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Abstract
In the realm of autonomous driving, real-
time perception or streaming perception remains
under-explored. This research introduces DAMO-
StreamNet, a novel framework that merges the
cutting-edge elements of the YOLO series with a
detailed examination of spatial and temporal per-
ception techniques. DAMO-StreamNet’s main in-
ventions include: (1) a robust neck structure em-
ploying deformable convolution, bolstering recep-
tive field and feature alignment capabilities; (2) a
dual-branch structure synthesizing short-path se-
mantic features and long-path temporal features,
enhancing the accuracy of motion state predic-
tion; (3) logits-level distillation facilitating efficient
optimization, which aligns the logits of teacher and
student networks in semantic space; and (4) a real-
time prediction mechanism that updates the fea-
tures of support frames with the current frame,
providing smooth streaming perception during in-
ference. Our testing shows that DAMO-StreamNet
surpasses current state-of-the-art methodologies,
achieving 37.8% (normal size (600, 960)) and
43.3% (large size (1200, 1920)) sAP without re-
quiring additional data. This study not only es-
tablishes a new standard for real-time perception
but also offers valuable insights for future re-
search. The source code is at https://github.com/
zhiqic/DAMO-StreamNet.

1 Introduction
The rapid development of autonomous vehicles necessitates
robust and efficient traffic environment perception systems.
Crucial to this is streaming perception, which concurrently
detects and tracks objects in a video stream, and directly in-
fluences autonomous driving decisions. Challenges, however,
arise from the swiftly fluctuating scales of traffic objects due
to vehicle motion, leading to conflicts in the receptive field
when identifying both large and small objects. Furthermore,
real-time perception is a complex issue largely reliant on mo-
tion consistency context and historical data. The two primary
hurdles in real-time perception are: (1) the adaptive manage-

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

Non-Realtime RealtimesAP

FPS

StreamYOLO-L

DAMO-StreamNet-L 

Streamer 
A-Streamer 

Streamer+Ada

DAMO-StreamNet-L 

LongShortNet-L

DAMO-StreamNet-S 

LongShortNet-S

StreamYOLO-S

DAMO-StreamNet-S（w/o DRFPN）

Figure 1: Performance comparisons of streaming perception task,
showcasing the balance between accuracy and speed achieved by
our proposed method, DAMO-StreamNet, which sets a new state-
of-the-art benchmark.

ment of quickly shifting object scales, and (2) the accurate
and efficient learning of long-term motion consistency.

Despite previous research on temporal aggregation tech-
niques [Wang et al., 2018; Chen et al., 2018; Lin et al., 2020;
Sun et al., 2021; Huang et al., 2022] has primarily focused
on offline settings and is unsuitable for online real-time per-
ception. Furthermore, enhancing the base detector has not
been thoroughly investigated in the context of real-time per-
ception. To address these limitations, we propose DAMO-
StreamNet, a practical real-time perception pipeline that im-
proves the model in four key aspects:

1. To augment the performance of the base detector, we in-
troduce an effective feature aggregation scheme named
Dynamic Receptive Field FPN. Leveraging connections
and deformable convolution networks, this scheme mit-
igates receptive field conflicts and strengthens feature
alignment capacity. We also implement a state-of-the-
art detection technique known as Re-parameterization to
boost the network’s performance without adding extra
inference costs. These improvements result in superior
detection accuracy and quicker inference times.

2. To capture long-term spatial-temporal correlations, we
construct a dual-path structure temporal fusion module.
Utilizing a two-stream architecture, this module sep-
arates spatial and temporal information, enabling the
precise and efficient capture of long-term correlations.
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Figure 2: Impact of Receptive Field on Streaming Perception: In-
adequate receptive field coverage, as illustrated in the upper and
middle regions, leads to unsuccessful predictions. This finding un-
derscores the decrease in performance for large-scale objects with
high-resolution input, attributed to limited receptive field coverage.

3. To address the complexities of learning long-term mo-
tion consistency, we devise an Asymmetric Knowl-
edge Distillation (AK-Distillation) framework. This
framework applies a teacher-student learning strategy,
wherein student networks are supervised by transfer-
ring the generalized knowledge captured by large-scale
teacher networks. This method enforces long-term mo-
tion consistency of the feature representations between
the teacher-student pair, leading to improved perfor-
mance.

4. To meet the demand for real-time forecasting, we update
the support frame features with the current frame before
the subsequent prediction in the inference phase. Fur-
thermore, the support frame features are updated by the
current frame in preparation for the next prediction in
the inference phase to fulfill the real-time forecasting re-
quirement. This process enables the pipeline to handle
real-time streaming perception and make timely predic-
tions.

In a nutshell, DAMO-StreamNet presents a cutting-edge
solution for real-time perception in autonomous driving. We
also introduce a novel evaluation metric, the K-Step Stream-
ing Metric, which takes into account the temporal interval
to assess real-time perception. Our experiments demonstrate
that DAMO-StreamNet surpasses existing SOTA methods,
achieving 37.8% (normal size (600, 960)) and 43.3% (large
size (1200, 1920)) sAP without utilizing any extra data. Our
work not only sets a new standard for real-time perception
but also contributes meaningful insights for future research in
this field. Furthermore, DAMO-StreamNet can be adapted to
a variety of autonomous systems, such as drones and robots,
to provide accurate and real-time environmental perception,
thereby enhancing their safety and efficiency.

2 Related Work
2.1 Image Object Detection
State-of-the-art Detectors. The field of image object de-
tection has seen significant progress in recent years due to
the development of advanced detectors [Ge et al., 2021b;
Wang et al., 2022], with techniques focusing on backbone
design [Wang et al., 2021; Ding et al., 2021a; Ding et al.,
2021b; Ding et al., 2019; Vasu et al., 2022], feature aggrega-
tion [Lin et al., 2017; Ghiasi et al., 2019; Jiang et al., 2022;
Tan et al., 2020; Cheng et al., 2022; Tu et al., 2023;
Cheng et al., 2017a; Cheng et al., 2019b], and label assign-
ment [Ge et al., 2021a; Kim and Lee, 2020; Carion et al.,
2020].

Feature Aggregation. Feature aggregation, especially with
FPN [Lin et al., 2017] and PAFPN [Liu et al., 2018], plays
a key role in object detection. More recently, the Neural Ar-
chitecture Search (NAS) methodology has been incorporated
into this area [Ghiasi et al., 2019; Cheng et al., 2018; Huang
et al., 2018]. GiraffeDet [Jiang et al., 2022; Chen et al., 2023;
Zhou et al., 2022] further innovates by using a lightweight
backbone and a heavy neck for feature learning.

2.2 Video Object Detection
Temporal Learning. Temporal learning often involves fea-
ture aggregation across nearby frames [Wang et al., 2018;
Chen et al., 2018; Lin et al., 2020; Sun et al., 2021;
Lan et al., 2022; Cheng et al., 2017a]. This has been im-
plemented in DeepFlow [Zhu et al., 2017b] and FGFA [Zhu
et al., 2017a] through optic flow, and in MANet [Wang et al.,
2018] through pixel-level calibration.

Temporal Linking. Despite the success of temporal learn-
ing, video object detection often requires complex tempo-
ral modeling components, such as optical flow models [Zhu
et al., 2017b], recurrent neural networks [Lin et al., 2020;
He et al., 2021], and relation networks [Gao et al., 2021;
Cheng et al., 2017b]. Simpler alternatives include tempo-
ral linking modules like Seq-NMS [Han et al., 2016], Tubelet
rescoring [Kang et al., 2016], and Seq-Bbox Matching [Bel-
hassen et al., 2019; Lan et al., 2022].

2.3 Knowledge Distillation
Knowledge distillation [Hinton et al., 2015] aims to trans-
fer feature representation from a teacher network to a stu-
dent network. This approach has been adapted in various
ways, such as with intermediate-sized teacher-assistant net-
works [Mirzadeh et al., 2020] and hint learning [Chen et
al., 2017]. Other efforts have focused on leveraging dif-
ferent intermediate representations [Heo et al., 2019; Chen
et al., 2021; Cheng et al., 2018; Cheng et al., 2019b] or
learning data sample or layer relations [Yao et al., 2021;
Liu et al., 2020; Yang et al., 2022b; Cheng et al., 2019a].
DAMO-StreamNet is the first work to use knowledge distilla-
tion for the streaming perception task, employing the knowl-
edge distillation module to enhance the accuracy of ”predict-
ing the next frame” [Yang et al., 2022a] by mirroring the fea-
tures of the ”next frame.”
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2.4 Streaming Perception
Streaming perception is a relatively new field with limited re-
search focus. Existing methods [Li et al., 2020] are based
on object detection and use temporal modeling techniques to
improve performance. However, state-of-the-art work such as
StreamYOLO [Yang et al., 2022a] does not fully utilize the
semantics and motion in video streams. Meanwhile, other re-
cent efforts [Yang et al., 2022a; Li et al., 2022] build on the
YOLOX-based detector. Our work with DAMO-StreamNet
addresses these issues by re-engineering the base detector
and integrating feature aggregation and knowledge distilla-
tion. As a result, our method presents a more comprehensive
solution for the streaming perception task, outperforming ex-
isting methods and setting a new standard for future research.

3 DAMO-StreamNet
The overall framework is illustrated in Fig. 3. Initially, a
video frame sequence passes through DAMO-StreamNet to
extract spatiotemporal features and generate the final output
feature. Subsequently, the Asymmetric Knowledge Distilla-
tion module (AK-Distillation) takes the output logit features
of the teacher and student networks as inputs, transferring the
semantics and spatial position of the future frame extracted
by the teacher to the student network.

Given a video frame sequence S = {It, . . . It−Nδt}, where
N and δt represent the number and step size of the frame
sequence, respectively. DAMO-StreamNet can be defined as,

T = F(S,W ),

where W denotes the network weights, and T represents the
collection of final output feature maps. T can be further de-
coded using Decode(T ) to obtain the result R, which in-
cludes the score, category, and location of the objects.

In the training phase, the student network can be repre-
sented as,

Tstu = Fstu(S,Wstu).

Besides the student network, the teacher network takes the
t+ 1 frame as input to generate the future result, represented
by,

Ttea = Ftea(It+1,Wtea),

where Wstu and Wtea denote the weights of the student and
teacher networks, respectively. Then, AK-Distillation lever-
ages Tstu and Ttea as inputs to perform knowledge distilla-
tion AKDM(Tstu, Ttea). More details are elaborated in the
following subsections.

3.1 Network Architecture

The network is composed of three elements: the backbone,
neck, and head. It can be formulated as,

T = F(S,W ) = Gh(Gn(Gb(S,Wb),Wn),Wh),

where Gb, Gn, and Gh stand for the backbone, neck, and head
components respectively, while Wb, Wn, and Wh symbol-
ize their corresponding weights. Previous studies [Jiang et
al., 2022] highlighted the neck structure’s critical role in fea-
ture fusion and representation learning for detection tasks.
Consequently, we introduce the Dynamic Receptive Field
FPN (DRFPN), which employs a learnable receptive field ap-
proach for enhanced feature fusion. To benchmark against the
current state-of-the-art (SOTA), we apply the same settings
for Gn, Gh, and StreamYOLO [Yang et al., 2022a], leverag-
ing CSPDarknet-53 [Ge et al., 2021b] and TALHead [Yang et
al., 2022a] to build the network. Given the proven efficacy of
long-term temporal information by the existing LongShort-
Net [Li et al., 2022], we also integrate a dual-path architec-
tural module for spatial-temporal feature extraction.
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Dynamic Receptive Field FPN. Recent object detection
studies, including StreamYOLO [Yang et al., 2022a] and
LongShortNet [Li et al., 2022], have utilized YOLOX as their
fundamental detector. YOLOX’s limitation is its fixed spatial
receptive field that cannot synchronize features temporally,
thus impacting its performance. To address this, we propose
the Dynamic Receptive Field FPN (DRFPN) with a learnable
receptive field strategy and an optimized fusion mechanism.

Specifically, Fig.4 contrasts PAFPN and DRFPN. PAFPN
employs sequential top-down and bottom-up fusion opera-
tions to amplify feature representation. However, conven-
tional convolution with a static kernel size fails to align fea-
tures effectively. As a solution, we amalgamate the DRM
module and Bottom-up Auxiliary Connect (BuAC) with
PAFPN to create DRFPN. We introduce three notable modifi-
cations compared to PAFPN’s CSP module (Fig.4):(1) We in-
tegrate deformable convolution layers into the DRFPN mod-
ule to provide the network with learnable receptive fields;(2)
To enhance feature representation, we adopt re-parameterized
convolutional layers [Ding et al., 2021b];(3) ELAN [Wang et
al., 2022] and Bottom-up Auxiliary Connect bridge the se-
mantic gap between low and high-level features, ensuring ef-
fective detection of objects at diverse scales.

Dual-Path Architecture. The existing StreamYOLO
[Yang et al., 2022a] relies on a single historical frame
in conjunction with the current frame to learn short-term
motion consistency. While this suffices for ideal uniform
linear motion, it falls short in handling complex motion,
such as non-uniform motion (e.g., accelerating vehicles),
non-linear motion (e.g., rotation of objects or camera), and
scene occlusions (e.g., billboard or oncoming car occlusion).

To remedy this, we integrate the dual-path architecture [Li
et al., 2022] with a reimagined base detector, enabling the

capture of long-term temporal motion while calibrating it
with short-term spatial semantics. The original backbone and
neck can be represented formally as,

Gn(Gb(S,Wb),Wn)

= Gn+b(S,Wn+b)

= Gfuse(Gshort
n+b (It),Glong

n+b (It−δt, . . . , It−Nδt)),

where Gfuse represents the LSFM-Lf-Dil of LongShortNet.
Gshort
n+b and Glong

n+b denote the ShortPath and LongPath of
LongShortNet, which are used for feature extraction of the
current and historical feature, respectively. Note that their
weights are shared.

Finally, the dual-path network is formulated as,
T = F(S,W )

= Gh(Gn(Gb(S,Wb),Wn),Wh)

= Gh(Gfuse(Gshort
n+b (It),Glong

n+b (It−δt, . . . , It−Nδt))),

where the proposed dual-path architecture effectively ad-
dresses complex motion scenarios and offers a sophisticated
solution for object detection in video sequences.

3.2 Asymmetric Knowledge Distillation
The ability to retain long-term spatiotemporal knowledge
through fused features lends strength to forecasting, yet
achieving streaming perception remains a daunting task.
Drawing inspiration from knowledge distillation, we’ve fash-
ioned an asymmetric distillation strategy, transferring “future
knowledge” to the present frame. This assists the model in
honing its accuracy in streaming perception without the bur-
den of additional inference costs.

Given the asymmetric input nature of the teacher and stu-
dent networks, a sizable gap emerges in their feature distri-
butions, thus impairing the effectiveness of distillation at the
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feature level. Logits-based distillation primarily garners per-
formance improvements by harmonizing the teacher model’s
response-based knowledge, which aligns knowledge distribu-
tion at the semantic level. This simplifies the optimization
process for asymmetric distillation. As a result, we’ve en-
gineered a distillation module to convey rich semantic and
localization knowledge from the teacher (the future) to the
student (the present).

The asymmetric distillation is depicted in Fig. 3. The
teacher model is a still image detector that takes It+1 as in-
put and produces logits for It+1. The student model is a
standard streaming perception pipeline that uses historical
frames It−1, . . . , It−N and the current frame It as input
to forecast the results of the arriving frame It+1. The log-
its produced by the teacher and student are represented by
Tstu = {F cls

stu, F
reg
stu , F

obj
stu }, and Ttea = {F cls

tea, F
reg
tea , F

obj
tea },

where F cls
· , F reg

· , and F obj
· correspond to the classification,

objectness, and regression logits features, respectively. The
Asymmetric Knowledge Distillation, AKDM(·), is mathe-
matically formulated as,

AKDM(Tstu, Ttea)
= Lcls(F

cls
stu, F

cls
tea) + Lobj(F

obj
stu , F

obj
tea ) + Lreg(F̂

reg
stu , F̂

reg
tea ),

where Lcls(·) and Lobj(·) are Mean Square Error (MSE) loss
functions, and Lreg(·) is the GIoU loss [Rezatofighi et al.,
2019]. F̂ reg

stu and F̂ reg
tea represent the positive samples of the

regression logit features, filtered using the OTA assignment
method as in YOLOX [Ge et al., 2021b]. It is worth not-
ing that location knowledge distillation is only performed on
positive samples to avoid noise from negative ones.

3.3 K-step Streaming Metric
The Streaming Average Precision (sAP) metric is a prevalent
tool used to gauge the precision of Streaming Perception sys-
tems [Li et al., 2020]. This metric gauges precision by juxta-
posing real-world ground truth with system-generated results,
factoring in process latency.

Two primary methodologies exist in this domain: non-real-
time and real-time. For non-real-time methods, as depicted in
Fig.5(a), the sAP metric calculates precision by comparing
the current frame It results with the ground truth of the fol-
lowing frame It+2, post processing of frame It. Conversely,
real-time methods, as demonstrated in Fig. 5(b), conclude the
processing of the current frame It prior to the next frame It+1

arrival. Our proposed method, DAMO-StreamNet, is a real-
time method, adhering to the pipeline outlined in Fig. 5(b).

Though the sAP metric effectively evaluates the short-term
forecasting capability of algorithms, it falls short in assess-
ing their long-term forecasting prowess— a critical factor in
real-world autonomous driving scenarios. In response, we
introduce the K-step Streaming metric, an expansion of the
sAP metric, specifically tailored to evaluate long-term perfor-
mance. As depicted in Fig. 5(c), the algorithm projects the
results of the upcoming two frames, and the cycle continues.
The projection of the next K frames is represented as ”K-
sAP”, as shown in Fig. 5(d). Consequently, the standard sAP
metric translates to 1-sAP in the K-step metric context.

ItIt-1 It+1 It+2

Processing time of current frame Time interval to the matched frame

(a)

It+3 It+K…
ItIt-1 It+1 It+2

(b)

It+3 It+K…

ItIt-1 It+1 It+2

(c)

It+3 It+K
…

ItIt-1 It+1 It+2

(d)

It+3 It+K
…

Figure 5: Illustration of matching rules under different metrics. The
frames in green font denote the current frame and the frames in red
font denote the frames matched with the current frame under the
specific metric. (a) Matching result of non-real-time methods un-
der 1-sAP. (b) Matching result of real-time methods under 1-sAP.
(c) Matching result of real-time methods under 2-sAP. (d) Matching
result of real-time methods under K-sAP.

4 Experiments
4.1 Dataset and Metric
Dataset. We utilized the Argoverse-HD dataset, which
comprises various urban outdoor scenes from two US cities.
The dataset contains detection annotations and center RGB
camera images, which were used in our experiments. We ad-
hered to the train/validation split proposed by Li et al. [Li et
al., 2020], with the validation set consisting of 15k frames.

Evaluation Metrics. We employed the streaming Average
Precision (sAP) metric to evaluate performance. The sAP
metric calculates the average mAP over Intersection over
Union (IoU) thresholds ranging from 0.5 to 0.95, as well as
APs, APm, and APl for small, medium, and large objects,
respectively. This metric has been widely used in object de-
tection, including in previous works such as [Li et al., 2020;
Yang et al., 2022a].

4.2 Implementation Details
We pretrained the base detector of our DAMO-StreamNet on
the COCO dataset [Lin et al., 2014], following the method-
ology of StreamYOLO [Yang et al., 2022a]. We then trained
DAMO-StreamNet on the Argoverse-HD dataset for 8 epochs
with a batch size of 32, using 4 V100 GPUs. For convenient
comparison with recent state-of-the-art models [Yang et al.,
2022a; Li et al., 2022], we designed small, medium, and large
networks (i.e., DAMO-StreamNet-S, DAMO-StreamNet-M,
and DAMO-StreamNet-L). The normal input resolution (600,
960) was utilized unless specified otherwise. We main-
tained consistency with other hyperparameters from previous
works [Yang et al., 2022a; Li et al., 2022]. AK-Distillation
is an auxiliary loss for DAMO-StreamNet training, with the
weight of the loss set to 0.2/0.2/0.1 for DAMO-StreamNet-
S/M/L, respectively.

4.3 Comparison with State-of-the-art Methods
We compared our proposed approach with state-of-the-art
methods to evaluate its performance. In this subsection, we
directly copied the reported performance from their original
papers as their results. The performance comparison was con-
ducted on the Argoverse-HD dataset [Li et al., 2020]. An
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Methods sAP sAP50 sAP75 sAPs sAPm sAPl

Non-real-time detector-based methods
Streamer (S=900) [Li et al., 2020] 18.2 35.3 16.8 4.7 14.4 34.6
Streamer (S=600) [Li et al., 2020] 20.4 35.6 20.8 3.6 18.0 47.2

Streamer + AdaScale [Chin et al., 2019; Ghosh et al., 2021] 13.8 23.4 14.2 0.2 9.0 39.9
Adaptive Streamer [Ghosh et al., 2021] 21.3 37.3 21.1 4.4 18.7 47.1

Real-time detector-based methods
StreamYOLO-S [Yang et al., 2022a] 28.8 50.3 27.6 9.7 30.7 53.1
StreamYOLO-M [Yang et al., 2022a] 32.9 54.0 32.5 12.4 34.8 58.1
StreamYOLO-L [Yang et al., 2022a] 36.1 57.6 35.6 13.8 37.1 63.3

LongShortNet-S [Li et al., 2022] 29.8 50.4 29.5 11.0 30.6 52.8
LongShortNet-M [Li et al., 2022] 34.1 54.8 34.6 13.3 35.3 58.1
LongShortNet-L [Li et al., 2022] 37.1 57.8 37.7 15.2 37.3 63.8
DAMO-StreamNetNet-S (Ours) 31.8 52.3 31.0 11.4 32.9 58.7
DAMO-StreamNetNet-M (Ours) 35.7 56.7 35.9 14.5 36.3 63.3
DAMO-StreamNetNet-L (Ours) 37.8 59.1 38.6 16.1 39.0 64.6

Large resolution
StreamYOLO-L ‡ 41.6 65.2 43.8 23.1 44.7 60.5
LongShortNet-L † 42.7 (+1.1) 65.4 (+0.2) 45.0 (+1.2) 23.9 (+0.8) 44.8 (+0.1) 61.7 (+1.2)

DAMO-StreamNet-L † (Ours) 43.3 (+1.7) 66.1 (+0.9) 44.6 (+0.8) 24.2 (+1.1) 47.3 (+2.6) 64.1 (+3.6)

Table 1: Comparison with both non-real-time and real-time state-of-the-art (SOTA) methods on the Argoverse-HD benchmark dataset. The
symbol ’‡’ denotes the use of a large size (1200, 1920) and extra data. The symbol ’†’ denotes the use of a large size (1200, 1920) without the
use of extra data. The best results for each setting are shown in green. The largest increments of the large resolution setting are shown in red.

overview of the results reveals that our proposed DAMO-
StreamNet with an input resolution of 600 × 960 achieves
37.8% sAP, outperforming the current state-of-the-art meth-
ods by a significant margin. For the large-resolution input
of 1200 × 1920, our DAMO-StreamNet attains 43.3% sAP
without extra training data, surpassing the state-of-the-art
work StreamYOLO, which was trained with large-scale aux-
iliary datasets. This clearly demonstrates the effectiveness of
the systematic improvements in DAMO-StreamNet.

Compared to StreamYOLO and LongShortNet, DAMO-
StreamNet-L achieves absolute improvements of 3.6% and
2.4% under the sAPL metric, respectively. This also provides
substantial evidence that the features produced by DRFPN of-
fer a self-adaptive and sufficient size of the receptive field for
large-sized objects. It is worth noting that DAMO-StreamNet
experiences a slight decline compared to LongShortNet un-
der the stricter metric sAP75. This observation suggests that
although the dynamic receptive field achieves a sufficient re-
ceptive field for different scales of objects, it is not as accurate
as fixed kernel-size ConvNets. The offset prediction in the
deformable convolution layer may not be precise enough for
high-precision scenarios. In other words, better performance
could be achieved if this issue is addressed, and we leave this
for future work.

4.4 Ablation Study
Investigation of DRFPN. To verify the effectiveness of
DRFPN, we use StreamYOLO [Yang et al., 2022a] and Long-
ShortNet [Li et al., 2022] as baselines and integrate them with
the proposed DRFPN, respectively. The experimental results
are listed in Table 2. It is evident that DRFPN significantly
improves the feature aggregation capability of the baselines.
Particularly, the small-scale baseline models equipped with
DRFPN achieve improvements of 1.9% and 1.7%, separately.
This also demonstrates that the dynamic receptive field is

Methods S M L
Equip StreamYOLO with our DRFPN

StreamYOLO 28.7 33.5 36.1
+DRFPN 30.6 (+1.9) 35.1 (+1.6) 36.7 (+0.6)

LongShortNet Equipped with our DRFPN
LongShortNet 29.8 34.0 36.7

+DRFPN 31.5 (+1.7) 35.7 (+1.7) 37.5 (+0.8)

Table 2: Ablation study of the base detector on the Argoverse-HD
dataset. The best results for each subset and the corresponding in-
crements are shown in green font and red font, respectively.

crucial for the stream perception task. More importantly,
DRFPN enhances the performance of LongShortNet, which
suggests that the temporal feature alignment capacity is also
augmented by the dynamic receptive field mechanism.

Investigation of Temporal Range. To isolate the influence
of temporal range, we conduct an ablation study on N and
δt, as listed in Table 3. (0, -) represents the model utilizing
only the current frame as input. It is evident that increasing
the number of input frames can enhance the model’s perfor-
mance, with the best results obtained when N is equal to 2, 2,
and 3 for DAMO-StreamNet-S/M/L, respectively. However,
as the number of input frames continues to increase, the per-
formance experiences significant declines. Intuitively, longer
temporal information should be more conducive to forecast-
ing, but the effective utilization of long-term temporal infor-
mation remains a critical challenge worth investigating.

Investigation of AK-Distillation. AK-Distillation is a
cost-free approach for enhancing the streaming perception
pipeline, and we examine its impact. We perform AK-
Distillation with various lengths of temporal modeling and
scales of DAMO-StreamNet. As the results listed in Ta-
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(N , δt) StreamNet-S StreamNet-M StreamNet-L
(0, -) 28.1 32.0 34.2
(1, 1) 30.6 35.1 36.7
(1, 2) 31.2 34.5 37.1
(2, 1) 31.2 35.7 (+3.7) 37.5 (+3.3)
(2, 2) 31.4 (+3.3) 35.4 (+3.4) 37.2
(3, 1) 31.5 (+3.4) 35.3 37.2
(3, 2) 31.2 35.1 37.4 (+3.2)
(4, 1) 31.1 35.0 37.1
(4, 2) 30.7 35.2 36.5
(5, 1) 31.1 35.0 37.5 (+3.3)
(5, 2) 30.9 34.7 36.9

Table 3: Exploration of N and δt on the Argoverse-HD dataset.
StreamNet denotes our DAMO-StreamNet. The best two results and
the worst one are shown in green font, blue font, and purple font,
respectively. The best increments are shown in red font.

Methods S M L
D-SN (N=1) 30.6 35.1 36.7

D-SN (N=1)+AK-D 31.5 (+0.9) 35.3 (+0.2) 37.1 (+0.4)
D-SN (N=2/3) 31.5 35.7 37.5

D-SN (N=2/3)+AK-D 31.8 (+0.3) 35.5 (-0.2) 37.8 (+0.3)

Table 4: Ablation study of our proposed models. D-SN and AK-D
represent DAMO-StreamNet and AK-Distillation, respectively. The
best results and the largest increments are shown in green font and
red font, respectively.

ble 4 indicate, AK-Distillation yields improvements of 0.2%
to 0.9% for the DAMO-StreamNet configured with N = 1
short-term temporal modeling. This demonstrates that AK-
Distillation can effectively transfer ”future knowledge” from
the teacher to the student. For the DAMO-StreamNet with
the setting of N = 3, AK-Distillation improves DAMO-
StreamNet-S/L by only 0.3%, but results in a slight decline
for the medium-scale model. The limited improvement for
long-term DAMO-StreamNet is due to the narrow perfor-
mance gap between the teacher and student, and the relatively
high precision is difficult to further enhance.
Investigation of K-step Streaming Metric. We evaluate
DAMO-StreamNet with settings N = 1 and N = 2/3 un-
der the new metric sAPk, where k ranges from 1 to 6. The
results are listed in Table 5. It is clear that the performance
progressively declines as k increases, which also highlights
the challenge of long-term forecasting. Another observation
is that the longer time-series information leads to better per-
formance under the new metric.
Inference Efficiency Analysis. Although the proposed
DRFPN has a more complex structure compared to PAFPN,
DAMO-StreamNet still maintains real-time streaming per-
ception capabilities. For long-term fusion, we adopt the buffer
mechanism from StreamYOLO [Yang et al., 2022a], which
incurs only minimal additional computational cost for multi-
frame feature fusion.

5 Conclusion
Our research presents DAMO-StreamNet, a novel and ro-
bust framework integrating cutting-edge technologies from

K-Step Metric StreamNet (N=1) StreamNet (N=2/3)

S

sAP1 30.6 31.5 (+0.9)
sAP2 28.3 29.8 (+1.5)
sAP3 24.9 25.9 (+1.0)
sAP4 22.1 23.3 (+1.2)
sAP5 21.0 21.8 (+0.8)
sAP6 18.8 20.0 (+1.2)

M

sAP1 35.1 35.7 (+0.6)
sAP2 31.9 32.8 (+0.9)
sAP3 28.8 29.2 (+0.4)
sAP4 25.7 25.9 (+0.2)
sAP5 23.2 23.4 (+0.2)
sAP6 21.5 22.0 (+0.5)

L

sAP1 36.7 37.5 (+0.8)
sAP2 33.2 33.9 (+0.7)
sAP3 29.8 30.6 (+0.8)
sAP4 27.1 27.2 (+0.1)
sAP5 24.2 25.0 (+0.8)
sAP6 22.3 22.7 (+0.4)

Table 5: Exploration study of K-sAP on the Argoverse-HD dataset.
Here, our proposed model DAMO-StreamNet is denoted as Stream-
Net. The best results and largest increments for each subset are
shown in green and red font, respectively.

Methods S M L
LongShortNet (N=1) 14.2 17.3 19.7
LongShortNet (N=3) 14.6 17.5 19.8

DAMO-StreamNet (N=1) 21.0 24.2 26.2
DAMO-StreamNet (N=3) 21.3 24.3 26.6

Table 6: Ablation study of inference time (ms) on V100.

the YOLO series. Key innovations include (1) a robust neck
structure using deformable convolution, (2) a dual-branch de-
sign for enhanced time-series data analysis, (3) logit-level
distillation, and (4) a dynamic real-time prediction mecha-
nism. Comparison with existing methods on the Argoverse-
HD dataset clearly shows DAMO-StreamNet’s superiority.
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