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Abstract

Diagram visual grounding aims to capture the cor-
relation between language expression and local ob-
jects in the diagram, and plays an important role
in the applications like textbook question answer-
ing and cross-modal retrieval. Most diagrams con-
sist of several colors and simple geometries. This
results in sparse low-level visual features, which
further aggravates the gap between low-level visual
and high-level semantic features of diagrams. The
phenomenon brings challenges to the diagram vi-
sual grounding. To solve the above issues, we pro-
pose a gestalt-perceptual attention model to align
the diagram objects and language expressions. For
low-level visual features, inspired by the gestalt
that simulates human visual system, we build a
gestalt-perception graph network to make up the
features learned by the traditional backbone net-
work. For high-level semantic features, we design a
multi-modal context attention mechanism to facili-
tate the interaction between diagrams and language
expressions, so as to enhance the semantics of di-
agrams. Finally, guided by diagram features and
linguistic embedding, the target query is gradually
decoded to generate the coordinates of the referred
object. By conducting comprehensive experiments
on diagrams and natural images, we demonstrate
that the proposed model achieves superior perfor-
mance over the competitors.

1 Introduction
Visual grounding is to localize the corresponding object in the
image referred by an expression. Common expressions are
either simple entities, such as the cat, or phrases, such as the
cup on the table, or sentences like the girl is holding a pen.
Visual grounding plays an important role in visual question
and answering, visual dialogue, and other applications.

The visual grounding models have achieved ideal effects
on natural images, while another kind of image with great
research value has not received much attention, that is, the
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Figure 1: Comparison of visual characteristics between diagrams in
AI2D� and natural images in Flickr30K Entities.

diagram. Diagrams widely exist in textbooks, technology fo-
rums, etc. Although there is a research on diagram-sentence
matching [Hu et al., 2021], this work only outputs the whole
diagrams corresponding to the sentence. Diagram visual
grounding mines the fine-grained objects by expressions. The
interaction between objects and expressions can enhance the
semantic, which is of great significance to the textbook ques-
tion and answering, intelligent dialogue, etc.

Considering the research gap on diagram visual grounding
at present, we apply the latest model VLTVG [Yang et al.,
2022] to verify the performance on diagrams. The experi-
mental results show that the accuracy of VLTVG on the nat-
ural image dataset Flickr30K Entities [Plummer et al., 2015]
achieves 79.18%, while that on the diagram dataset AI2D� is
only 25.79%. The reasons can be analyzed from the follow-
ing two aspects. The low-level visual feature of diagram
is sparse. The diagram is drawn by experts in special fields,
usually consisting of simple geometries and color blocks, and
the low-level visual information is sparse. As shown in Fig-
ure 1(a), the natural image belongs to the realistic style, while
the diagram focuses on the expression of knowledge. The di-
agram does not have a complex background compared to the
natural image, while the color information is monotonous for
the foreground objects that the model pays more attention to.
The two line charts in Figure 1(b) represent the number of
RGB colors contained in each image. The green line rep-
resents the statistic of diagrams in AI2D� and the blue line
indicates that of natural images in Flickr30K Entities. It can
be seen that the natural images are rich in colors and most im-
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ages contain a variety of colors. The color distribution of the
diagram shows an obvious long-tail distribution. As a result,
the diagram visual features are extremely sparse, and only us-
ing traditional backbone networks can not learn high-quality
diagram representation. Therefore, how to effectively repre-
sent the foreground objects in the diagram is a problem. In
addition, the gap between low-level visual and high-level
semantic features is exacerbated by the sparse visual infor-
mation and diverse forms of diagram expression. As shown
in Figure 1(a), the two diagrams both represent circuit. The
bulb in the first diagram is a circle with a fork, while the bulb
in the second diagram is represented as a more vivid yellow
object. This different form of visual objects brings semantic
problem to the alignment of diagram and language expression
in visual grounding task.

Gestalt is a psychological concept, which mainly includes
some laws such as similarity, common fate, proximity, and
continuity, and simulates the perception process of human
eyes on visual elements. A previous work [Hu et al., 2022]
has proved that even if the visual information of the dia-
gram is sparse, the key objects in the diagram can be effec-
tively identified through the cooperation of multiple gestalt
laws. Inspired by this, we focus on the visual and semantic
representation of diagrams and propose a Gestalt-Perceptual
Attention (GPA) model for diagram visual grounding task.

GPA mainly contains a diagram local learner and a spatial-
semantic association module. The former enhances the local
visual features of diagrams and the later promotes the associa-
tion between diagram objects and language expression. Con-
cretely, inspired by the powerful node association ability of
graph networks [Zhang et al., 2022b; Zhang et al., 2022a],
a gestalt-perception graph (GPG) network is built in the lo-
cal learner. Each layer of GPG network has diagram patches
as nodes, and the relationships between patches as edges.
Gestalt laws are used to simulate the relationship between
patches. Taking patch A and patch B as an example, that
is, two nodes in the GPG are recorded as nodeA and nodeB
respectively. If the spatial positions of A and B on the dia-
gram are close, proximity law is used as a priori knowledge to
enhance the location association between nodeA and nodeB ,
thus guiding the local representation of diagram patches by
updating the GPG. In the association module, a multi-modal
context attention is designed to improve the semantics of the
diagram by the interaction with linguistic embedding. Fi-
nally, the target query predicts the referred box under the
guidance of the diagram and language expression. Our main
contributions are summarized as follows:

• As far as we know, the diagram visual grounding is
studied for the first time. Because of the visual spar-
sity of diagrams and the gap between the visual features
and semantic features of diagrams, we propose a gestalt-
perceptual attention model for the novel task.

• We construct a gestalt-perception graph network to
guide edge learning by gestalt laws and the represen-
tation of diagram patches is enhanced by information
propagation between nodes. The multi-modal context
attention mechanism is designed to associate visual rep-
resentation of diagrams with linguistic embedding.

• We conduct experiments on a diagram dataset AI2D�
and a natural image dataset Flickr30K Entities. The ex-
perimental results indicate that the proposed GPA modal
achieves the best accuracy in the diagram visual ground-
ing task, and also obtains a comparable accuracy over
the competitors in natural images.

2 Related Works
Gestalt Perception Theory. The theory [Wagemans et al.,
2012; Pomerantz et al., 1977; Wertheimer, 1922; Desolneux
et al., 2004] aims to explain the process of human’s over-
all cognition of objects, that the human visual system tends
to perceive objects that are similar, close or connected with-
out abrupt directional changes. They are characterized by the
laws of proximity, continuity, common fate and so on. At
present, there are several researches [Gnjatović et al., 2022;
Yan et al., 2018; Xu et al., 2019] on solving computer vi-
sion tasks with gestalt perception theory. For example, CogG
[Yan et al., 2021] model recognizes saliency in three phases,
seeing, perceiving, and cogitating, mimicking human’s per-
ceptive and cognitive thinking of an image. [Gnjatović et al.,
2022] proposes an approach to traffic accident clustering and
it is psychologically inspired to the extent that it introduces
a clustering criterion based on the gestalt principle of prox-
imity. In this work, we design an adaptive gestalt perception
method with similarity, proximity and smoothness laws, for
diagram visual grounding task.
Visual Grounding. The main idea of two-stage visual
grounding [Wang and Specia, 2019; Hong et al., 2019;
Yang et al., 2019; Wang et al., 2019] is similar to RCNN-
series method. In the first stage, several proposals are usually
generated by the pretrained object detectors [Ren et al., 2015;
Redmon et al., 2016]. In the second stage, score each pro-
posal by calculating the correlation between proposal and the
language expression, and select the top-ranked proposals as
the final predictions [Liu et al., 2021]. Recently, the one-
stage approach has been widely studied due to its concise
end-to-end architecture. TransVG [Deng et al., 2021] is the
first transformer-based framework for the visual grounding
task and it avoids the manually-designed mechanisms to per-
form the query reasoning and multi-modal fusion. However,
the visual-linguistic module in TransVG does not focus on
the correspondence between the visual features and the target
objects, which may affect the performance. VLTVG [Yang
et al., 2022] is also a transformer-based framework that di-
rectly learns the attention scores between the fine-grained vi-
sual features and target objects. Specifically, the visual en-
coding is guided by the semantics of the textual contexts, so
that the VLTVG model more focuses on the discriminant re-
gion related to the language expression. [Li and Sigal, 2021]
proposed a multi-task model, which leverages the transformer
architecture and jointly learns the referring expression com-
prehension and segmentation tasks. In [Ye et al., 2021] and
[Liao et al., 2020], the visual grounding task is regarded as a
filtering-based reasoning process. Due to the sparse visual
features and complex semantics of diagrams, we integrate
gestalt perception into a one-stage architecture to conduct the
diagram visual grounding task.
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Figure 2: The overall architecture of GPA model for diagram visual grounding task.

3 Methodology
This section introduces the architecture of GPA model as
shown in Figure 2. The goal is to give a language expres-
sion T and locate its referred region on the diagram D. For
the language expression, we encode it as a sequence of lin-
guistic embedding FT ∈ RK×d with BERT [Kenton and
Toutanova, 2019]. For the diagram, we utilize the backbone
network ResNet-50 [He et al., 2016] to extract the low-level
visual feature FDl ∈ Rhl×wl×cl from Conv-2 block and the
high-level semantic feature FDh ∈ Rhh×wh×ch from Conv-4
block. We also divide the diagram into patches to facilitate
the learning of local features with gestalt perception.

Specifically, GPA contains three key steps: 1) Enhance
the low-level visual features by gestalt laws. The diagram
patches, as the node of gestalt-perception graph (GPG) net-
work, initialize GPG by extracting features from color, po-
sition and contour views; the node features in the GPG are
updated based on similarity, proximity, and smoothness laws,
and then the nodes are utilized to enhance the low-level dia-
gram feature FDl ; 2) Enrich the high-level semantic features
by multi-modal context attention. FDh and linguistic embed-
ding FT interact to enhance high-level semantic features of
the diagram, and then refine the diagram features through 3D-
attention. 3) Target query decoder. Guided by diagram fea-
tures and linguistic embedding, the target query is gradually
decoded to generate the coordinates of the predicted bound-
ing box. Finally, the regression loss is computed with the
ground-truth box to optimize the training of GPA model.

3.1 Improve Low-level Visual Feature with GPG
Gestalt-perception Graph Network
The gestalt laws simulate the process of human visual system
and effectively identify the regions in the diagram with lim-
ited annotations. Taking diagram patches as input, the GPA
model builds a gestalt-perception graph GPG with patches as
nodes and the relationship between patches as edges. Under
the guidance of gestalt laws, more meaningful diagram patch
feature Fges is output after the L-layer GPG network updat-
ing. The GPG consists of subgraphs GCV , GPV and GEV for
color, position and contour views, respectively.

Notations Explanations
D ∈ RH×W×C Original diagram
DP = {dpi |i = 1, . . . , N} Diagram patches
GCV = (NCV , ECV ) Color view subgraph
GPV = (NPV , EPV ) Position view subgraph
GEV = (NEV , EEV ) Contour view subgraph
FCV ∈ RN×9 Node features for NCV in GCV

FPV ∈ RN×4 Node features for NPV in GPV

FEV ∈ RN×(2× W0√
N

+2× H0√
N

) Node features for NEV in GEV

Table 1: Important notations and explanations.

Node Features. In order to learn the local representations
of the diagram, we divide the diagram D into N patches that
is same as [Dosovitskiy et al., 2020]. A patch represents
a node in the GPG. The important notations and explana-
tions are summarized in Table 1. FCV is the color feature
of node setNCV , representing the central moments [Stricker
and Orengo, 1995] of patches. FPV is the position feature of
the node set NPV , which is composed of the coordinates of
the top-left corner and the bottom-right corner of each patch.
FEV is the contour feature of the node set NEV , including
the top, bottom, left, and right contours of each patch.

To facilitate the interaction between features of three visual
views, FCV , FPV and FEV are mapped into the same feature
space through the multi-layer perceptron MLP(·) network as
shown in (1), where dc, dp and de are mapping dimensions
and || indicates the concatenating operator.

F̂
CV

= MLPCV (FCV ), F̂
CV
∈ RN×dc ,

F̂
PV

= MLPPV (FPV ), F̂
PV
∈ RN×dp ,

F̂
EV

= MLPEV (FEV
(t;b)||F

EV
(l;r)), F̂

EV
∈ RN×4×de .

(1)

Edge Matrices. Gestalt perception emphasizes the correla-
tion between visual regions. That is, the human visual system
tends to perceive regions that are similar, close or connected
without abrupt directional changes as a perceptual whole ob-
ject [Wagemans et al., 2012]. Thereby, we encode the edges
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in GCV , GPV and GEV with the assistant of similarity, prox-
imity and smoothness laws, respectively.
• Color Similarity. ECV ⊆ NCV × NCV represents the

color similarity between nodes. Given two node features
F̂
CV

i and F̂
CV

j , the weight of ECV
ij is shown in (2), where

sim(·) is a cosine similarity function.

ACV
ij = sim(F̂

CV

i , F̂
CV

j ). (2)

• Position Proximity. In order to measure the proximity of
spatial positions, EPV ⊆ NPV ×NPV is formulated to
learn the positional relation between two patches. The
weight of EPV

ij is calculated by (3).

APV
ij = 1.0− Norm(

√√√√ dp∑
t=1

(F̂
PV

it − F̂
PV

jt )2). (3)

• Contour Smoothness. The law of contour smooth-
ness states humans perceive objects as continuous in a
smooth pattern. In order to judge whether two patches
may belong to the same object, EEV ⊆ NEV × NEV

determines the possibility of splicing two patches. The
weight of EEV is computed as follows, where F̂

EVb

i rep-
resents the bottom contour feature of patch dPi .

δ1 = sim(F̂
EVb

i , F̂
EVt

j ); δ2 = sim(F̂
EVt

i , F̂
EVb

j ),

δ3 = sim(F̂
EVl

i , F̂
EVr

j ); δ4 = sim(F̂
EVr

i , F̂
EVl

j ),

AEV
ij = max{δ1, δ2, δ3, δ4}.

(4)

GPG Network Updating
Each layer of the GPG network is stacked by the propagation
block and the aggregation block as shown in Figure 3.

Propagation Block. The three subgraphs in GPG focus on
the color, position and contour features of diagram patches,
respectively. According to [Wagemans et al., 2012], there
is cooperation and confliction among multiple gestalt laws.
For example, when human visual system perceives various
objects, the perception order and contribution of similarity,
proximity and smoothness laws are different. Therefore, an
adaptive learning strategy is designed in GPG to propagate
information between patches. For example, when judging the
degree of association between two patches, we give priority
to whether the spatial positions are close. Because all parts of
a complete object are usually concentrated in a certain area,
rather than scattered in the diagram, the position proximity
is particularly important. GPG sets three adaptive factors α,
β, and γ to control the contribution of similarity, proximity,
and smoothness respectively. The propagation methods of
GCV , GPV and GEV are similar. For GCV , the update of node
features is shown in (5), where A(l) denotes the adjacency
matrix and W(l)

C refers to the l-th layer parameter of GCV .
A(l) is calculated by adaptive weighting of three factors α, β,
and γ in (6).{

F̃
CV (l)

= ΦC(F̂
CV (l)

,A(l)),

ΦC(F̂
CV (l)

,A(l)) = ReLU(A(l)F̂
CV (l)

W(l)
C ),

(5)

Figure 3: The GPG network learning process.

A(l) = α · ACV (l) + β · APV (l) + γ · AEV (l). (6)
Aggregation Block. The propagation in GPG network pro-

motes the correlation between patches, and some patches can
be aggregated to form more meaningful objects. Therefore,
we denote a learned assignment matrix [Ying et al., 2018] at
layer l as S(l) ∈ RNl×Nl+1 , where Nl is the number of nodes
at layer l. It provides a soft assignment of each node at layer
l to the next layer l+1. Taking GCV as an example, the node

feature F̂
CV (l+1)

at layer l+1 is aggregated by (7). The node
aggregation method of GPV and GEV is similar as that of

GCV . GPG concatenates F̂
CV (L)

, F̂
PV (L)

and F̂
EV (L)

, and
then applies a MLP(·) layer for feature projection.{

F̂
CV (l+1)

= S(l)> × F̃
CV (l)

,

Fges = MLP(αF̂
CV (L)

||βF̂
PV (L)

||γF̂
EV (L)

),
(7)

Interaction between Visual and Gestalt Features
For how to enhance diagram representation with the help of
gestalt perception, we have improved the approach in our
pervious work, which simply interacts gestalt feature with
diagram feature extracted from backbone network, without
considering the feature difference of different blocks in back-
bone. As gestalt laws simulate the perception process of hu-
man visual system, our GPA model utilizes the gestalt fea-
ture Fges to enhance low-level diagram feature FDl , that is,
the diagram feature based on the gestalt perception is gen-
erated with the multi-head attention module as shown in (8),
where dk is the projection channel dimension. WQ, WK , and
WV represent the parameters of linear projection. Finally,
a convolutional network ψ(·) acts on FgesDl to generate the
final gestalt guided diagram feature FgesD. S indicates the
Softmax function.

FgesD =ψ(S(
(FDlWQ)(FgesWK)>√

dk
)(FgesWV )). (8)

3.2 Enrich High-level Semantic Feature
Multi-modal Context Attention. The diagram contains a va-
riety of contents in foreground, and the corresponding lan-
guage expression emphasizes the local object. Therefore, the
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interaction between the language expression and the visual
information is conducive to making the GPA model easier
to recognize and locate the referred object. Firstly, the cor-
relation between high-level visual feature FDh and linguistic
embedding FT is calculated by multi-head attention as shown
in (9). Here, the diagram feature FDh serves as the query and
the linguistic embedding FT acts as the key and value. The
diagram feature guided by semantic contexts is FtextD.

FtextD = S(
(FDhWQ)(FT WK)>√

dk
)(FT WV ). (9)

Multi-modal Feature Refinement. A 3D-attention module
acts on FgesD and FtextD, respectively. The process of 3D-
attention is similar as [Woo et al., 2018]. Taking FgesD as an
example, the first step is squeezing the spatial dimension of
FgesD by average-pooling and max-pooling simultaneously.
Then a shared MLP(·) network is applied to the two pool-
ing features. The channel attention map is generated after
element-wise summation of pooling features and sigmoid op-
eration. The second step is splicing the two pooling features
along the channel dimension, and then applies a convolutional
block and a sigmoid function to compute the spatial attention
map FgesD

a . FtextD
a is calculated in the same way to FgesD

a ,
and is used to represent the attention of diagram features un-
der the effect of linguistic embedding.

Subsequently, FgesD
a for visual feature and FtextD

a for
semantic feature are multiplied and then mapped through
MLP(·) network to obtain the attention score denoted as

ScoreD. At this time, the diagram feature F̂
D

of multi-modal
enhancement is shown in (10).{

ScoreD = MLP(FgesD
a ⊗ FtextD

a ),

F̂
D

= FgesD + FtextD + ScoreD · FDh .
(10)

In order to associate the language expression with the lo-
cation in the diagram, the position view in GPG is used to
enhance the embedding of language expression. Through the
multiplication of linguistic embedding FT and position fea-
ture F̂

PV
, and then a softmax function is used to calculate the

attention score of linguistic embedding on position feature.
The enhanced linguistic embedding is termed as FposT .

3.3 Target Query Decoder
Spatial and Semantic Association
The decoding process aims to filter out the object feature re-
ferred to the language expression and generate position co-
ordinates under the joint action of diagram feature and lin-
guistic embedding. Based on the decoder structure of Trans-
former [Carion et al., 2020], we employ a learnable target
query tq ∈ R1×d as the initial representation of the referred
object. For each decoder layer, tq is decoded by textual and
visual information in turn. The final target query is directly
used to predict the coordinates.

For the interaction of target query and linguistic embed-
ding. t′q indicates that giving more informative semantics to
the target query through the multi-head attention between tq

and FposT , where the tq serves as the query and the FposT

acts as the key and value.
For the interaction of target query and visual feature. To

accurately locate the referred object on the diagram, another
multi-head attention module is used that taking t′q as a query

to calculate its correlation with the diagram feature F̂
D

. In
this manner, the target feature t′′q is produced to locate the
referred object. Concretely, the GPA model makes the final
prediction with a feed-forward neural network FFN(·), which
is composed of a three-layer MLP(·) network with ReLU ac-
tivation. For simplicity, the a(·) in (11) indicates the attention
operation in multi-head attention module.


t′q =a(tq,FposT ) · FposT ,

t′′q =a(t′q, F̂
D

) · F̂D,

output=FFN(t′′q)=ReLU(MLP(t′′q)).

(11)

Training Objective
Unlike most two-stage methods, which regard the location of
target object as a ranking problem of candidate proposals, the
GPA model directly projects the decoded target query repre-
sentation into a 4-dimensional position feature, which con-
sists of the center coordinates (xb, yb), the width wb, and the
height hb of the predicted box. For diagram D and language
expression T , assume that b denotes the prediction while b̂
is the ground truth box, the training objective of our GPA is
shown in (12). Lgiou and LL1

are the GIoU loss [Rezatofighi
et al., 2019] and L1 loss respecitively. λgiou and λL1

are the
balance factors between the two losses.

L = λgiou · Lgiou(b, b̂) + λL1 · LL1(b, b̂). (12)

4 Experiments
4.1 Datasets
We evaluate the GPA model on an AI2D� dataset with dia-
grams and a Flickr30K Entities dataset with natural images.

AI2D�. As there is no research related to diagram vi-
sual grounding at present, we have annotated a novel dataset
AI2D� on the basis of original AI2D dataset to verify the per-
formance of this task. AI2D is a dataset focusing on the sci-
entific topic of primary and secondary schools, mainly com-
posed of diagrams in the fields of biology, astronomy and ge-
ography. We draw a rectangular bounding box for each object
in the diagram, and assign corresponding language expres-
sions to all objects. AI2D� is a more challenging dataset than
Flickr30k Entities, containing only 2,038 diagrams and about
132k referred targets. We split AI2D� into a train set with
1,634 diagrams and a test set with 404 diagrams.

Flickr30k Entities. In addition to diagram visual ground-
ing, the framework of GPA model is also applicable to pro-
cessing natural images. To this end, we select a bench-
mark Flickr30k Entities [Plummer et al., 2015]. It has
31,783 images and 427k referred targets. We follow the
same split as in the previous works [Deng et al., 2021;
Yang et al., 2022] for training, validation, and testing.
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Models Backbone Acc
ZSGNet [Sadhu et al., 2019] ResNet-50 15.31

ReSC-Large [Yang et al., 2020] DarkNet-53 23.93
TransVG [Deng et al., 2021] ResNet-50 12.50
VLTVG [Yang et al., 2022] ResNet-50 25.79

GPA(Ours) ResNet-50 27.67
VLTVG [Yang et al., 2022] ResNet-101 28.11

GPA(Ours) ResNet-101 30.54

Table 2: The accuracy (Acc %) results on AI2D� test set.

Figure 4: Case comparison between GPA and ZSGNet. “GT” repre-
sents the ground truth box.

4.2 Experimental Settings
GPA Implementation. Our model is implemented using
PyTorch. For fair comparison, we resize the visual input
into 640 × 640 × 3 and follow the pervious works [Deng
et al., 2021; Yang et al., 2022] to perform data augmenta-
tion. The maximum length of the language expression is set
to 40. When extracting the linguistic embedding, we append
the [CLS] and [SEP] tokens to the head and tail of the lan-
guage expression, respectively. The convolutional neural net-
work ResNet50 is used to extract the global visual feature,
while the linguistic embedding is initialized with BERT.

Training and Evaluation. When training the GPA model,
we use Adam for parameter optimization with an initial learn-
ing rate of 10−4. We set the learning rate for visual backbone
network and linguistic BERT to 10−5 and the weight decay
is 10−4. For comparison with the baseline models, we extend
the training epochs to 90, and decay the learning rate by 10
after 60 epochs. In Eq. (10), we set 0.5 as the initial value
of α, β, and γ. To avoid overfitting, we exploit dropout op-
eration after the multi-head attention layer and the dropout
rate is set to 0.1 by default. The evaluation of GPA model is
in the same way as VLTVG [Yang et al., 2022] and we set
λgiou = 2 and λL1

= 5.

4.3 Analyses of Diagram Visual Grounding
Performance Comparison. We compare the performance
of the proposed GPA model with several state-of-the-art com-
petitors. Table 2 shows that the GPA achieves the best ac-
curacy. Specifically, the accuracy of GPA with ResNet-101
is 2.43% higher than the latest VLTVG model. In addition,
there are some language expressions in the test set of AI2D�
dataset that have never appeared during training. ZSGNet, as
a special model to deal with the unseen language expression
in the reasoning, its accuracy of diagram visual grounding is
only 15.31%. Figure 4 shows three cases of ZSGNet and GPA
respectively. The clove, pistillate, and milkweed referred ob-
jects don’t belong to these categories pre-defined in train set.
For clove and pistillate, our GPA model accurately predicts

Models AttnG AttnT AttnPV Acc
BASE - - - 17.33
GPA]1 √

26.12
GPA]2 √

26.26
GPA]3 √ √

27.19
GPA

√ √ √
27.67

Table 3: The accuracy (Acc %) comparison of various ablation mod-
els. AttnG and AttnT indicate that 3D-attention is applied to FgesD

and FtextD respectively. AttnPV denotes the attention interaction
between position view (PB) and linguistic embedding.

the target boxes compared with ZSGNet. For milkweed, al-
though the prediction by GPA is biased from the ground truth
box, compared with the ZSGNet, GPA locates the region as
similar as possible to the referred object.

Ablation of Key Modules. To verify the contribution of
each module in the GPA, we study ablation models and the
differences between these versions are shown in Table 3. 1)
BASE is a basic model that directly adopts gestalt-perception
graph to guide diagram feature F gesD and linguistic embed-
ding to guide F textD to predict the target object, and does not
use any strategy to refine the diagram features. 2) GPA]1 and
GPA]2 indicate that the 3D-attention mechanism of refining
F gesDand F textD is adopted respectively. 3) GPA]3 means
that on the basis of BASE, more discriminative diagram fea-
tures F gesD and F textD are simultaneously obtained by the
3D-attention mechanism. 4) Compared with GPA]3, the pro-
posed GPA model adopts gestalt position view to guide the
linguistic embedding.

Table 3 shows that when gestalt feature or linguistic em-
bedding is used separately to refine the diagram feature,
GPA]1 and GPA]2 achieve comparable accuracy, 26.12% and
26.26% respectively. When AttnG and AttnT attention
mechanisms are used simultaneously, that is, from the visual
perspective of gestalt-perception and the semantic perspective
of linguistic embedding to jointly enhance diagram represen-
tation, the accuracy of GPA]3 has increased by 0.93% com-
pared with GPA]2. In order to effectively locate the language
expression on the diagram, GPA adds the attention mecha-
nism of gestalt position view (PV) and linguistic embedding
on the basis of GPA]3. The accuracy of GPA is 0.48% higher
than that of GPA]3.

Visualization of Diagram Feature Map. The visualization
results of the diagram feature map generated by the multi-
modal attention are shown in Figure 5. The dark red area
represents the target object that language expression refers to.
On the left are some correct cases, from which we can see that
the GPA model accurately aligns the language expressions,
such as the luminous bulb, with the corresponding objects in
the diagrams. There are some error cases in the dotted box.
It is found that when there are multiple objects with similar
appearance but different semantics in the diagram, our GPA
cannot effectively distinguish the target object. Taking the
first case as an example, the tree and shrub in the diagram
are drawn by irregular curves that are approximately circular.
When the language expression is shrub, the GPA model is
incorrectly positioned to the tree in the diagram.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

842



Figure 5: Visualization of diagram feature map guided by the language expression.

Models Acc
GPG-C 24.25
GPG-P 25.69
GPG-E 25.74
GPG-CPE 25.32
GPG-CPE w/ Adaptive 27.19 (↑ 1.87)

Table 4: The effect of gestalt laws on the accuracy (Acc %).

Figure 6: The effect of diagram patch number N .

In Table 4, GPG-C, GPG-P and GPG-E respectively indi-
cate that only similarity, proximity and smoothness laws are
used for GPG updating. GPG-CPE denotes that the three laws
work together. Note that GPG-CPE simply adds the edge
weights ACV , APV , and AEV of the three subgraphs GCV ,
GPV , and GEV . The experimental results show that when
three gestalt laws are simply used at the same time, the accu-
racy of GPG-CPE is not much different from that of a single
law. When α, β, and γ are used in an adaptive manner, the
accuracy of GPG-CPE w/Adaptive is 1.87% higher than the
GPG-CPE model, because the adaptive factors can effectively
alleviate the bias problem of the gestalt laws.

Impact of Gestalt Laws in GPG. Adaptive gestalt factors
α, β, and γ play key roles in the GPG network updating.
As we all know, when human visual system perceives image
patches, many gestalt laws work together. For example, if
two patches have similar colors, but they are far away in the
image, the probability that these two patches belong to the
same object is low. For another example, if two patches are
close to each other and can form a smooth contour, they may
belong to the same object even if their colors are different.
Inspired by this, GPG designs three adaptive factors to con-
trol the contribution of similarity, proximity and smoothness
laws respectively.

Impact of Diagram Patch Number. To verify the impact
of the number of diagram patchesN , GPA is modified to only
use N as a variable. N is set to 4, 16, 64, 100 and 256 re-
spectively, and the experimental results are shown in Figure
6. GPA achieves the optimal result when N = 16. Subse-

Type Models Backbone Acc

Two-stage
CITE ResNet-101 61.33
DDPN ResNet-101 73.30
Pseudo-Q ResNet-101 60.41

One-stage

MultiG PNASNet 69.19
ZSGNet ResNet-50 63.39
ReSC DarkNet-53 69.28
TransVG ResNet-50 78.47
VLTVG ResNet-50 79.18

One-stage GPA(Ours) ResNet-50 76.26

Table 5: The accuracy (Acc %) results on Flickr30K Entities test set.

quently, as N increases, performance gradually decreases.

4.4 Analyses of Natural Image Visual Grounding

The gestalt-perception graph network designed in the GPA
model aims to simulate a series of gestalt laws that the hu-
man visual system follows when perceiving objects in the di-
agram. Of course, these laws are also applicable to human
understanding of natural images. Therefore, we also conduct
the experiments in natural image visual grounding to verify
the effectiveness of GPA model.

Table 5 shows that the accuracy of the GPA model is 2.96%
higher than that of the two-stage model DDPN [Yu et al.,
2018]. Compared with latest one-stage models, our GPA also
achieves comparable result.

5 Conclusion and Future Work

In this paper, we conduct the diagram visual grounding with
a gestalt-perceptual attention model GPA. Gestalt perception
simulates human visual system, which can effectively iden-
tify key objects in images with limited samples. As the vi-
sual features of diagrams are sparse and there exist seman-
tic gaps with language expressions, the GPA model designs
a gestalt-perception graph network to learn the local visual
representation of the diagram. In addition, there is a multi-
modal context attention mechanism to enhance the semantics
of the diagram, thereby promoting accurate grounding on the
diagram with the target language expression.

Although the GPA model reflects the effectiveness of the
diagram visual grounding, we need to explore a variety of
gestalt laws to deal with more complex diagrams in the fu-
ture, not just the most conventional similarity, proximity and
smoothness laws utilized in this work.
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