62.1% 51.2% 38.2% 51.3%
✓ - 65.0% 55.3% 39.8% 54.1%
✓ ✓ 67.1% 58.8% 40.6% 56.3%

Table 1: Ablation study on LEM. cha-attn and feat-select denote the
use of character location attention and feature selection, respectively.

Aligment Strategy Recognition Accuracy
Easy Medium Hard avgAcc

NoA 63.5% 53.4% 37.4% 52.2%
UDA 64.2% 56.7% 41.2% 54.5%
BDA 67.1% 58.8% 40.6% 56.3%

Table 2: Ablation study on different alignment strategies. NoA in-
dicates No Alignment with only text modal, UDA indicates UniDi-
rectional Alignment, and BDA indicates BiDirectional Alignment.

4.4 Ablation Study
In this section, we conduct an ablation study to demonstrate
the effectiveness of each component in LEMMA. CRNN [Shi
et al., 2016] is chosen as the text recognizer for uniformity.

Different Choices on Location Enhancement
In the Location Enhancement Module (LEM), we use charac-
ter location attention and feature selection to enable explicit
character location modeling. Table 1 shows the effect of each
part. The presence of character location attention resulted in
a 3.9% improvement compared to no location enhancement.
When using feature selection, recognition accuracy does not
decrease due to the neglect of the background feature, instead
it further increases by 2.2%. This suggests that there is re-
dundant information in the feature map and removing this re-
dundancy will improve performance.

Effectiveness of Bidirectional Alignment Strategy
To demonstrate the performance improvement does come
from the bidirectional strategy rather than additional parame-
ters, we increase the parameter number in the unidirectional
alignment strategy by stacking more layers to make the com-
plexity consistent. The results in Table 2 show that the bidi-
rectional alignment improves the average accuracy by 1.8%
compared to its unidirectional counterpart, demonstrating the
effectiveness of the bidirectional alignment strategy.

Effectiveness of Different Modules
We study the effectiveness of different modules in LEMMA.
Table 4 shows the result. It can be seen that the simultaneous
presence of the three modules achieves the best result.

4.5 Comparison to State-of-the-Arts
We first compare the proposed method with others on the
TextZoom dataset. Consistent with the previous methods,
we evaluate the generalization using three text recognizers,
namely ASTER [Shi et al., 2018], MORAN [Luo et al.,
2019], and CRNN [Shi et al., 2016]. After that, we evalu-
ate the model robustness on more challenging STR datasets.
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Method ASTER [Shi et al., 2018] MORAN [Luo et al., 2019] CRNN [Shi et al., 2016]
Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

BICUBIC 67.4% 42.4% 31.2% 48.2% 60.6% 37.9% 30.8% 44.1% 36.4% 21.1% 21.1% 26.8%
HR 94.2% 87.7% 76.2% 86.6% 91.2% 85.3% 74.2% 84.1% 76.4% 75.1% 64.6% 72.4%

SRCNN [Dong et al., 2015b] 70.6% 44.0% 31.5% 50.0% 63.9% 40.0% 29.4% 45.6% 41.1% 22.3% 22.0% 29.2%
SRResNet [Ledig et al., 2017] 69.4% 50.5% 35.7% 53.0% 66.0% 47.1% 33.4% 49.9% 45.2% 32.6% 25.5% 35.1%

RCAN [Zhang et al., 2018] 67.3% 46.6% 35.1% 50.7% 63.1% 42.9% 33.6% 47.5% 46.8% 27.9% 26.5% 34.5%
SAN [Dai et al., 2019] 68.1% 48.7% 36.2% 50.7% 65.6% 44.4% 35.2% 49.4% 50.1% 31.2% 28.1% 37.2%

TSRN [Wang et al., 2020] 75.1% 56.3% 40.1% 58.3% 70.1% 55.3% 37.9% 55.4% 52.5% 38.2% 31.4% 41.4%
TBSRN [Chen et al., 2021] 75.7% 59.9% 41.6% 60.1% 74.1% 57.0% 40.8% 58.4% 59.6% 47.1% 35.3% 48.1%
PCAN [Zhao et al., 2021] 77.5% 60.7% 43.1% 61.5% 73.7% 57.6% 41.0% 58.5% 59.6% 45.4% 34.8% 47.4%

TG [Chen et al., 2022] 77.9% 60.2% 42.4% 61.3% 75.8% 57.8% 41.4% 59.4% 61.2% 47.6% 35.5% 48.9%
TATT [Ma et al., 2022] 78.9% 63.4% 45.4% 63.6% 72.5% 60.2% 43.1% 59.5% 62.6% 53.4% 39.8% 52.6%

C3-STISR [Zhao et al., 2022] 79.1% 63.3% 46.8% 64.1% 74.2% 61.0% 43.2% 59.5% 65.2% 53.6% 39.8% 53.7%
LEMMA (Ours) 81.1% 66.3% 47.4% 66.0% 77.7% 64.4% 44.6% 63.2% 67.1% 58.8% 40.6% 56.3%

Table 3: Comparison of the downstream text recognition accuracy on the TextZoom dataset. The best result is bolded.

LEM MAM AdaFM Recognition Accuracy
Easy Medium Hard avgAcc

- - - 61.1% 50.0% 36.4% 50.0%
✔ - - 65.6% 55.6% 40.4% 54.6%
✔ ✔ - 66.6% 56.3% 41.3% 55.5%
✔ ✔ ✔ 67.1% 58.8% 40.6% 56.3%

Table 4: Combination of different components in LEMMA. Con-
catenate is used to perform fusion when AdaFM is removed.

Method STR Datasets
IC15 CUTE80 SVT SVTP

Bicubic 9.5% 35.8% 3.3% 10.2%
SRResnet 13.0% 48.3% 9.3% 12.1%
TBSRN 20.7% 75.0% 12.2% 17.4%
TATT 28.6% 74.0% 14.0% 25.9%

C3-STISR 22.7% 71.5% 10.2% 17.7%
LEMMA (Ours) 32.5% 76.0% 21.3% 28.4%

Table 5: Comparison results on scene text recognition benchmarks.

Results on TextZoom
Table 3 shows the comparison results in terms of text recogni-
tion accuracy. It can be seen that our proposed LEMMA con-
sistently outperforms the previous method on all three text
recognizers. For example, using ASTER as the recognizer,
compared to the previous SoTA method [Zhao et al., 2022],
our method achieves 2.0%, 3.0%, and 0.6% improvement on
easy, medium, and hard, respectively, which ultimately leads
to an average improvement of 1.9%. The good results demon-
strate the advantages of the proposed model. We also present
the qualitative comparison results in Fig. 4.

Towards Robust STISR
In this section, we explore the model robustness in more chal-
lenging samples. All models are trained on the TextZoom
dataset, after which we freeze parameters and evaluate them
on four text recognition benchmarks namely ICDAR2015
[Karatzas et al., 2015], CUTE80 [Shivakumara et al., 2014],
SVT [Wang et al., 2011], and SVTP [Phan et al., 2013].

Since most of the samples in these datasets contain real-
world complex background, the result can thus give an indica-
tion of the model’s ability to cope with complex background.
As shown in Table 5, our proposed method allows the model

LEM RecLoss Fidelity Accuracy
PSNR SSIM avgAcc

- - 21.2 0.7749 44.6%
✔ - 20.8 0.7708 49.5%
- ✔ 21.1 0.7649 50.2%
✔ ✔ 20.9 0.7792 56.3%

Table 6: Trade-off between Fidelity and Accuracy. RecLoss denotes
the recognition loss.

ExpsConv Pix2Reg Accuracy
Easy Medium Hard avgAcc

- - 62.8% 56.5% 41.3% 54.2%
- ✔ 65.5% 55.8% 40.5% 54.7%
✔ - 63.6% 50.7% 38.1% 51.6%
✔ ✔ 67.1% 58.8% 40.6% 56.3%

Table 7: Effectiveness of strategies to mitigate attention drift. Exp-
sConv represents the use of Expansion strategy, Pix2Reg denotes the
utilization of neighborhood information in feature selection.

to focus more on character regions and leads to better results.
Moreover, we also use all of the above four STR bench-

marks to compare accuracy with different text lengths. It can
be seen in Fig. 5 that our method outperforms others across
all text lengths, and shows strong robustness in dealing with
text of extreme length. The favorable performance of our ap-
proach on long text instances stems from the fact that explicit
location enhancement allows the model to reinforce charac-
ter region features and thus alleviate the long-range forgetting
problem associated with long text.

4.6 Discussion
Trade-off between Fidelity and Accuracy
As presented in previous studies [Chen et al., 2021; Chen et
al., 2022; Zhao et al., 2022], we also find the inherent trade-
off between fidelity and accuracy. Table 6 shows this obser-
vation. It can be seen that the highest PSNR is achieved with
the settings of no LEM and recognition loss. The presence of
LEM leads to a 0.4 dB reduction in PSNR, but it gives a 4.9%
improvement in accuracy. The same phenomenon also hap-
pens with recognition loss. It can be explained by the fact that
the proposed LEM mainly focuses on the foreground charac-
ter regions and thus does not reconstruct enough of the back-
ground that occupies most of one image. Therefore, further
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STR benchmarks.

recognition accuracy improvements (e.g. generating images
with larger contrast) will come at the expense of fidelity.

Performance Brought from a Strong Recognizer
In this work, we use the ABINet to generate guidance instead
of CRNN as in other works [Ma et al., 2022; Zhao et al.,
2022]. Since ABINet itself can provide more reliable guid-
ance, we conduct experiments to investigate how much the
accuracy improvement is attributed to the use of a stronger
recognizer. Specifically, we replace ABINet with CRNN to
generate text distribution, and the average recognition ac-
curacy is 55.2% (CRNN for downstream recognition). The
adoption of a weak recognizer caused a 1.1% decrease com-
pared with LEMMA. However, this setting still exceeds SoTA
method (53.7%), demonstrating the validity of explicitly dis-
tinguishing between character regions and background.

Effectiveness of Strategies to Mitigate Attention Drift
We distinguish character regions from background using the
attention map. As discovered in previous methods [Cheng
et al., 2017; Yue et al., 2020], attention drift can affect the
quality of the attention map and thus produce misguidance.
Therefore, solutions are proposed in our framework to miti-
gate this adverse effect. First, in character location attention,
we do not use the raw attention map directly, but process it
with the convolution layer which can serve as a shift oper-

pred: parlo

LR

Ours

HR

pred: sory pred: blf

label: mariolabel: quickly label: blip

C3-
STISR

pred:denecphind

pred:dixgmerd

label:donkeykong

pred:soway pred:parky pred:bf

Figure 6: Some failure cases of our proposed model.

ator and thus correct the shifted attention map. Second, in
feature selection, we use the pixel-to-region strategy so that
each pixel can represent its neighbors and thus mitigate the
impact of drift. The results in Table 7 indicate that all these
strategies can alleviate the adverse effects from attention drift.

Failure Case and Limitation
Fig. 6 shows some failure cases. Our method, including
previous STISR methods, has difficulty handling incomplete
characters and artistic characters. Moreover, the quality of at-
tention map which is used as prior guidance can affect the re-
construction results. Despite some strategies are proposed to
mitigate this problem, it is far from being completely solved
and we leave it as future work.

5 Conclusion
In this work, we propose the Location Enhanced Multi-
ModAl network (LEMMA) to handle challenges in exist-
ing STISR methods by explicit location enhancement with
more focus on character regions. The Location Enhance-
ment Module extracts character region features from all pix-
els through character location attention and feature selection
techniques. The Multi-modal Alignment Module employs
a bidirectional progressive strategy to facilitate cross-modal
alignment. The Adaptive Fusion Module adaptively incorpo-
rates the generated high-level guidance into different super-
resolution blocks. Results on TextZoom and four challeng-
ing STR benchmarks show that our approach consistently
improves downstream recognition accuracy, taking a further
step toward robust scene text image super-resolution.
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