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Abstract
Despite deep learning has achieved great success,
it often relies on a large amount of training data
with accurate labels, which are expensive and time-
consuming to collect. A prominent direction to re-
duce the cost is to learn with noisy labels, which are
ubiquitous in the real-world applications. A criti-
cal challenge for such a learning task is to reduce
the effect of network memorization on the falsely-
labeled data. In this work, we propose an iterative
selection approach based on the Weibull mixture
model, which identifies clean data by considering
the overall learning dynamics of each data instance.
In contrast to the previous small-loss heuristics, we
leverage the observation that deep network is easy
to memorize and hard to forget clean data. In par-
ticular, we measure the difficulty of memorization
and forgetting for each instance via the transition
times between being misclassified and being mem-
orized in training, and integrate them into a novel
metric for selection. Based on the proposed met-
ric, we retain a subset of identified clean data and
repeat the selection procedure to iteratively refine
the clean subset, which is finally used for model
training. To validate our method, we perform ex-
tensive experiments on synthetic noisy datasets and
real-world web data, and our strategy outperforms
existing noisy-label learning methods.

1 Introduction
Deep neural networks has achieved impressive success in a
wide spectrum of machine learning tasks. However, they usu-
ally rely on a large amount of data with accurate supervision,
which is expensive and time-consuming to obtain in practice.
In real-world applications, a common strategy for collecting
large-scale data is to use online queries [Blum et al., 2003]
and/or crowdsourcing [Yan et al., 2014], which are typically
cheap but the resulting annotations are noisy. Nonetheless, re-
cent studies [Arpit et al., 2017] demonstrate that the capacity
of deep networks is sufficient to fit even randomly generated
labels, which hinders the generalization when the deep net-
works learn with noisy labels. Therefore, it is essential to de-
velop robust training methods with noisy labels for deep neu-

ral networks, which can benefit a broad scope of applications
such as medical diagnosis [Li et al., 2021] and autonomous
driving systems [Feng et al., 2020].

In order to alleviate the impact of noisy data, it is critical
to identify the clean subset of data, also referred to as sample
selection [Song et al., 2022]. By removing mislabeled data as
much as possible, we are able to reduce the impact of misla-
beled data and robustify the learning process. During this pro-
cess, perhaps the most important aspect of sample selection
is the validity of the data selection metric. There are some ex-
isting works exploring the design of metric. Small-loss met-
ric is the most popular selection approach, which considers
samples with small loss values to be clean. This is based on
the observation that deep networks learn easy patterns first,
and then they overfit to the noisy pattern [Arpit et al., 2017].
Recently, FINE [Kim et al., 2021] utilizes the principal com-
ponent of feature representation and split the data according
to the projection to the principal component. However, those
criteria depends on the current training state of models for
removing corrupted data and are often unstable.

To tackle the above-mentioned issues, we propose a novel
sample selection framework for learning from noisy labels.
In contrast to prior works that simply utilize current state of a
trained model, we adopt a novel perspective that exploits the
overall learning dynamic to select clean training data. Our
main idea is to design a new metric to differentiate between
the clean and corrupted data based on the observation that the
network is easy to memorize and hard to forget clean samples.
To this end, we introduce memorization and forgetting mea-
surements to represent the overall learning dynamic for each
instance, which are integrated into our metric. Moreover, we
build a mixture model of the metric distribution to determine
the selection threshold, and perform multiple training rounds
to iteratively refine the selected clean data.

Specifically, at each round, we distinguish examples based
on the metric which takes into account the memorization and
forgetting property of each data during the learning process.
To this end, we record the prediction history of each instance
during the training as a sequence, and measure the difficulty
of memorization by the transition times from being misclassi-
fied to memorized and the difficulty of forgetting by the tran-
sition times from being memorized to misclassified. We then
develop a selection metric by combining the memorization
and forgetting measurements, as they play a complementary
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role in describing the learning dynamics. To perform selec-
tion, we adopt a Weibull mixture model to fit the metric distri-
bution and determine the selection threshold. Finally, to take
advantage of the falsely-labeled data, we further extend our
sample selection approach by incorporating semi-supervised
techniques in the model training.

To validate the effectiveness of our proposed approach,
we perform extensive experiments on CIFAR-10 [Krizhevsky
et al., 2009], CIFAR-100 [Krizhevsky et al., 2009], Mini-
WebVision [Li et al., 2017] and Mini-ImageNet [Jiang et al.,
2020] datasets under different noise ratios and types. The ex-
perimental results show that our method consistently outper-
forms other methods, thereby demonstrating its superiority.
Besides, we also perform detailed analysis of our approach to
provide more insights on the new metric.

Our main contributions can be summarized as follows,

• We propose a novel selection metric by taking advantage
of instance learning dynamics to discriminate clean and
corrupted data. Our strategy incorporates the learning
dynamics from both instance memorization and forget-
ting perspective.

• We develop a novel sample-selection approach based
on a Weibull mixture model on the metric distribution,
which refines the clean data selection via an iterative
training strategy.

• Our approach achieves the state of the art on five popular
noisy image classification benchmarks. We also show
that our method can be effectively combined with multi-
ple semi-supervised methods.

2 Related Works
In this section, we briefly review existing relevant works on
learning with noisy labels. Noisy data interfere with the learn-
ing of clean data [Arpit et al., 2017]. To reduce the influence,
the approach can be mainly summarized as follows: sample-
selection methods, semi-supervised based methods and other
noisy label approaches.

Sample-selection methods To avoid the influence of data
noises, sample selection approaches [Song et al., 2022] to
detect and filter falsely-labeled data are proposed. It is crit-
ical to choose an appropriate criterion to separate clean and
corrupted samples when deciding on a sample selection pro-
cedure. Small-loss [Arpit et al., 2017] is the most widely
utilized criterion. The empirical findings of study [Arpit et
al., 2017] indicate that deep neural networks acquire progres-
sively more sophisticated hypotheses and learn the simple
patterns of clean data prior to fitting noisy data, supporting the
reasonableness of small-loss criterion. Few works [Nguyen et
al., 2019; Zhou et al., 2020] adopt the exponential moving av-
erage of loss to select clean data. FINE [Kim et al., 2021] fil-
ters noisy instances by their eigenvectors which computes the
alignment of image feature and the principal component of
gram matrix in the learned representation space. [Zhu et al.,
2021] uses the number of projected gradient steps to attack a
data point to assess a data point’s distance to its class bound-
ary, which can then be used to distinguish between clean and
corrupted data.

In addition to the selection criterions, there are also
works [Song et al., 2022] that employ several networks to
collaborate with one another or multi-round learning to it-
eratively enhance the selected dataset. MentorNet [Jiang et
al., 2018] introduce mentor network to supervise the train-
ing of a student network, where MentorNet provides a cur-
riculum for StudentNet’s training to concentrate on the clean
samples. JoCoR [Wei et al., 2020] employs two networks
to make predictions on the same mini-batch data and im-
proves the agreement of two network via computing a joint
loss with Co-Regularization for each training instance. In Co-
teaching [Han et al., 2018a], each network selects its small-
loss instances and feeds them to its peer network, which can
filter various sorts of noise errors because of the distinct each
network’s learning ability. Multi-round learning refines the
selected subset repeatedly, which keeps improving the quality
of selected set as the number of rounds increase. For multi-
round learning, INCV [Chen et al., 2019] introduces cross-
validation to randomly partition noisy training data in order
to determine clean data for the subsequent round training. It
also employs Co-teaching strategy to exploit the selected data
to train deep networks. ITLM [Shen and Sanghavi, 2019]
iteratively minimize the trimmed loss by repeating multiple
rounds. For each round, it selects small loss samples to build
a more clean dataset and then retrain the deep network using
selected data. In order to gain from falsely-labeled data, semi-
supervised techniques are also explored to combine with sam-
ple selection to further improve performance [Li et al., 2020;
Ortego et al., 2021]. In contrast to previous approaches sim-
ply considering the present state of the model, we distinguish
the clean and corrupted data based on their learning dynamics
and then do multi-round learning.

Semi-supervised learning There are some works [Li et al.,
2020; Ortego et al., 2021; Song et al., 2019; Zhou et al.,
2020] trying to leverage the falsely-labeled data in an semi-
supervised(SSL) manner. DivideMix [Li et al., 2020] first
perform sample selection to eliminate the samples that are
more likely to be corrupted, and utilize the noisy samples as
unlabeled data to regularize training in a SSL manner with
MixMatch [Berthelot et al., 2019]. MOiT [Ortego et al.,
2021] introduces interpolated supervised contrastive loss with
MixUp [Zhang et al., 2017a] to interpolate data points in or-
der to enhance model performance. ScanMix [Zhang et al.,
2017a] develops from DivideMix and introduce Expectation-
Maximization(EM) based semantic clustering to improve the
robustness to noisy label. SELFIE [Song et al., 2019] corrects
refurbishable example, which can be corrected with high pre-
cision. Concretely, it considers the example with consistent
label predictions as refurbishable examples. In this study, we
also demonstrate that our method can be used effectively with
a variety of semi-supervised methodologies.

Other noisy label methods [Ghosh et al., 2017] demon-
strates that risk minimization with mean absolute error(MAE)
can be more tolerant of noisy labels, but is not appropriate for
complicated data. Generalized cross entropy(GCE) [Zhang
and Sabuncu, 2018] is a more general kind of noise-robust
loss that combines the benefits of categorical cross entropy
loss(CCE) and MAE. APL [Ma et al., 2020] further com-
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Figure 1: The overview of each sample selection round. The input dataset at left is noisy like the truck image with cat label. To model learning
dynamic for each instance, we record the learning status at each epoch as a sequence, where gray and black squares indicate misclassified
and memorized. The p is the number of epochs for current round. Note that the total length of green and red arrows indicate the difficulties of
memorization and forgetting. Then we compute the selection metric based on the difficulties. Finally, we identify and select the clean data,
and then use them for subsequent round.

bines existing robust loss functions that mutually boost each
other. Other works utilize implicit/explicit regularization [Liu
et al., 2020] or transition matrix learning[?] to improve the ro-
bustness of the model. MixUp [Zhang et al., 2017a] training
strategy that greatly prevents memorization to noise. Self-
training [Arazo et al., 2019] has been employed to generate
pseudo label to correct the falsely-labeled data.

3 Method

In this section, we present our approach to the robust learn-
ing of image classification tasks, aiming to improve the gen-
eralization of classification model. To this end, we propose
a sample selection approach leveraging the instance learn-
ing dynamics to separate the clean and falsely-labeled data.
Below we first present the overall sample selection frame-
work in Sec. 3.1. Then we introduce the design of pro-
posed selection metric using learning dynamics in Sec. 3.2
and the selection strategy based on a Weibull mixture model
in Sec. 3.3. Finally, we present the exploitation of corrupted
data in Sec. 3.4.

3.1 Multi-round Sample Selection Framework

The noisy training setD = {(xi, yi)}|D|
i=1 where xi, yi is the i-

th image and its corresponding label. Note that there are some
images that are falsely labeled. During training, our sample
selection will repeat for multiple rounds. We adopt the cate-
gorical cross entropy loss on current training set D to update
the model. Algorithm 1 describes the selection procedure of
one round. As training progress, we continually update se-
lection metric values. At the end of each round, we apply a
Weibull mixture model to identify and choose the clean data
as the training set D′

for next round.

3.2 Selection Metric Design
Model the instance learning dynamics In this work, we
distinguish the corrupted and clean data via their learning dy-
namics. First, we represent the instance learning dynamic
with instance prediction sequence Si for each instance xi,
which records the instance learning status for each epoch.
Concretely, given an image xi, the model outputs the pre-
diction label ŷ = argmaxc p(y = c|x). The example xi is
deemed to be memorized if the prediction label ŷ equals the
dataset label y. If not, it is referred to as misclassified. Based
on the learning status, we can obtain the k-th element of in-
stance prediction sequence Sk

i = 1ŷi=yi
, which corresponds

to the epoch k. Besides, the indicator function 1ŷi=yi
is 1

when ŷi = yi, otherwise 0. Note that we record instance’s
learning status before updating the model with gradient. It
is worth noting that as learning progresses, the proportion of
memorized examples keep increasing.

Selection metric We can further summarize the instance
learning dynamics to distinguish between clean and corrupted
data. Note that [Arpit et al., 2017] finds that the model often
first learns the patterns of clean data and then overfits to cor-
rupted data. Besides, [Toneva et al., 2018] observes that the
corrupted data is more easy to forget compared to clean data.
Motivated by these observations, we can hypothesis that clean
samples are both easy to learn and hard to forget. Further-
more, we estimate the difficulty of memorization and forget-
ting based on the instance prediction sequence Si. Therefore,
we propose a novel selection metric by combining them as we
believe that memorization and forgetting are complementary
to separate clean and corrupted data.

The intuitive solution to estimate the difficulty of mem-
orization is to measure the average transition times from
misclassified to memorized. Similarly, the difficulty of for-
getting can be estimated via the average transition times
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from memorized to misclassified. An instance prediction
sequence Sk

i may have several memorization and forget-
ting events during learning, as shown in Fig. 1. Therefore,
we split the instance sequence Si into continuous segments
Gi = {gui,1, · · · , gui,nu

i
} ∪ {gli,1, · · · , gli,nl

i
} with same indica-

tor value Sk
i in segment, where the segments gj are disjoint.

It is worth noting that gui,j means the segment where the in-
stances have not been memorized. Similarly, gli,j refers to the
segment where the instances are memorized by the model. nu

i

and nl
i are the number of misclassified segments gui and mem-

orized segments gli, respectively. Therefore, given instance
prediction sequence Si, we define the difficulty of memoriza-
tion Mi and forgetting Fi as follows

Mi =

∑nu
i

j=0 |guj |
nu
i

, Fi =

∑nl
i

j=0 |glj |
nl
i

(1)

where | · | represents the segment length. Considering that
clean instances typically have higher Fi and smaller Mi, we
create the selection metric by combining the memorization
and forgetting in the way described below

CF
i = Mi − λFi (2)

where λ is the coefficient to adjust the influence of memoriza-
tion and forgetting. Typically, we take λ = 1 in experiment.
Moreover, our metric can be simplified by omitting the num-
ber of segments from equation 1. Empirically we find that
the simplified version is very close to the full version CF .
Therefore, our metric after simplification is stated as follows

Ci = M̃i − λF̃i = nu
i Mi − λnl

iFi =

nu
i∑

j=0

|guj | − λ

nl
i∑

j=0

|glj |

(3)
where M̃i, F̃i are to measure the difficulty of memorization
and forgetting when ignoring the number of segments.

3.3 Selection Strategy
Based on empirical observation, we adopt the Weibull distri-
bution to represent the distribution of our metric scores on
the data with clean or noisy labels. The probability density
function of Weibull distribution is defined as follows

ϕ(x|α, β) = β

α
(
x

α
)β−1e−(x/α)β (4)

where x is the metric distribution, α is the scale parameter
and β is the shape parameter.

Given the metric distribution FC , we use the Weibull mix-
ture model which contains two components to fit the metric
distributions of clean and falsely-labeled data.

P (x|θ) = k1 ∗ ϕc(x|α1, β1) + k2 ∗ ϕf (x|α2, β2) (5)

where θ = (α1, β1, α2, β2), k1 and k2 are the coefficients
of each component of the mixture model which subjects to
k1+k2 = 1, ϕc and ϕf represent the distribution of clean and
falsely-labeled data respectively. According to the definition
of our metric, the component of the Weibull mixture model

Algorithm 1 Pseudocode of Sample Selection

Input: Current training set D, Model M , Number of Epoch
E

1: Initialization: e← 0
2: for e = 0; e < E; e++ do
3: for Batch data d in D do
4: Prediction pred←M(d)
5: Update prediction sequence S of instances in d
6: Compute loss
7: Loss back propagation and optimize M
8: end for
9: end for

10: Distribution FC ← calculate metric C of each sample
11: Fit weibull mixture model to FC

12: Obtain selection threshold τ = α2

13: D
′
= {(xi, yi)|Ci < τ}|D|

i=1

Output: training set D
′

and Model M for next round

corresponding to the falsely-labeled data is typically has a
larger mean value, as the falsely-labeled data is difficult to
memorize and easy to forget, resulting in a relatively large
metric value. Consequently, we are able to determine which
component corresponds to the clean or falsely-labeled data.

Finally, we choose the threshold τ = α2 and select all
the training data instances with a score smaller than τ for the
next round. The reason for not choosing the position where
the two components have the same probability as the thresh-
old is because the performance will deteriorate due to the
sharp drop of recall in multiple rounds. Empirically, we found
choosing the threshold τ can be beneficial to maintain a high
recall while also reducing the computational complexity.

3.4 Utilizing Data with Incorrect Labels
Note that our sample selection approach discards the identi-
fied falsely-labeled data and uses the selected clean data for
the model training. Our method can also be extended and
combined with existing semi-supervised methods, where we
regard the corrupted data as unlabeled data. Concretely, we
first apply our sample selection framework on the noisy train-
ing set to separate it into clean data and corrupted data. Then
we utilize a semi-supervised learning strategy on the combi-
nation of the clean data and the unlabeled data derived from
the corrupted to further improve the generalization of model.

4 Experiments
In this section, we conduct extensive experiments to validate
the effectiveness of our method. Specifically, we evaluate our
method on five popularly used datasets including CIFAR-10,
CIFAR-100, Mini-ImageNet, Mini-Webvision and CIFAR-N.
Due to the page limitation, the results of CIFAR-N dataset
which is also the web noise is in the supplementary material.
We also perform a series of ablation studies and analysis to
provide more insights for our method. We first introduce the
experiment setup in Sec. 4.1, followed by the experimental re-
sults on synthetic noise datasets in Sec. 4.2. Then we present
the experimental results on web noise datasets in Sec. 4.3.
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Dataset CIFAR-10 CIFAR-100

Noisy Type Symmetry Asymmetry Symmetry Asymmetry

Noise Ratio 20 50 80 40 20 50 80 40

Standard 87.0 ± 0.1 78.2 ± 0.8 53.8 ± 1.0 85.0 ± 0.0 58.7 ± 0.3 42.5 ± 0.3 18.1 ± 0.8 42.7 ± 0.6

Bootstrap[Reed et al., 2014] 86.2 ± 0.2 - 54.1 ± 1.3 81.2 ± 1.5 58.3 ± 0.2 - 21.6 ± 1.0 45.1 ± 0.6

Forward[Patrini et al., 2017] 88.0 ± 0.4 - 54.6 ± 0.4 83.6 ± 0.6 39.2 ± 2.6 - 9.0 ± 0.6 34.4 ± 1.9

Co-teaching[Han et al., 2018b] 89.3 ± 0.3 83.3 ± 0.6 66.3 ± 1.5 88.4 ± 2.8 63.4 ± 0.0 49.1 ± 0.4 20.5 ± 1.3 47.7 ± 1.2

Co-teaching+[Yu et al., 2019] 89.1 ± 0.5 84.9 ± 0.4 63.8 ± 2.3 86.5 ± 1.2 59.2 ± 0.4 47.1 ± 0.3 20.2 ± 0.9 44.7 ± 0.6

TopoFilter[Wu et al., 2020] 90.4 ± 0.2 86.8 ± 0.3 46.8 ± 1.0 87.5 ± 0.4 66.9 ± 0.4 53.4 ± 1.8 18.3 ± 1.7 56.6 ± 0.5

CRUST[Mirzasoleiman et al., 2020] 89.4 ± 0.2 87.0 ± 0.1 64.8 ± 1.5 82.4 ± 0.0 69.3 ± 0.2 62.3 ± 0.2 21.7 ± 0.7 56.1 ± 0.5

JoCoR[Wei et al., 2020]† 90.2 ± 0.4 47.9 ± 2.2 24.1 ± 1.9 74.1 ± 0.3 64.8 ± 1.2 51.2 ± 1.4 9.2 ± 2.6 42.1 ± 0.8

FINE[Kim et al., 2021] 91.0 ± 0.1 87.3 ± 0.2 69.4 ± 1.1 89.5 ± 0.1 70.3 ± 0.2 64.2 ± 0.5 25.6 ± 1.2 61.7 ± 1.0

MILD 93.0 ± 0.2 88.7 ± 0.2 79.1 ± 0.5 89.8 ± 0.3 74.2 ± 0.2 67.3 ± 0.3 36.0 ± 0.3 69.9 ± 0.6

Table 1: Test accuracy (%) on CIFAR-10 and CIFAR-100 under Resnet34 backbone with different noise ratios and types. The average
accuracies and standard deviations over three trials are reported. † means the results are reproduced.

Finally, we provide the ablation studies and analysis of our
method in Sec. 4.4.

4.1 Experiment Setup
Datasets To systematically evaluate the noisy label meth-
ods, we conduct exhaustive experiments on both synthetic
and web noise datasets. For synthetic noise, we follow the
protocol proposed in [Kim et al., 2021] to generate sym-
metric and asymmetric noise on CIFAR-10 [Krizhevsky et
al., 2009] and CIFAR-100 [Krizhevsky et al., 2009] datasets.
Symmetric noise is provided by randomly flipping the la-
bel of a fraction of samples. In order to make asymmetric
noise, sample labels are changed to a specified other class.
Specifically, the mapping relationship for asymmetric noise
in CIFAR-10 is as follows: truck → car, bird → airplane,
deer → horse, cat → dog and dog → cat. For CIFAR-100
dataset, the asymmetric noise is generated by circularly flip-
ping each class to the next class inside super-classes. For
real scenarios with web noises, We adopt Mini-Imagenet,
Mini-Webvision and CIFAR-N datasets for evaluation. Be-
sides, Mini-ImageNet [Jiang et al., 2020] collects noisy im-
ages from Internet. Specifically, it annotates the correctness
of the collected image labels manually. The dataset includes
around 50,000 training images and 5,000 val images for 100
classes. Mini-Webvision [Li et al., 2017] is derived from
Webvision dataset [Li et al., 2017] by picking top 50 cate-
gories of google images. Note that Webvision dataset is built
through keyword searches on Flickr and Google Images, with
the 1000 ImageNet categories selected as keywords. Mini-
Webvision dataset consists of 65,944 images for training and
2500 images for test. CIFAR-N dataset involves realistic an-
notation noise and more details are in supplementary mate-
rial.

Comparison methods To demonstrate the effectiveness of
our method, we compare our approach with existing sam-
ple selection method like FINE [Kim et al., 2021], Jo-

CoR [Wei et al., 2020] and semi-supervised based approaches
like DivideMix [Li et al., 2020] and MOIT [Ortego et al.,
2021]. It is worth noting that for fair comparison with semi-
supervised based approaches, we expand our approach by
employing the same semi-supervised techniques. Concretely,
MixMatch [Berthelot et al., 2019] used in DivideMix is ap-
plied on our approach, named as MILD-MM. MixUp [Zhang
et al., 2017a] and contrastive learning used in MOiT are intro-
duced into our approach, named as MILD-MUCL. Note that
we take the same configurations with MOiT and DivideMix
for the hyper-parameters about semi-supervised.

Implementation details Our implementation is based on
PyTorch. For CIFAR-10 and CIFAR-100 dataset, the im-
age size is 32x32. We utilize the ResNet-34 for CIFAR-10
and CIFAR-100 and adopt the same data augmentations as
FINE[Kim et al., 2021], including random cropping and ran-
dom horizontal flipping. We adopt the SGD optimizer with
an initial learning rate of 0.01, a momentum of 0.9. For Mini-
Webvision and Mini-ImageNet, the image size is resized to
224x224 and 84x84, respectively. We conduct experiments
using both Inception-ResNet v2 [Szegedy et al., 2017] and
18-layers ResNet [He et al., 2016] on Mini-Webvision dataset
following [Li et al., 2020]. Besides, 18-layers ResNet is
used for Mini-Imagenet following [Ortego et al., 2021]. We
use the SGD optimizer with an initial learning rate of 0.1,
a momentum of 0.9. For all datasets, we use the cosine-
annealing learning rate scheduler for each round and the batch
size is set to 128. The training epochs of each round is 20,
50, 100, 100 for CIFAR-10, CIFAR-100, Mini-Imagenet and
Mini-Webvision, respectively. Following FINE [Kim et al.,
2021], we tune the hyper-parameters by an additional val-
idation set for CIFAR-10 and CIFAR-100. Also following
DivideMix [Li et al., 2020], the validation set is provided to
tune the hyper-parameters for web noise datasets like Mini-
Webvision and Mini-ImageNet.
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Methods Semi-Tech
Noise Ratio

20% 40% 80%

Mix[Zhang et al., 2017b] mixup 54.60 50.40 37.32
DivideMix[Li et al., 2020] mixmatch 50.30 50.94 35.42

ELR[Liu et al., 2020] temporal ensembling 58.10 50.62 41.68
MOiT[Ortego et al., 2021]† mixup + contrastive learning 61.62 58.10 43.84

MILD-MM mixmatch 62.56 59.14 44.78
MILD-MUCL mixup + contrastive learning 62.46 59.12 44.68

Table 2: Test accuracy (%) at final epoch on Mini-Imagenet dataset. † denotes the results are obtained by running their code.

Methods Semi-Tech Backbone Accuracy Backbone Accuracy

Co-teaching[Han et al., 2018b] -
Inception-resnet v2

63.58
Resnet18

-
FINE[Kim et al., 2021] - 75.24 -

MILD - Inception-resnet v2 76.63 Resnet18 73.42

Mix[Zhang et al., 2017b] mixup

Inception-resnet v2

-

Resnet18

73.76
ELR[Liu et al., 2020] temporal ensembling 76.26 71.88

DivideMix[Li et al., 2020] mixmatch 77.32 74.64
MOiT[Ortego et al., 2021] mixup + contrastive learning 80.00† 77.76

MILD-MM mixmatch
Inception-resnet v2

78.88
Resnet18

78.08
MILD-MUCL mixup + contrastive learning 80.52 78.52

Table 3: Test accuracy (%) at final epoch on Mini-Webvision. † denotes the results are obtained by running their code.

4.2 Experiments on Synthetic Noise Datasets
For synthetic noise datasets like CIFAR-10 and CIFAR-100,
we first compare our approach with sample selection ap-
proaches, shown in Table. 1. We can see that our method con-
sistently outperforms other selection methods under different
types and noise rates on both datasets. It is worth noting that
in general, the performance gain produced by our method im-
proves as the noise rate increases. Specifically, compared to
FINE, we improve the accuracy from 25.6 to 36.0(+10.4%)
under the symmetric 80% noise of CIFAR-100 dataset.

4.3 Experiments on Web Noise Datasets
For web noise dataset, we conduct extensive experiments on
Mini-ImageNet and Mini-Webvision. For Mini-ImageNet
dataset, we compare our approach with semi-supervised
based methods in Table 2. It is shown that our method con-
sistently surpasses other methods under different noise ratios
in real noise scenario. Specifically, MILD-MUCL surpasses
MOiT with 0.84% under 20% noise ratio, and MILD-MM
outperforms than DivideMix with 9.36% accuracy on 40%
noise ratio.

For Mini-Webvision dataset, we compare both sample-
selection and semi-supervised based approaches in Table 3.
Specifically, we compare two different backbones includ-
ing ResNet18 and Inception-ResNet v2. It is evident that
our method consistently performs better than other sample-

selection methods. Specifically, we surpass FINE with
1.4% performance improvement on Inception-ResNet v2
backbone. Besides, using the same semi-supervised tech-
nique, our method consistently outperforms than other semi-
supervised methods. Concretely, our method(MILD-MM)
surpasses DivideMix with 1.56% performance gain using
Inception-ResNet v2 backbone and 3.44% improvement on
ResNet18 backbone, demonstrating the robustness of our
technique to the model architecture. Compared to MOiT,
MILD-MUCL achieves 0.52% improvement with ResNet18
backbone, which demonstrates the superiority of our pro-
posed approach. In summary, we can see that our approach
can benefit from kinds of semi-supervised techniques.

4.4 Ablation Study and Analysis
Visualization. Figure. 2 shows the histogram of metric val-
ues for clean data(blue columns) and falsely-labeled(orange
columns) data and the fitting result of mixture model under
20% symmetric noise on CIFAR-100 dataset. We can see that
with our proposed metric and mixture model, the clean data
and falsely-labeled data can be effectively separated, which
can be further utilized to remove falsely-labeled data to alle-
viate the influence of noises on subsequent training.

Component analysis. To provided more insights on the ef-
fectiveness of the components in our framework, we conduct
ablation experiments in Table.4. We use another simple se-
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Memorization Forgetting Mixture Model CIFAR-10 CIFAR-100
Precision Recall Accuracy Precision Recall Accuracy

✓ 86.75 70.91 72.76 77.85 36.92 30.37
✓ ✓ 92.73 75.06 77.56 79.61 37.79 33.29
✓ ✓ ✓ 93.37 71.85 79.11 85.41 37.17 36.03

Table 4: Components ablation study on symmetric 80% noise.

metric CIFAR-10 CIFAR-100
Precision Recall Accuracy Precision Recall Accuracy

Small-loss[Shen and Sanghavi, 2019] 97.75 95.31 92.30 88.37 88.15 67.79
Eigenvector[Kim et al., 2021] 99.91 77.05 91.04 99.56 82.43 70.39

MILD 98.35 98.96 93.03 95.74 98.78 74.17

Table 5: Performance (%) comparison with other sample selection methods on symmetric 20% noise.

Figure 2: The visualization of metric distribution and mixture model
on CIFAR-100 symmetric 20% noise.

lection strategy to compare with the mixture model. Based on
the metric value Ci, we select R|D| instances with smallest
Ci as the training set for subsequent round, where the selec-
tion ratio R is set to 0.9. As Table.4 shows, it is indicated
that combining memorization and forgetting can improve the
selection quality, which highlights the importance of con-
sidering overall learning dynamics. Meanwhile, we can see
that the mixture model can further improve the performance,
which indicates that the mixture model can benefit the sample
selection.

Comparison with sample selection metrics. We also con-
duct the metric comparison with small-loss and eigenvector-
based[Kim et al., 2021] in same sample selection framework.
For example, we perform multi-round learning with small
loss. Note that in each round, different from existing small-
loss methods, we select the best epoch with highest test ac-
curacy for small loss selection. Table.5 compares the preci-
sion, recall of the selection data and test accuracy for different
methods on 20% symmetric noise of CIFAR datasets. We can
see that our method achieves better recall when keeping the
comparable precision with Eigenvector. Specifically, we sur-
pass Eigenvector with 16.35% for recall on CIFAR-100.

5 Conclusion
Deep networks easily memorize the patterns of noisy data,
which causes performance degradation. To alleviate the in-
fluence of falsely-labeled data, it is critical to identify cor-
rectly labeled data from a noisy training dataset. In this work,
we propose a novel sample selection framework to differ-
entiate clean and corrupted data via their learning dynam-
ics. We measure the difficulty of memorization and forget-
ting to represent learning dynamics. Concretely, the diffi-
culty of memorization is estimated with the transition times
from misclassified to memorized. Besides, the difficulty of
forgetting is estimated with the transition times from memo-
rized to misclassified. We combine them to build the selec-
tion criterion as memorization and forgetting are complemen-
tary to identify clean data. We alternating the model train-
ing and selecting clean data to keep improving the quality
of selected dataset. To verify the effectiveness of proposed
method, we conduct experiments on synthetic noise datasets
and web noise datasets. The experimental results show that
our method consistently outperforms than other comparison
methods. Despite the fact that our method consistently beats
other methods, it is worth noting that there is still a consider-
able room for improvement given the recall of our method at
extremely high noise rate, such as 80%. For negative social
impact, it is possible to be leveraged by malicious applica-
tions for our method to improve their application.
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