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Abstract
Video summarization and video captioning both
condense the video content from the perspective
of visual and text modes, i.e., the keyframe se-
lection and language description generation. Ex-
isting video-and-language learning models com-
monly sample multiple frames for training instead
of observing all. These sampled deputies greatly
improve computational efficiency, but do they rep-
resent the original video content enough with no
more redundancy? In this work, we propose a dual
video summarization framework and verify it in
the context of video captioning. Given the video
frames, we firstly extract the visual representation
based on the ViT model fine-tuned on the video-
text domain. Then we summarize the keyframes
according to the frame-lever score. To compress
the number of keyframes as much as possible while
ensuring the quality of captioning, we learn a cross-
modal video summarizer to select the most seman-
tically consistent frames according to the pseudo
score label. Top K frames (K is no more than 3%
of the entire video.) are chosen to form the video
representation. Moreover, to evaluate the static ap-
pearance and temporal information of video, we
design the ranking scheme of video representa-
tion from two aspects: score-oriented and time-
oriented. Finally, we generate the descriptions with
a lightweight LSTM decoder. The experiment re-
sults on the MSR-VTT and MSVD dataset reveal
that, for the generative task as video captioning, a
small number of keyframes can convey the same se-
mantic information to perform well on captioning,
or even better than the original sampling.

1 Introduction
Video and language, as two kinds of sequence signals, pro-
vide a wealth of information for people’s daily communi-
cation. A wild range task, such as video captioning [Chen
and Jiang, 2019; Lin et al., 2021], video question answer-
ing [Yang et al., 2021], text-video retrieval [Gabeur et al.,
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(a) Video captioning

(b) Single frame captioning

(c) Four keyframes captioning

… … Young people talk to a pet resulting 
in the pet being very happy.

Original video (360fs)

Cartoon characters are 
talking to a pet.

Random sample (1f)

Young people talk to a pet resulting 
in the pet being very happy.

Summarized keyframes (4fs)

The 
same!

Figure 1: Video contains quite a redundancy towards video caption-
ing task. Compared to the original video captioning in (a), one single
frame sampled from the video can generate a nearly semantic ex-
pression (b). In our work, we learn to summarize the most compact
keyframes to achieve consistency in the form of language descrip-
tion (c).

2020; Bain et al., 2021] and video grounding [Anne Hen-
dricks et al., 2017; Escorcia et al., 2019], has been designed
due to the application potentials. Compared to the isolated
image and abstract language description, videos are more en-
gaging by conveying vivid and dynamic visual content. How-
ever, for video understanding and processing, it also contains
quite a redundant.

Video summarization and video captioning are tasks ded-
icating to extract a concise content of video from the per-
spective of visual and linguistic modes. Video summariza-
tion aims to select keyframes or shots while video captioning
devotes to generate the natural language descriptions to ex-
press the video content. Video captioning is also known as
a text form of video summarization [Sanabria et al., 2018;
Shang et al., 2021]. Considering the redundancy in the video
caused by the frame similarity, existing video-and-language
learning model commonly chooses multiple frames as model
inputs instead of observing all. A conventional way to process
the input video is to randomly sample several frames [Baraldi
et al., 2017; Pei et al., 2019; Lei et al., 2021]. [Chen et
al., 2018] choose the informative frames according to the vi-
sual representation of them, like visual summarization. These
sampled deputies greatly improve computational efficiency,
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but are they represent the original video content enough and
with no more redundancy? The crucial issue of finding out
the most informative frames for video captioning is: In the
video-language learning task, what is the essential visual
content from the video? [Buch et al., 2022] and [Lei et
al., 2022] both revisit this problem by single frame training
scheme and verify the pre-trained model on the discrimina-
tive downstream task, i.e., Video QA and cross-modal video
retrieval. The result from [Lei et al., 2022] reveals the exis-
tence of a strong “static appearance bias” in popular video-
and-language datasets. Different from these discriminative
tasks, video captioning is a generative task and requires a full
coverage understanding of visual and temporal content. Sin-
gle frame without any temporal clues is not satisfied to convey
a comprehensive content for natural language expressing, as
shown in Figure 1.

In this paper, we consider that the caption generated from
the keyframes should closely parallel that from the original
video. Motivated by this, we propose a dual video sum-
marization framework and verify it in the context of video
captioning to find a moderate strategy and number of sam-
pled frames with accuracy and efficiency. Given the sam-
pling frames as candidates, we finetune the pre-trained ViT
model [Radford et al., 2021] based on the video-text retrieval
task to extract the visual features. To select the most repre-
sentative frames among them, we implement a cross-modal
video summarization module as an auxiliary means to sum-
marize the frames. We generate a pseudo score label of each
frame as the reference to facilitate the summarizer. Then we
sort the frames by their scores and select the Top K frames
(K is no more than 3% of the entire video.) as the most
compact and semantically consistent summary to represent
the video. Moreover, to evaluate the static appearance and
temporal information of video, we design the ranking scheme
of video representation from two aspects: score-oriented and
time-oriented. Finally, we generate the descriptions with a
lightweight LSTM decoder. The experiment results on the
MSR-VTT and MSVD dataset reveal that, for the genera-
tive task as video captioning, a small number of keyframes
can convey the same semantic information to perform well
on captioning, or even better than the original sampling.

In summary, our contributions are three-fold:

• We cooperate the video summarization and video cap-
tioning task with each other to investigate the video
frame representation problem. We propose a dual video
summarization framework that select accurate and com-
pact keyframes without frame-level annotation.

• We design a semantic-consistency video summariza-
tion module to assist the video captioning. We utilize
clipscore between the visual feature and text embed-
ding as the pseudo label to facilitate the score learning
module.

• We evaluate our model on the video captioning benck-
marks MSR-VTT and MSVD. We find that, for the
generative task as video captioning, a small number of
keyframes can convey the same semantic information
and is able to perform well in the captioning task, or
even better than the original sampling.

2 Related Work

2.1 Video Captioning

Video captioning is a challenging task of yielding corre-
sponding natural language description for a given video. In
the past few years, the field of video captioning has been
obtained great advancement with lots of newly proposed
method. Existing works of video captioning mainly adapt
an encoder-decoder framework. [Venugopalan et al., 2015]
firstly exploits LSTMs to learn the temporal structure of
videos and then generate descriptions. [Pan et al., 2016] pro-
poses a hierarchical encoder which takes a series of visual
feature sequences into a single vector as the main represen-
tation of the whole video. Following the same paradigm,
[Baraldi et al., 2017] encodes semantic content and video
frames in a trainable encoding layer. [Chen and Jiang, 2019;
Zhang and Peng, 2020] employ temporal and spatial attention
for tackling video feature alignment and aggregation. [Song
et al., 2017] decides whether to depend on the visual informa-
tion or the semantic context information especially when gen-
erating non-visual words(e.g.“a”, “the”). [Yan et al., 2022]
produces rich semantic vocabulary to obtain description of
video contents from the proposed global-local representation
granularity framework. [Gao et al., 2022] tries to resolve the
disconnection between offline extracted motion or appear-
ance features and sentence generation by a dual-level trans-
former with image-text pre-training models. For improving
model’s generation efficiency and effectiveness, [Chen et al.,
2018] proposes frame selecting strategy to decrease input re-
dundancy with little performance drop. In this paper, un-
like previous works [Chen and Jiang, 2019; Zhang and Peng,
2020; Yan et al., 2022; Gao et al., 2022] use densely extracted
offline features or complicated architecture, we rethink reduc-
ing video’s content redundancy by learning to sample high
informative frames from already sparsely sampled candidates
as well as maintaining our model’s lightweight.

2.2 Video Summarization

Video summarization aims to generate a subset of informa-
tive frames that can present the main contents from video se-
quences. Early works[Borji and Itti, 2012; Gygli et al., 2013;
Gygli et al., 2014; Zhao and Xing, 2014] mainly concentrate
on designing handed-craft video representation(e.g.visual at-
tention, video interest) in unsupervised manner. [Gygli et
al., 2014] assigns frame scores according to multi level fea-
tures and the summary would be selected as the optimal
subset of them. [Zhou et al., 2018] formulates video sum-
marization as a sequential decision-making process and de-
sign reinforcement learning framework that doesn’t rely an-
notated frame level labels. Some works take multimodal in-
teracting into account. [Song et al., 2015; Qiu et al., 2022]
bring in textual sources such as video’s title or supplied ar-
ticles to help key frame location while [Xiao et al., 2020;
Narasimhan et al., 2021] consider users’ preference and pro-
vide more fine-grained summarization through integrating
query into visual features. In this work, we attempt to select
frames on the unlabeled video captioning dataset by content-
aware supervised learning.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

847



Top
K…

…

video frames

Finetuned 
ViT

M
LP

0.39
0.11
0.03
0.13
0.28
…

0.39
0.28
0.13
0.11
0.03
…



average
pooling

0.13
0.11
0.25
0.38
0.05
…

ground truth 
sentences 

LSTM
Cell

LSTM
Cell

LSTM
Cell

Ground Truth Sentence 

Predicted Sentence 

 BOS
ෝ𝒚𝟎

clip score matrix

attentive 
matrix

pseudo scores

Encoder Summarizer Decoder

How to put 
on blush

visual 
features

attentive 
features

frame 
scores

sort & select
XE/DXE loss

Clip Text 
Encoder

t1
t2
t3
t4
t5
…

t1
t2
t3
t4
t5
…

t1
t5
t4
t2
t3
…

by scoret1  t5  t4  t2

by timet1  t2  t4  t5

video representation

ෝ𝒚𝒕−𝟐

𝒚𝟎 𝒚𝟏 𝒚𝒕−𝟏

Figure 2: The illustration of our framework. Given the video frames, we first encode the visual feature by the ViT model finetuned with
the video-text retrieval task. After attention augmentation, we summarize the TOP K frames by learning scores. We utilize clipscore
between the visual feature and text embedding as the pseudo label to facilitate the score learning module. The decoder is a light weight LSTM
to generate caption according to the video summarization.

3 Framework
The proposed dual video summarization framework follows
the pipeline with three components: an encoder, a sum-
marizer and a decoder, as shown in Figure 2. The en-
coder extracts visual features from candidate frame samples.
The summarizer selects the most representative and compact
frames according to the frame scores, while the decoder gen-
erates natural language descriptions based on the selected
keyframes.

3.1 Problem Formulation
Given an input video V with totally T frames, we follow the
common measures to sample N frames and represent them as
visual feature F = {f1, f2, ..., fN}, fi ∈ Rdf with equal time
spacing. The target of our framework to select a subset Fkey

from F with K frames (K < N&K ≪ T ) as keyframes’ fea-
tures, while the caption generated from the keyframes should
closely parallel that from the original video.

For each video in the training set, there are M captions
represented by the text embedding C = {c1, c2, ..., cM}, ci ∈
Rdc . Each caption is a sentence (i.e., word sequence) Y =
{y1, y2, ..., yW } to express the video’s content.

3.2 Encoder
Considering the redundancy of video caused by the frame
similarity, existing video-and-language learning model com-
monly chooses multiple frames as model inputs instead of
observing all. This multi-frame training strategy has been the
norm and is shown to work well [Lei et al., 2022]. We follow
this procedure and sample the candidate frames time equally.
The visual feature of each frame is extracted by a fine-tuned
ViT model [Dosovitskiy et al., 2020]. The outputs of encoder
are defined as fi, i ∈ [1, ..., N ], where N denotes the length
of input frames.

We adapt pre-trained CLIP [Radford et al., 2021] with 12
layers’ ViT-B/32 as our visual encoder. Although CLIP has

been pre-trained on 400M image-text pairs, we tend to narrow
the gap between videos and images by performing video-text
retrieval task to fine-tune CLIP’s parameters. Many previous
works, such as [Chen and Jiang, 2019; Zhang et al., 2021;
Yan et al., 2022], take off-line CNNs pre-trained on other
datasets to extract temporal representation or object features.
Since the differences in data distribution, these operations
might suffer a disconnection between the target task and the
pre-trained domain [Gao et al., 2022]. Video-text retrieval is
a coarse-grained multi-modal task compared with video cap-
tioning. Thus we use it to fine-tune the pre-trained CLIP(ViT-
B/32) on the mainstream captioning datasets and seek to
weaken the disconnection while not hurting the visual rep-
resentation ability of the model.

For the fine-tuning, ViT first reshapes images into flattened
patches. Then the 2D patches would be further flattened and
mapped to 1D vectors through trainable linear projection for
adjusting standard Transformer [Vaswani et al., 2017]. The
specific prepend token [CLS] interacting with each input
patch is regarded as the image representation. Following [Luo
et al., 2021], we average the generated features along the tem-
poral dimension and get the video representation f̂ by aver-
age pooling. We directly apply CLIP’s text encoder to output
caption embeddings cj , j ∈ [1, ...,M ] corresponding to the
given video. The visual-language similarity function s(f̂ , c)
can be defined as

s(f̂ , c) =
ctrf̂

||c|| ||f̂ ||
. (1)

where tr denotes vector transposition .

3.3 Summarizer
For the traditional video summarization task, the evaluation
metrics are the precision, recall and F-score. These metrics all
require supervised frame-level annotations as ground truth,
which limits to summarize the video without manually labels.
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In this work, we evaluate the video summarization result from
a high-level semantic aspect. The language description gen-
erated from the image or video is the abstractive summary of
the visual content. If the captions generated from the video
and keyframes are consistent, then they convey the same se-
mantic information for human cognitive understanding.

To learn the summarizer, we leverage the local self-
attention module to capture semantic relation among all the
frames as well as outputting predicted scores for these frames
following [Xiao et al., 2020]. Given the encoder output
F = {f1, f2, ..., fN}, we compute the relation score map as:

r(fi, fj) = P tanh(W1fi +W2fj + b), (2)

where P,W1,W2 ∈ Rdf×dc are parameter matrices and b
is bias vector, df and dc are the dimension of input features
and outputs. Note that the score map with shape N ×N ×df
means the features not only interact with each other along the
temporal perspective but also their inner dimension. Then we
can get the local attentive visual feature fatt

i by

aij =
exp(r(fi, fj))∑N
k=0 exp(r(fi, fk))

, (3)

fatt
i =

N∑
j=0

aij ⊙ fi, (4)

where ⊙ denotes element-wise multiplication.
Finally, we get the predicted score scrpi , i ∈ [1, ..., N ] of

each frame using a trainable MLP after processing the atten-
tive visual feature employing a residual connection and GeLU
activation

scrpi = MLP (fatt
i +GeLU(fatt

i )), (5)

We choose the Top K frames according to the score ranking
as the video summarization. In the practices, K = 4 achieves
the best performance, which only accounts for 2 ∼ 3% for
the original video (T > 200).

To train the summarizer, we generate a pseudo score label
of each frame to facilitate video summarization. Concretely,
we compute cosine similarity score for each sampled frame in
the video with all the video-related texts, then average them
as the current frame’s visual correlation. Here we choose the
clipscore [Hessel et al., 2021], a reference-free metric
reaching the highest correlation with human judgements, to
assess the image-caption compatibility. This metric is out-
performing existing reference-based metrics like CIDEr and
SPICE. We slightly modify the definition of clipscore
and formulate it as:

scrci =
1

M

M∑
j=1

s(fi, cj), (6)

where M denotes the number of references and mj is the jth
references. This pseudo score scrci is regarded as the ground
truth label when training the summarizer based on the binary
cross-entropy loss function

L =
1

N

N∑
i

scrci log(scr
p
i ) + (1− scrci ) log(1− scrpi ), (7)

3.4 Decoder
The summarizer selects the Top K frames as the video sum-
marization and the features are Fkey = {f1, f2, ..., fK}, fi ∈
Rdc . As a feature sequence, we concatenate the key frame
features by two strategies, i.e., score-oriented and time-
oriented. We use two ranking mechanisms to decide the
elements’ position depending on their temporal position or
predicted scores. The vector Vs = [f1, f2, ..., fK ], Vs ∈
R1×(K×dc) is the final representation of the input video .

The captioning decoder is a light weight LSTM which pro-
duces a hidden state hi and a cell state celli at the ith step,

hi, ci = LSTM([hi−1; Φ(yi−1, ŷi−1); celli−1]), (8)

where hi−1, yi−1, ŷi−1 and celli−1 are the previous hidden
state, the predicted word, the ground truth and the cell state
respectively. [.; .] denotes the concatenation. We introduce
scheduled sampling method [Bengio et al., 2015] to solve the
inconsistent distribution of input representation during train-
ing. Concretely, Φ(·) can randomly choose yi−1 or ŷi−1 as
the ith input token. As the training epoch increasing, Φ(·)
tend to choose yi−1 and the initial input of LSTM is the re-
shaped representation Vs when i=0.

Our objective function for the decoder with trainable pa-
rameters θ is formulated as:

LXE(θ) = −
W∑
t=1

log pθ(ŷt|Φ(·)1:t−1), (9)

where Φ(·)1:t−1 denotes the above scheduled sampling se-
quences.

We also adapt discriminative cross-entropy(DXE) [Yan et
al., 2022] as the learning objective. Each video is attached
with M captions Ŷ = {Y1, Y2, ..., YM}, the qualities of the
captions is not equivalent which can be evaluated by metric
scores m(Ŷ ) pre-computed using BLEU@4 or CIDEr, m(Ŷ )
serves as the discriminative weight in cross-entropy loss to
promote the model to more concentrate on high-quality cap-
tions. The DXE loss function is formulated as:

LDXE(θ) = − 1

M

M∑
j=1

m(Yj)log p(Yj |Vs; θ), (10)

3.5 Training
The training procedure is split into two stages. In the first
stage, we train the summarizer module with our automatic
content-aware scores to choose a subset of frames containing
more visual diversity and less noise. In the second stage, we
freeze the summarizer’s parameters while update the caption-
ing decoder. The two-stage training strategy makes the both
module more stable. We consider not every frame is possible
for a video especially when captioning, our summarizer mod-
ule pre-excludes most of video’s inherent redundancy and the
following captioning would suffer from less interference.

4 Experiments
4.1 Implement Details
Dataset. We evaluate our model on MSR-VTT [Xu et al.,
2016] and MSVD [Chen and Dolan, 2011] datasets.
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MSR-VTT MSVDTraining Method Feature B@4 M R C B@4 M R C

PMI-CAP [Chen et al., 2020] IRV2+C3D 44.0 29.6 - 50.7 54.7 36.4 - 95.2
SAAT [Zheng et al., 2020] IRV2+C3D+Ca 40.5 27.9 61.2 51.0 46.5 33.5 69.4 81.0
STGraph [Pan et al., 2020] RN+I3D+F 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93.0

SGN [Ryu et al., 2021] RN+3D-RN 40.8 28.3 60.8 49.5 52.8 35.5 72.9 94.3
O2NA [Liu et al., 2021] RN+3D-RX 41.6 28.5 62.4 51.1 55.4 37.4 74.5 96.4

RCG [Zhang et al., 2021] IRV2+C3D 42.8 29.3 61.7 52.9 - - - -
ORG-TRL [Zhang et al., 2020] IRV2+C3D+F 43.6 28.8 62.1 50.9 54.3 36.4 73.9 95.2

GL-RG [Yan et al., 2022] RN+3D-RN+RX 45.5 30.1 62.9 51.2 55.5 37.8 74.7 94.3

XE

Ours ViT 45.5 30.5 63.6 55.0 64.2 41.4 79.1 118.7

PickNet [Chen et al., 2018] RN 38.9 27.2 59.5 42.1 46.1 33.1 69.2 76.0
SAAT [Zheng et al., 2020] IRV2+C3D+Ca 39.9 27.7 61.2 51.0 46.5 33.5 69.4 81.0
POS [Wang et al., 2019] IRV2+Motion I3D 41.3 28.7 62.1 53.4 53.9 34.9 72.1 91.0RL

D2 [Gao et al., 2022] ViT 44.5 30.0 63.3 56.3 56.9 38.4 75.1 99.2
GL-RG [Yan et al., 2022] RN+3D-RN+RX 46.9 30.4 63.9 55.0 57.7 38.6 74.9 95.9DXE Ours ViT 45.9 30.5 64.2 57.8 60.1 40.7 77.4 109.6

Table 1: Performance Comparisons with state-of-the-art methods on the testing set of the MSR-VTT and MSVD datasets in terms of
BLEU@4, METHOR, ROUGE-L and CIDEr scores. The best and the second-best methods are highlighted. In the first column, “XE”
is cross-entropy; “DXE” is discriminative cross-entropy which is compared with “RL”(reinforcement learning). “IRV2”, “Ca”, “F”, “RN”,
“RX” denote Inception ResNet-v2, Category features, Faster RCNN, ResNet and ResNeXt repectively.

• MSR-VTT is a large-scale open domain dataset. It con-
tains 10K videos crossing a wide range categories in-
cluding music, game, sports and movie. Each video
is annotated with 20 references. The duration of each
video in MSR-VTT is between 10 and 30 seconds. We
split the data into a 6,513 training set, 497 validation set
and 2,990 testing set.

• MSVD has 1,970 Youtube videos. This dataset mainly
contains short video clips with a single action, and the
average duration is about 9 seconds. We follow the data
split of 1,200 videos for training, 100 videos for valida-
tion and the rest for testing. The number of references
of each video in MSVD dataset is not fixed and we set
the the number to 17 following [Yan et al., 2022].

Evaluation Metrics. We use four universal metrics
for evaluation: BLEU@4, ROUGE-L, METHOR and
CIDEr [Vedantam et al., 2015], which are denoted as B@4,
M, R, and C respectively. We mainly compare CIDEr as the
previous video captioning works.

Training setup. Our encoder is adapted ViT model fine-
tuned on video-text retrieval task. Our summarizer module is
trained with 10 epochs on the above datasets’ with learning
rate 1e-3 and dropout 0.2. Our captioning module is trained
with learning rate 1e-4 and 40 epochs, and we set the batch
size to 32. Both the summarizer and captioning decoder em-
ploy Adam optimizer [Kingma and Ba, 2014] to minimize
the loss. The candidate frames number is set to 12 with time-
equally sampling and we set the maximum sequence length
to 30 following [Luo et al., 2021] and [Yan et al., 2022] re-
spectively. The dimension of visual embeddings and text em-
beddings is 512.

4.2 Comparison to State-of-the-art

The performance of our proposed framework and other top-
performing baselines are presented in Table 1. In the practice,
we only summarize four keyframes to present each video. We
compare the XE training result with other XE-based methods.
For the DXE training results, we compare them with DXE-
based method and reinforcement learning methods.

As it can be observed, our model achieves best perfor-
mances on all metrics over two benchmarks under the XE
training. The CIDEr score of our model reaches 55.0, which
achieves increments of 4.0% and 6.9% to strong models RCG
[Zhang et al., 2021] and GL-RG [Yan et al., 2022]. More-
over, our model achieves improvements of 1.1% and 1.3%
on R and M respectively while bringing into correspondence
on B@4 with previous best results. Under DXE training, our
margins over [Yan et al., 2022] are 0.3% on M, 0.5% on R
and 5.1% on C. It’s worth mentioning that we only use ViT
feature, while other methods employ various features from
visual to temporal. During all the training stages, we do not
employ any temporal information such as 3D temporal visual
feature. This reveals that, for the video understanding, there
is quite a redundancy and the visual appearance is much more
essential than the temporal information.

Compared to the MSR-VTT, our model achieves a more
superior performance on the MSVD over all metrics. Un-
der the XE training, our advancements over the second best
results are 15.7% on B@4, 9.5% on M, 5.9% on R, and espe-
cially 23.1% on C. DXE training decreases the model’s per-
formance on MSVD unexpectedly although still surpasses the
other methods in a large margin, e.g. 10.4% improvements on
C over [Gao et al., 2022].
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MSR-VTT MSVD
Number B@4 C B@4 C

1 40.9 49.5 58.0 97.8
2 43.9 52.0 60.0 109.6
4 45.5 55.0 64.2 118.7
8 45.4 55.4 61.8 109.0

12 44.5 53.6 60.1 104.4

Table 2: Comparison of the different K frames on MSR-VTT and
MSVD.

4.3 Ablation Study
We conduct several ablation studies to quantify the influences
of different configuration of our model.

Summarized frames. We measure different K numbers of
summarized frames. We list the results of K from single to 12
in Table 2. It is shown that, K = 4 achieves the best results.
We notice that the model trained with only two frames can ex-
ceed many previous state-of-the-art results. Even the single
frame selected by our model produces considerable caption-
ing performance. The metric scores maintain growth as the
input frames increasing on MSR-VTT dataset, but the rating
is gradually declined, using more frames(e.g. 8) can not bring
corresponding improvements(55.4 CIDEr vs. 55.0 CIDEr)
or even produce negative effect(45.4 B@4 vs. 45.5 B@4)
when compared with 4 frames input. As for MSVD dataset,
4 frames is the optimal input, which produce the most obvious
advancement on B@4 and C. One possible reason is that the
noise frames existed in videos affect the training of the model.
We set the number of input frames to 4 as the final configu-
ration. In case the improvement is benefited by the feature
dimension extension from the frame increasing, we verify the
performance by duplicating the features into the same dimen-
sion. The range of dimension is {512, 1024, 2048, 4096} cor-
responding to {1, 2, 4, 8} frames. The results is in Table 3.
‘X→Y’ means X frames are expanded to Y by simple tempo-
ral duplication to obtain identical dimension and not provide
additional information. It can be observed ‘1→Y’ could im-
prove the performance when compared with single frame in-
put while still dropped behind selected Y (line 1vs line 3 and
line 5 vs. line 7). It’s apparent that the latter contains more
visual information and the content in single frame is quite
weak. We also confirm the above conclusion that 4 frames
input is ultimate (line 2 vs. line 5 and line 3 vs. line 6).

Video representation. We elaborate the influence of rank-
ing order and fineturned ViT in Table 4. As we can see(line
1 vs. line 2), score-oriented video representation, which
completely overlooks temporal information, is better than
the time-oriented, increasing B@4 by 2.2% and C by 2%.
This finding reaches an agreement with “static appearance
bias” [Lei et al., 2022] existing in the popular video caption-
ing datasets. Finetuned ViT (line 1 vs. line 3 and line 6 vs.
line 8) helps reduce the gap between images and videos and
achieves improvement of 3.2% and 7.2% on C respectively.
Notice that the finetuning process has more obvious effect
on MSVD dataset, we assume the reason is that the video in

Number B@4 M R C

1→4 58.2 37.9 75.1 101.8
2→4 61.7 39.9 77.5 111.0

4 64.2 41.4 79.1 118.7
1→8 58.1 37.9 75.4 103.9
2→8 60.1 40.1 76.7 107.9
4→8 61.5 40.1 77.2 111.3

8 61.8 40.7 77.6 109.0

Table 3: Evaluation the effects of feature dimension duplicaiton on
MSVD dataset. → denotes the expansion process.

U F S T B@4 M R C

× ✓ ✓ × 45.5 30.5 63.6 55.0
× ✓ × ✓ 44.5 30.3 62.9 53.9
✓ × ✓ × 44.5 30.0 62.8 53.3
✓ × × ✓ 43.9 29.9 62.3 52.7

× ✓ ✓ × 64.2 41.4 79.1 118.7
× ✓ × ✓ 62.2 40.6 77.9 111.5
✓ × ✓ × 59.4 38.5 75.5 100.6
✓ × × ✓ 59.6 38.6 76.1 104.0

Table 4: Performance comparison of different sources and rank or-
der of the selected frames on MSR-VTT(the upper) and MSVD(the
lower). “U”, “F”, “S”, “T” denote unfinetuned ViT features, fine-
tuned ViT features, scoring order and temporal order respectively.
The number of selected frames here is 4.

MSVD is attached with average 36 captions while 20 cap-
tions in MSR-VTT during finetuning. The larger scale video-
caption pairs lead to the better visual representation ability
for ViT.

Sampling method. We investigate the influence of using
different frame sampling method in Table 5. We introduce
Clip [Radford et al., 2021] embedding relation score to indi-
cate correlation among frames, we calculate the cosine simi-
larity of extracted embeddings then sum them along the tem-
poral dimension, that is to say, the value report the degree
of correlation between the frame and the others. Intuitively,
people prefer these frames appeared more frequently in the
video when labeling the importance of them, here we con-
sider the frames with high relation score coincide this conclu-
sion. We choose the input subset based on maximal or mini-

Method B@4 M R C

Random 43.4 30.0 62.0 52.4
Uniform 43.4 30.1 62.2 51.7
Clip Max 44.0 29.8 62.6 51.9
Clip Min 40.6 28.4 60.1 45.9

Ours 45.5 30.5 63.6 55.0

Table 5: Comparison of the influence of different sampling methods
on MSR-VTT dataset. The selected input frames here is set to 4.
Ours is trained on XE.
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      Ground Truth:  A man shows how to fold a jogging stroller.      GL-RG:      A woman is showing how to use a stroller.  
      Ours(TO):         A man is showing how to use a stroller.       Ours(SO):  A man is showing how to use a stroller.  

Ground Truth:  A man and woman are dancing on a stage.     GL-RG:       A woman is dancing. 
Ours(TO):         A man and woman are dancing.                 Ours(SO):   A man and a woman are dancing on a stage. 

Figure 3: Qualitative examples on the MSR-VTT testing set. Compared to the previous method GL-RG[Yan et al., 2022], our model can
generate more accurate and more diverse captions. TO and SO are time-oriented and score-oriented of the video representation.

Figure 4: Example results of frame-level score on MSR-VTT
dataset.

mal K(e.g.4) values which are denoted as Clip-Max and Clip-
Min respectively. Randomly and uniformly sampling produce
almost the same results, Clip-Max get higher scores on B@4
and R. The fourth line(Clip-Min) shows that the frames ap-
peared rarer can not cover the main content compared with
Clip-Max. The last line shows the importance of frame is
not only determined by their frequency and our model using
content aware labeling in consideration of visual and lingual
perspective can find approximately optimal subset from a se-
ries of frames.

4.4 Qualitative Results
Figure 3 shows the qualitative examples of our method. As
indicated by the examples, with only 4 selected frames in-
put, our method can generate more accurate captions like
the lower sub-figure, while GL-RG[Yan et al., 2022] pro-
duces wrong description like ‘a woman’. Figure 4 shows the

(a) Video 6592 (b) Video 6622

Figure 5: (a) and (b) show the video contents and the videos come
from Figure 4, the blue and orange boxes indicate picked frames.
Frames are organized from left to right, then top to bottom in tem-
poral order.

clipscore labeling scores of two random sampled videos
on MSR-VTT dataset. And the frames of (a) and (b) in Figure
5 are from the TOP 4 of labeling scores in Figure 4. We no-
tice higher scores normally indicate the frames are dominant
in the whole video which report the main content.

5 Conclusion
In this paper, we cooperate the video summarization and
video captioning task with each other to investigate the video
frame representation problem. We propose a dual video sum-
marization framework composed of an encoder, a summarizer
and a decoder. By verifying it in the context of video cap-
tioning, for the generative task as video captioning, a small
number of keyframes can convey the same semantic informa-
tion. This reveals the redundancy and frame bias of video
captioning benchmarks.
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