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Abstract
Recently, numerous studies have been conducted
on supervised learning-based image denoising
methods. However, these methods rely on large-
scale noisy-clean image pairs, which are diffi-
cult to obtain in practice. Denoising methods
with self-supervised training that can be trained
with only noisy images have been proposed to ad-
dress the limitation. These methods are based
on the convolutional neural network (CNN) and
have shown promising performance. However,
CNN-based methods do not consider using non-
local self-similarities essential in the traditional
method, which can cause performance limitations.
This paper presents self-similarity attention (SS-
Attention), a novel self-attention module that can
capture nonlocal self-similarities to solve the prob-
lem. We focus on designing a lightweight self-
attention module in a pixel-wise manner, which
is nearly impossible to implement using the clas-
sic self-attention module due to the quadrati-
cally increasing complexity with spatial resolu-
tion. Furthermore, we integrate SS-Attention into
the blind-spot network called self-similarity-based
blind-spot network (SS-BSN). We conduct the ex-
periments on real-world image denoising tasks.
The proposed method quantitatively and qualita-
tively outperforms state-of-the-art methods in self-
supervised denoising on the Smartphone Image
Denoising Dataset (SIDD) and Darmstadt Noise
Dataset (DND) benchmark datasets.

1 Introduction
Image denoising is the process of recovering clean images
from noisy images and plays an essential role in various com-
puter vision tasks. It is an inverse ill-posed problem, which
means that images should be restored from noisy images that
may have numerous arbitrary noises. Especially, image de-
noising is indispensable when it is inevitable to obtain noisy
images due to hardware limitations or healthcare issues, such
as astronomical imaging or medical imaging.
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Figure 1: Visualization of our proposed method on the SIDD
dataset. (a) Noisy input image, (b) ground truth image, (c) denoised
estimates of our method, and (d) visualization of self-similarity. In
(d), the yellow circles show the pixels with high similarity with the
masked pixel (red circle) predicted by our method. A larger radius
of the yellow circles indicates high similarity.

Recently, numerous studies have been conducted on deep
learning-based denoising methods to solve the image denois-
ing problem. As in other deep learning-based image pro-
cessing fields, studies on image denoising methods with su-
pervised training were conducted first [Zhang et al., 2017;
Yue et al., 2020; Zamir et al., 2022; Liang et al., 2021].
Supervised denoising methods have shown superior perfor-
mance compared to traditional methods [Dabov et al., 2007;
Buades et al., 2005]. However, these methods rely on large-
scale noisy-clean image pairs that are difficult to obtain in
practice. For example, in the medical imaging field, obtain-
ing large-scale noisy-clean image pairs is almost impossible.

The Noise2Noise [Lehtinen et al., 2018] method was pro-
posed to alleviate the data collection problem. This method
has proved that denoising neural networks can be trained
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with noisy-noisy image pairs. However, collecting numerous
noisy-noisy image pairs is only possible in limited environ-
ments; thus, the difficulty of collecting the data remains.

Denoising methods with self-supervised training that can
be trained with only noisy images have been proposed to
address this problem [Krull et al., 2019; Batson and Royer,
2019; Quan et al., 2020; Lee et al., 2022]. These meth-
ods demonstrate how to learn denoising neural networks with
only noisy images using the blind-spot strategy. The blind-
spot strategy avoids identity mapping by learning to predict
artificially missing pixels using adjacent pixels. Therefore,
denoising neural networks can be trained with only noisy im-
ages (i.e., without pairs of images).

Based on this strategy, denoising methods with self-
supervised training have been actively studied. In particular,
the recently proposed AP-BSN [Lee et al., 2022] has shown
promising performance in real-world denoising tasks using
asymmetric pixel-shuffle downsampling in the training and
testing phases. However, performance degradation still oc-
curs compared to the denoising methods using supervised or
weakly supervised methods.

Essentially, the noise that needs to be eliminated in image
denoising is subject to statistical fluctuation [Niu et al., 2020].
Therefore, in the early research on image denoising, studies
focused on determining similar nonlocal patches and gener-
ating denoised estimates by averaging the patches [Buades et
al., 2005; Dabov et al., 2007]. These studies have shown
promising performance even though the studies are non-
learning-based methods. Figure 1 visualizes nonlocal self-
similarities in an image. However, unlike traditional meth-
ods, recent studies based on convolutional neural networks
(CNNs) do not give much consideration to obtaining infor-
mation from nonlocal self-similarities because the convolu-
tional operation used in the CNN is based on local connec-
tivity. This characteristic of the CNN can cause performance
limitations in image denoising.

Recently, the transformer model with self-
attention [Vaswani et al., 2017] has achieved great success
in various areas (e.g., natural language processing and
high-level vision). One of the advantages of self-attention
in the transformer-based model compared to the existing
CNN-based model is the long-range dependency that re-
flects global information. The patch embedding method is
adopted to apply self-attention to high-level vision tasks. For
instance, the standard vision transformer (ViT) [Dosovitskiy
et al., 2020] model directly splits the image into 16× 16
nonoverlapping patches. This approach can enable applying
a transformer-based model in high-level vision tasks, which
increases the complexity quadratically with spatial reso-
lution. However, unlike high-level vision tasks, low-level
vision tasks, such as denoising, are performed in a pixel-wise
manner. Therefore, due to computational complexity, it is
almost impossible to apply the patch embedding method to
adopt self-attention in low-level vision tasks.

Despite the shortcoming, there have been a few efforts to
apply the notion of self-attention in supervised image de-
noising. However, these methods calculate self-attention
within a limited window size in a pixel-wise manner [Liang
et al., 2021; Chen et al., 2021] or calculate self-attention in

a channel-wise manner [Zamir et al., 2022]. Therefore, it is
difficult to say that these methods sufficiently achieve the ad-
vantage of long-range dependency by using self-attention in
a pixel-wise manner.

In this paper, we propose a simple and intuitive pixel-
wise self-attention module called self-similarity-based self-
attention (SS-Attention). Furthermore, we integrate SS-
Attention into the blind-spot network called self-similarity-
based blind-spot network (SS-BSN), which can be trained in
a self-supervised manner. Unlike the previous self-attention
module in image denoising, SS-Attention focuses on captur-
ing the long-range dependency of a self-attention mechanism
and obtaining information from nonlocal self-similarities that
are overlooked by the existing CNN-based denoising meth-
ods.

As mentioned, it is infeasible to apply the self-attention
mechanism of the classic vision transformer to denoising neu-
ral networks in a pixel-wise manner, because the complexity
of the self-attention mechanism increases quadratically with
spatial resolution. To solve this problem, we designed the
lightweight self-attention module by removing or simplifying
the components (e.g., linear transforms) of the existing classic
self-attention module. To further simplify the self-attention
module, we adopt grid attention [Tu et al., 2022]. Grid atten-
tion is indispensable due to the architectural characteristics
of the dilated blind-spot network (D-BSN) [Wu et al., 2020]
which the proposed blind-spot network is based on. We also
provide a hyperparameter that can control sparsity. By con-
trolling sparsity, users can control the size of the attention
map, which determines the complexity of the self-attention
module. This simplified self-attention module is not expected
to represent semantic information well compared to the exist-
ing classic self-attention module. However, it is enough to
achieve nonlocal self-similarities in an image which we focus
on.

Our contributions are as follows: we propose SS-Attention,
a simple and intuitive self-attention module that focuses on
the long-range dependency of a self-attention mechanism
to obtain useful information from nonlocal self-similarities
in an image. Additionally, we propose SS-BSN, a blind-
spot network with SS-Attention that can be trained in a
self-supervised manner for image denoising. Specifically,
our SS-BSN is designed to effectively capture nonlocal self-
similarities by using denoised features. To verify our model,
we compared real-world denoising performance with various
competitive baselines with the Smartphone Image Denoising
Dataset (SIDD) [Abdelhamed et al., 2018] and Darmstadt
Noise Dataset (DND) [Plotz and Roth, 2017] datasets. The
experiments demonstrate that the model outperforms other
baselines that can be trained in a self-supervised manner.

2 Background
2.1 Revisiting the Dilated Blind-Spot Network
This section introduces the blind-spot strategy [Krull et al.,
2019] and D-BSN [Wu et al., 2020]. The blind-spot strategy
plays an essential role in numerous self-supervised denoising
methods. The principle of the blind-spot strategy is to mask
a pixel in the receptive field. Then, a neural network recon-
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Figure 2: The architecture of the dilated blind-spot network (D-BSN). (a) Simplified architecture of D-BSN, (b) visualization of affected
pixels (blue-colored) when the red-colored pixel is restored in the entire denoising process (d = 2). (c) visualization of affected pixels
(pink-colored) when the red-colored pixel is restored in the dilated convolution modules (d = 2).

structs the masked pixel using adjacent pixels’ information.
This mechanism is applied to all pixels in the image. A neu-
ral network with the blind-spot strategy is trained by solving
the following:

argminθΣiL(fθ(x
′
i), xi), (1)

where x′
i and xi are the ith input images with and without

blind spots, respectively, and L(·) denotes the loss function
(e.g., L1 loss). In addition, fθ(·) denotes the blind-spot net-
work parameterized by θ. Note that the masked input pixel
value should not directly or indirectly affect the reconstruc-
tion. If the input pixel value affects the reconstruction, a
neural network is trained to mimic the input image. It is
called identity mapping. To avoid identity mapping, in pre-
vious studies, input pixels are substituted with the adjacent
pixels [Krull et al., 2019] or dropped out using Bernoulli sam-
pling [Quan et al., 2020].

The D-BSN proposed in [Wu et al., 2020] is one of the
self-supervised denoising methods with a blind-spot strategy.
Specifically, D-BSN consists of three essential parts: 1 × 1
convolutional modules, a masked convolutional module, and
dilated convolutional modules. Figure 2 depicts the D-BSN
architecture. The 1× 1 convolution modules perform feature
extraction and aggregation per pixel. For the hidden embed-
ding feature extracted by the 1× 1 convolution, masked con-
volution generates blind spots by filtering after assigning zero
to the center element of the convolutional filter. Specifically,
applying masked convolution with a kmc-sized kernel w can
be written as follows:

h(i+1) = h(i) ∗ (w ⊗m) + b, (2)

mx,y =

{
0, if x = ⌊kmc/2⌋ and y = ⌊kmc/2⌋,
1, otherwise,

(3)

where h(i) is the hidden embedding of the ith layer, and b
denotes the bias of the layer. Additionally, ∗ and ⊗ denote
the convolutional operator and element-wise multiplication,
respectively. After applying the masked convolution, noisy
pixels are reconstructed using the information from adjacent

pixels without using the masked pixel by applying stacked
dilated convolutional modules. The dilation d of the dilated
convolution is determined as follows:

d = (kmc + 1)/2. (4)

Because of these architectural characteristics of the D-
BSN, even if a sufficient number of dilated convolutional
modules are applied, each pixel is not affected by all pix-
els when reconstructed. In Figure 2, (b) and (c) present these
architectural characteristics of the D-BSN when kmc = 3.
In addition, (b) depicts pixels that affect when the masked
pixel (red pixel) is restored in the entire process, and (c) illus-
trates pixels that affect when the masked pixel is restored in
the dilated convolutional modules. Reconstructing the pixel
z(x, y) with successive l dilated convolutional modules can
be written as follows:

z(i+l)(x, y) = fθd({z(i)(x+ nxd, y + nyd)

||nx| ≤ l, |ny| ≤ l}), (5)

where nx and ny denote the set of integers whose absolute
values are not greater than l, fθd(·) represents dilated convo-
lutional modules parameterized by θd, and z(i) indicates the
input of the ith dilated convolutional module. Thus, these ar-
chitectural characteristics should be considered when design-
ing a self-attention module in a pixel-wise manner using non-
local information based on the D-BSN architecture. Without
this consideration, the masked pixel directly or indirectly af-
fects reconstruction for itself, and training the neural network
may become unstable or fail due to identity mapping.

2.2 Nonlocal Self-Similarity
In general, natural images often have repetitive patterns.
Using these repetitive patterns spread throughout an im-
age is an effective image denoising method. We indicate
this prior as nonlocal self-similarity. The denoising method
using nonlocal self-similarity was first proposed in nonlo-
cal means [Buades et al., 2005] and showed better per-
formance over the conventional methods using local self-
similarity. Afterward, various extensions [Dabov et al., 2007;
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Figure 3: The architecture of our SS-Block which consists of SS-Attention and D-ConvBlock. Our SS-Attention block is a lightweight
self-attention module that can capture self-similarities, and D-ConvBlock, consisting of dilated convolution, activation layers, and 1 × 1
convolution layer, serves as a feed-forward network of the classic Transformer model.

Peyré et al., 2011; Xu et al., 2015; Niu et al., 2020] have
been proposed using nonlocal self-similarity, and the methods
have shown promising performance even though the studies
used non-learning-based methods. Recently, CNN-based de-
noising methods have primarily been conducted. However,
most CNN-based methods do not consider using nonlocal
self-similarity because the notion of nonlocal self-similarity
conflicts with the local filtering concept in the CNN.

3 Method
Our main goal is to develop an effective D-BSN-based ar-
chitecture that can perform the denoising task using a self-
attention module that can consider nonlocal self-similarity.
The challenge to achieving this goal is that the classic self-
attention module has a high computational complexity to use
in a pixel-wise manner. To alleviate the computational com-
plexity, we designed a simplified self-attention module, fo-
cusing on obtaining nonlocal self-similarity. Furthermore,
unlike the feedforward layers of a conventional vision trans-
former consisting of two fully connected layers, we adopt
feedforward blocks consisting of two dilated convolutional
layers and an 1 × 1 convolutional layer to reduce computa-
tional complexity. In this section, we first present our self-
attention module, SS-Attention which is the core component
of our proposed architecture. Subsequently, we present our
D-BSN-based architecture which can be trained in a fully
self-supervised manner.

3.1 Self-Similarity-Based Attention
The architecture of SS-Attention is presented in Figure 3. The
SS-Attention module first generates the self-similarity-based
attention map, applies the attention mechanism, and propa-
gates the embeddings through the dilated convolution block

Figure 4: An illustration of self-attention schemes. The same col-
ored pixels are mixed by the self-attention modules.

(D-ConvBlock). This section introduces the details of SS-
Attention architecture and the considerations when designing
this module. The classic self-attention module has a limita-
tion when performed in a pixel-wise manner due to its com-
plexity, which quadratically increases with spatial resolution.
We simplify the self-attention module to reduce the computa-
tional complexity. The computational complexity of the clas-
sic self-attention mechanism, the so-called multi-head self-
attention (MSA), is provided below:

O(MSA) = 4hwC + 2(hw)2C, (6)

where h and w indicate the dimensions of the spatial resolu-
tion, and C denotes the channels of the tensor. The left term
represents the complexity of applying four linear transforms,
and the right term indicates the complexity of generating and
applying an attention map. As the equation reveals, the major
computational overhead of the MSA is from the size of the
attention map. Therefore, reducing the size of the attention
map is key to reducing the computational complexity of the
self-attention module.

As mentioned in Section 2, in D-BSN-based architecture,
there are sets of pixels that affect each other during the re-
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Figure 5: The overall architecture of SS-BSN. There are two paths for dilated convolution modules starting with 3 × 3 and 5 × 5 masked
convolutions, respectively. For each path, we stack a total of 9 dilated convolution modules, the first (9 − m) modules are DConvBlocks,
and the following m modules are SS-Blocks. The feature extraction and feature aggregation modules consist of 1×1 convolution layers and
activation layers (ReLU). In our experiments, m is set to 3.

construction process. Therefore, a self-attention map should
be generated within a pixel set that can affect each other, de-
fined by Eq. (5). To achieve this, we adopted the grid atten-
tion [Tu et al., 2022]. We first reshape the tensor of shape
(C × h × w) into shape (d2 × hw/d2 × C) using a d × d
grid. Then, we employ self-attention on the decomposed ten-
sor. Through this process, we generate the attention map
A ∈ Rhw/d2×hw/d2

for each set of pixels. Figure 4 com-
pares the full attention, block attention [Liang et al., 2021;
Chen et al., 2021], and grid attention.

The attention map we generated is much smaller than the
attention map for MSA. However, this reduction may be in-
sufficient in environments with limited hardware. Therefore,
we used the parameter γ to resize the grid. In general, in the
case of natural images, repeated patterns appear globally, so
even if more sparsity is added to the self-attention modules,
the performance of the denoising module does not degrade
much. Thus, the final grid size ḋ is determined by ḋ = γ · d,
and ḋ2 number of A tensors are generated. To summarize, re-
constructing the pixel z(x, y) with an SS-Attention block can
be written as follows:

ẑ(x, y) = fθss({z(x+ nxḋ, y + nyḋ)}), (7)

where nx and ny denote a set of integers, and fθss(·) denotes
a SS-Attention block.

In addition to generating and applying the attention map,
the MSA consists of four linear transforms for generating
a query (Q), key (K), value (V ), and output. To further
simplify the self-attention module, we design a self-attention
mechanism using a linear transform to reduce the linear
transform-related complexity O(4hwC) to O(hwC). Specif-
ically, we integrate Q with K, and the gridded input tensor
serves as V . This design makes SS-Attention focus on captur-
ing nonlocal self-similarities and improves training stability.
From a normalized tensor Y ∈ Rḋ2×hw/ḋ2×C and gridded
input tensor ẑ ∈ Rḋ2×hwḋ2×C , SS-Attention generates Q, K,

and V as follows:

Q = YWqk,K = YWqk, V = ẑ,

Q,K, V ∈ Rḋ2×hw/ḋ2×C , (8)

where Wqk ∈ RC×C denotes a linear matrix. With Q, K,
and V generated in this way, the process of SS-Attention is
defined as follows:

z(l+1) = Softmax(
1 + cos(Q,KT )√

C
)V + z(l), (9)

where z(l) denotes the input of the lth SS-Attention block.
Overall, the computational complexity of SS-Attention is
provided below:

O(SS-Attention) = hwC +
2(hw)2C

ḋ2
. (10)

In our experimental settings (γ = 2), the average computa-
tional complexity of our SS-Attention is only about 3.8% of
MSA.

In addition, previous studies related to nonlocal self-
similarity compared similarities between patches. However,
in this study, pixel-wise features are compared because the
information for the adjacent pixels is embedded in the central
pixel due to the convolutional operations.

3.2 Self-Similarity-Based Blind-Spot Network
We integrate SS-Attention into the blind-spot network (SS-
BSN), which can be trained in a self-supervised manner. The
proposed SS-BSN is inspired by the D-BSN [Wu et al., 2020]
and AP-BSN [Lee et al., 2022]. Figure 5 illustrates the over-
all architecture of the SS-BSN. As mentioned in Section 2,
to train a fully self-supervised denoising neural network, we
first extract features of the image with 1×1 convolutions and
generate blind pixels through masked convolutions. Subse-
quently, each pixel is reconstructed using information from
the adjacent pixels through a D-ConvBlock and SS-Block.
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Method
SIDD [Abdelhamed et al., 2018] DND [Plotz and Roth, 2017]

PSNR↑(dB) / SSIM↑ PSNR↑ (dB) / SSIM↑

Non-learning Based
BM3D [Dabov et al., 2007] 25.65 / 0.685 34.51 / 0.851
WNNM [Gu et al., 2014] 25.78 / 0.809 34.67 / 0.865

Supervised
DnCNN [Zhang et al., 2017] 36.63 / 0.920† 38.00 / 0.934†

DANet [Yue et al., 2020] 39.46 / 0.956 39.47 / 0.955

Supervised
(Synthetic pairs)

CBDNet [Guo et al., 2019] 33.28 / 0.868 38.05 / 0.942
Zhou et al. [Zhou et al., 2020] 34.02 / 0.898† 38.40 / 0.945

Self-Supervised

Noise2Void [Krull et al., 2019] 27.68 / 0.668 -
Noise2Self [Batson and Royer, 2019] 29.59 / 0.808 -

R2R [Pang et al., 2021] 34.78 / 0.898 -
AP-BSN [Lee et al., 2022] 35.97 / 0.909† 37.46 / 0.924
AP-BSNe [Lee et al., 2022] 37.05 / 0.934 38.09 / 0.937

Ours
(Self-Supervised)

SS-BSN 36.73 / 0.923 37.72 / 0.928
SS-BSNe 37.42 / 0.937 38.46 / 0.940

Table 1: Quantitative results on SIDD and DND datasets. By default, the baseline results of benchmark datasets are cited from the official
website for a fair comparison. We report our experimental results when the results are not reported on the benchmark websites. † indicates
our experimental result, and e denotes the methods which adopt the self-ensemble strategy proposed in AP-BSN.

The D-ConvBlock consists of the remaining parts except for
SS-Attention in the SS-Block in Figure 3. Finally, we take
1 × 1 convolutions for the tensors from the SS-Block to re-
duce the channels and generate the denoised image.

As depicted in Figure 5, we introduce successive D-
ConvBlocks and SS-Blocks in the last m layers. The SS-
Attention, the main component of the SS-Block, determines
self-similarity based on the cosine similarity of embedded
features of each pixel; thus, it is inefficient to determine self-
similarities by comparing noisy features that are not suffi-
ciently denoised [Xu et al., 2015]. Therefore, we designed
SS-BSN such that embedded features, which are sufficiently
denoised through successive D-ConvBlocks, serve as input to
the SS-Blocks for capturing nonlocal self-similarities. To jus-
tify this approach, we provide additional experimental results
in Section 4.5.

4 Experimental Results
4.1 Experimental Settings
Dataset To evaluate the proposed method, we use the
Smartphone Image Denoising Dataset (SIDD) [Abdelhamed
et al., 2018] and Darmstadt Noise Dataset (DND) [Plotz and
Roth, 2017]. The SIDD medium split contains 320 noisy-
clean image pairs taken in various lighting conditions and
ISO using five different smartphones. We also adopted the
SIDD validation and benchmark dataset for validation and
testing. The SIDD validation and benchmark dataset contain
1,280 patches of size 256× 256, each.

The DND dataset contains 50 noisy images, each of which
contains 20 bounding boxes of size 512 × 512. Four cam-
eras capture noisy images under a higher ISO with a shorter
exposure time. The DND dataset does not provide training
and validation images; therefore, we used the DND dataset
for training and performance evaluation. This experimental

setting is possible because the SS-BSN can be trained in a
fully self-supervised manner.

Although the SIDD and DND datasets provide both sRGB
and RAW data, we evaluate the denoising performance on
the sRGB data. The ground truth images of the SIDD bench-
mark and DND dataset are not provided, but the peak signal-
to-noise ratio (PSNR) and structural similarity index mea-
sure (SSIM) results for the denoising results can be obtained
through the online submission system on the SIDD bench-
mark website1 and the DND benchmark website2.

Pixel-Shuffle Downsampling Naive D-BSN has pixel-
wise independent noise assumption; thus, it is ineffective
in removing real-world noise with spatial correlation. Re-
cently, methods [Zhou et al., 2020; Lee et al., 2022] that at-
tempt to remove the spatial correlation of real-world noise
using pixel-shuffle downsampling have been proposed. For-
tunately, the D-BSN can effectively remove real-world noise
by training with pixel-shuffle downsampled images. In par-
ticular, the method for minimizing the aliasing artifacts that
can arise when applying pixel-shuffle downsampling using an
asymmetric pixel-shuffle stride factor in the training and test-
ing phases is proposed in the AP-BSN. This method shows
promising performance. Thus, we adopt this approach to the
proposed method and perform real-world denoising with a
pixel-shuffle stride factor of 5 in the training phase and 2 in
the testing phase.

Implementation Details To optimize the SS-BSN3, we
randomly extract the patches of size 120 × 120 from noisy
images and augment all training images by randomly flipping
and rotating them by 90◦. In addition, we used the L1 loss

1https://www.eecs.yorku.ca/∼kamel/sidd/benchmark.php
2https://noise.visinf.tu-darmstadt.de/benchmark/
3Our code is available at: https://github.com/YoungJooHan/

SS-BSN
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Figure 6: Visual comparison of denoising sRGB images in the SIDD validation dataset.

and the Adam [Kingma and Ba, 2015] optimizer with an ini-
tial learning rate of 10−4. At the 16th epoch, the learning
rate is multiplied by 0.1, where our model is trained over 20
epochs. We set γ to 2 for the SS-Attention module and m to 3
for the SS-BSN architecture. These hyperparameters are de-
termined by our additional experiments described in Section
4.5.

4.2 Results on Real-world Denoising
Table 1 lists the PSNR/SSIM results of SS-BSN and vari-
ous baselines. We follow the submission guidelines for the
SIDD and DND datasets to evaluate the proposed method. By
default, the baseline results on benchmark datasets are cited
from official websites for a fair comparison. However, if the
results are not reported on the benchmark websites, our ex-
perimental results are reported.

The proposed method is compared to traditional non-
learning- and learning-based methods in the experiments.
Specifically, the methods we include for the comparison
cover non-learning based methods (BM3D [Dabov et al.,
2007] and WNNM [Gu et al., 2014]), supervised denoising
methods (DnCNN [Zhang et al., 2017] and DANet [Yue et al.,
2020]), supervised methods trained with generated synthetic
noise (CBDNet [Guo et al., 2019] and Zhou et al. [Zhou et al.,
2020]), and self-supervised methods (Noise2Void [Krull et
al., 2019], Noise2Sself [Batson and Royer, 2019], R2R [Pang
et al., 2021], and AP-BSN [Lee et al., 2022]). We also pro-
vide a qualitative comparison between SS-BSN and various
baselines in Figure 6.

In Table 1, SS-BSN outperforms AP-BSN on the SIDD
and DND datasets, which previously performed best in a
self-supervised manner. Specifically, with a self-ensemble
method, which is proposed in AP-BSN, SS-BSN obtains
PSNR gains of 0.37 dB on both datasets; without a self-
ensemble method, SS-BSN obtains PSNR gains of 0.76 dB
and 0.26 dB over the AP-BSN method. Further, SS-BSN with
the self-ensemble method obtains better PSNR values than

SS QK CS DF PSNR/SSIM
× × × × 35.97/0.837√ √

× × 35.96/0.837√
×

√
× 36.04/0.839√ √ √
× 36.26/0.850√

×
√ √

36.68/0.857√ √ √ √
36.78/0.860

Table 2: Ablation study of SS-Attention and SS-BSN on SIDD
validation dataset. SS denotes the SS-Attention, QK the query key
integration, CS the cosine similarity, and DF the determination of
self-similarities on the denoised features. Specifically, in the experi-
ment labeled with DF, the last three D-ConvBlocks are replaced with
SS-Blocks.

the supervised methods using synthetic pairs, which have the
constraint that a sufficient amount of clean images must be
accessible.

4.3 Ablation Study
Table 2 summarizes the performance of different architec-
ture choices for our proposed SS-Attention and SS-BSN. In
the experiment that applied only query key integration or co-
sine similarity to SS-Attention, no significant performance
improvement is observed compared to the baseline. How-
ever, in the experiment where both query key integration and
cosine similarity are applied, a meaningful performance im-
provement is observed. We also find that determining self-
similarities on denoised features significantly improves the
denoising performance.

4.4 Visualization of SS-Attention Results
The visualization results of the self-similarity-based atten-
tion maps from different SS-Attention blocks are shown in
Figures 1 and 7. To justify the effectiveness of the SS-
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Figure 7: Visualization of the self-similarity-based-attention maps. (a) Noisy input image, (b)-(d) visualization of the self-similarity-
based-attention maps from different SS-Attention blocks. (e) denoised estimates of our method. In (b)-(d), the yellow circles show the pixels
with high similarity with the masked pixel (red circle) predicted by our method. A larger radius of the yellow circles indicates high similarity.

Figure 8: The analysis of hyperparameters. (a), (b) Performance
comparison according to hyperparameter m in SIDD validation and
benchmark dataset, respectively. (c), (d) Performance comparison
according to hyperparameter γ in SIDD validation and benchmark
dataset, respectively.

Attention mechanism, we used a visualization method similar
to that in [Dai et al., 2017]. As shown in Figure 7, the self-
similarity-based attention map of the first SS-Block (Figure
7b) is very noisy and does not represent meaningful informa-
tion since the attention map is generated by using the output
of the D-ConvBlock. However, in the deep block (Figure 7d),
the self-similarity-based attention maps from SS-Attention
blocks represent accurate and meaningful information. Yel-
low circles are drawn on pixels with high self-similarity at-
tention values, and a larger radius of yellow circles indicates
high similarity.

4.5 Hyperparameters
The SS-BSN and SS-Attention have hyperparameters of γ
and m, respectively. Figure 8 shows the effect of these hyper-
parameters on the performance on the SIDD validation and
benchmark datasets. The hyperparameter of SS-BSN, m de-
termines the number of the last m dilated convolution mod-
ules that SS-Blocks will be substituted. Since our proposed
SS-Attention is based on the similarity between pixel fea-
tures, it may be ineffective to calculate the cosine similarity

between noisy pixels. Therefore, features that are denoised
from D-ConvBlocks are used as input to the SS-Block. Fig-
ure 8a and 8b show the performance comparison when the last
m blocks are substituted with SS-Blocks. The experimental
results show that it is effective when SS-Block is applied to
denoised features. To this end, we set m to 3 in our experi-
ments.

The hyperparameter of SS-Attention, γ determines the size
of the attention map, which greatly affects the computational
complexity of SS-Block. A large attention map of self-
attention module in a pixel-wise manner means that numer-
ous pixels are considered during the reconstruction. However,
in general, since repetitive patterns appear globally, adding
sparsity to the attention map does not significantly degrade
the denoising performance. It may be seen from Figure 8c
and 8d that performance degradation is not noticeable until
γ is 2, but the computational complexity drops dramatically.
Therefore, we set γ to 2 in our experiments.

5 Conclusion

This paper presents SS-Attention, a novel self-similarity-
based self-attention module that can capture long-range
dependency and obtain information from nonlocal self-
similarities. Furthermore, we integrate SS-Attention into
the blind-spot network (SS-BSN), which can be trained in a
fully self-supervised manner. This paper focused on design-
ing a lightweight self-attention module that can be trained in
a pixel-wise manner. The experiments demonstrate the ef-
fectiveness of the proposed model over various baselines in
real-world denoising. Additionally, we provide justification
for our SS-Attention with the visualization of self-similarity-
based attention maps. In the future, we hope our work can
be a key to solving the challenging points of self-supervised
denoising.
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