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Abstract
Widely-used DNN models are vulnerable to back-
door attacks, where the backdoored model is only
triggered by specific inputs but can maintain a high
prediction accuracy on benign samples. Existing
backdoor input detection strategies rely on the as-
sumption that benign and poisoned samples are
separable in the feature representation of the model.
However, such an assumption can be broken by ad-
vanced feature-hidden backdoor attacks. In this
paper, we propose a novel detection framework,
dubbed Orion (online backdoor sample detection
via evolution deviance). Specifically, we analyze
how predictions evolve during a forward pass and
find deviations between the shallow and deep out-
puts of the backdoor inputs. By introducing side
nets to track such evolution divergence, Orion elim-
inates the need for the assumption of latent separa-
bility. Additionally, we put forward a scheme to
restore the original label of backdoor samples, en-
abling more robust predictions. Extensive exper-
iments on six attacks, three datasets, and two ar-
chitectures verify the effectiveness of Orion. It is
shown that Orion outperforms state-of-the-art de-
fenses and can identify feature-hidden attacks with
an F1-score of 90%, compared to 40% for other de-
tection schemes. Orion can also achieve 80% label
recovery accuracy on basic backdoor attacks.

1 Introduction
Deep neural networks (DNNs) have achieved tremendous
success in various learning tasks, such as face authentication,
autonomous driving, and disease diagnosis [Parkhi et al.,
2015; Redmon et al., 2016; Rajkomar et al., 2018]. However,
due to the diversity of data sources and the difficulty of per-
forming sanity checks on off-the-shelf models, recent work
has revealed that DNN models are vulnerable to backdoor at-
tacks [Gu et al., 2019]. Backdoor attacks are supply-chain
attacks that insert malicious functionality into the model by
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Figure 1: Multi-exit branchy network with side nets.

poisoning the training data or manipulating the model weight.
At inference time, the model misclassifies any input stamped
with the trigger to the target label while maintaining normal
function on clean data. A recent survey of 28 industry com-
panies [Kumar et al., 2020] viewed the backdoor attack as
the most severe threat to machine learning systems for model
users. Therefore, it is urgent to design an effective way to
identify the backdoor samples for reliable model deployment.

A long line of works [Tran et al., 2018; Hayase et al., 2021]
identifies abnormal samples in the training set. However, they
typically require the knowledge of the approximate poisoning
rate or a large number of data to implement clustering algo-
rithms [Chen et al., 2019b], which is not applicable in the
online scenario. State-of-the-art studies [Tang et al., 2021;
Ma et al., 2023] on online sample detection use the feature
map extracted from the last convolution layer to distinguish
backdoor samples from normal ones and regard backdoor in-
put identification as out-of-distribution (OOD) sample detec-
tion. However, the static feature map neglects the information
from shallow layers and the strong assumption of latent sepa-
rability can be easily broken by recent feature-hidden attacks.
Moreover, recognizing OOD samples requires a large amount
of clean data to simulate the feature distribution of benign im-
ages, making it challenging to implement in practice.

Recent studies [Luo et al., 2016] have shown that shal-
low and deep layers of DNNs focus on features of differ-
ent granularity due to various receptive fields. Backdoors
are typically implanted in the deeper layers, while normal
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features predominate in an early stage of the model [Cai et
al., 2022]. This distribution characteristic can be captured
by making full use of the features in all layers, rather than
relying solely on the last feature map of the model. How-
ever, there are some challenges to leveraging internal fea-
tures. (C1) The total number of internal feature parameters
is too large to analyze. (C2) Feature representations include
many task-unrelated noise activations, which may interfere
with detection. (C3) When the original classification task
is challenging, benign features may also be learned only at
deeper layers, which can be confused with backdoor features.

To address these challenges, we propose Orion, which uses
internal classifications as an alternative to inner features and
identifies malicious inputs by prediction divergence during
the forward pass. We first introduce side nets (S-Nets) at dif-
ferent stages of the model to construct a multi-exit branchy
network, as shown in Figure 1. S-Nets allow samples to exit
the network early and output prediction results. By introduc-
ing internal classifiers, we can reduce the feature dimension
and the irrelevance to the classification task (C1-2). Then we
design the outlier score metric using the consistency, stabil-
ity, and determinacy of the side outputs and identify backdoor
samples by anomaly detection (C3).

In summary, this paper makes the following contributions.

• We investigate how prediction evolves during the for-
warding process and find deviations between the shal-
low and deep predictions of backdoor samples. Based
on that, we design a backdoor detection strategy Orion
that can identify malicious inputs on-the-fly by leverag-
ing a multi-exit branchy network.

• We propose a recovery scheme to restore the original
label of backdoor inputs, with 80% accuracy on basic
backdoor attacks. To the best of our knowledge, we are
the first to perform label recovery without modifying the
samples or the model.

• We validate the effectiveness of Orion under six different
attacks on three datasets and two model architectures.
Compared with baseline defenses, Orion can achieve
the best detection performance against all state-of-the-
art backdoor attacks. Orion is also the only backdoor
detection solution that can successfully identify samples
of feature-hidden attacks, with an F1-socre of 90%.

2 Related Work
2.1 Backdoor Attacks
Backdoor attack makes a model produce a malicious func-
tion when it encounters a specific trigger by tampering with
the training process. BadNets [Gu et al., 2019] is the first
backdoor attack that proposes to implant backdoors by data
poisoning. Subsequent works consider the invisibility of trig-
gers. Blended [Chen et al., 2017] proposed a more covert
backdoor attack by not overlaying the triggers directly onto
the original image but fusing them with a certain percent-
age. Further, WaNet [Nguyen and Tran, 2021] uses a small
and smooth wrapping field to generate backdoor samples
for visual concealment. More recent work has suggested
a more sophisticated way of generating poisoning samples.

IAD [Nguyen and Tran, 2020] uses an input-related genera-
tor to create a unique trigger for each sample, also called the
sample-specific trigger. There are also works that consider
more complex backdoor implantation. [Tang et al., 2021]
proposes input-dependent backdoor attacks TaCT, where the
trigger is only valid when added to images of a specific source
class. The latest feature-hidden attack [Zhong et al., 2022]
considers not only the visual concealment of the poisoned
data but also the consistency of the model representation.
They require backdoor samples to maintain similarity in fea-
ture representation with normal ones, which poses a new chal-
lenge to defense methods.

2.2 Backdoor Detection
Since a successful backdoor attack requires tampered data
and a malicious model, detection methods can be divided into
model diagnostics and anomaly sample detection. Model di-
agnostics aims to determine whether the model is backdoored
or not. ABS [Liu et al., 2019] identifies abnormal activa-
tions that significantly affect classification. ULP [Kolouri et
al., 2020] and MNTD [Xu et al., 2021] use a data-driven ap-
proach to determine whether a model is malicious. Recent
works [Liu et al., 2022; Wang et al., 2022] utilize trigger
reverse-engineering for backdoored model detection.

Existing methods for backdoor input detection rely on the
separability of benign and malicious samples on the feature
representation. AC [Chen et al., 2019b] performs a two-class
clustering algorithm on the activation outputs of the penul-
timate layer. Spectral [Tran et al., 2018] finds a detectable
trace called spectral signature in backdoor samples, and Spec-
tre [Hayase et al., 2021] further amplifies the signature us-
ing robust covariance estimation. SCAn [Tang et al., 2021]
uses image segmentation to identify statistical inconsistencies
in backdoor inputs. Latest work Beatrix [Ma et al., 2023]
leverages Gram matrix to compute high-dimensional infor-
mation of the feature map for anomaly detection. Our work
focuses on online sample detection, where we need to deter-
mine whether an input is malicious or not on-the-fly, without
relying on any information about attack strategies or the hy-
pothesis of latent separability.

2.3 Multi-exit Network
Multi-exit network allows classification results for inputs to
exit the network early. It is based on the observation that some
input samples can be correctly classified before reaching the
last layer and more layers may lead to over-learning and waste
of resources. The multi-exit network can realize adaptive in-
ference based on the input. It is widely used to improve the
accuracy, robustness, and efficiency of the model prediction.
SDN [Kaya et al., 2019] uses a confidence-based early exit
strategy to alleviate the problem of overthinking. Using two-
stage optimization, LSLP [Chen et al., 2020] learns both the
model parameters and a termination strategy. Further, [Hu et
al., 2020] proposes a robust multi-output network that can
resist adversarial attacks. Moreover, Meta-GF [Sun et al.,
2022] presents a meta-learning-based training algorithm to
train multiple exits harmoniously. We use the multi-exit net-
work to monitor the evolution of classification results.
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3 Methodology
3.1 Threat Model
We consider the same threat model in the most recent work
[Ma et al., 2023]. The attacker has complete knowledge of the
model and can arbitrarily modify the training set to make the
attacks successful. There is no limit on the types of triggers or
the ratio of poisoning data. The attacker serves as a powerful
malicious model provider. The defender is the model user
that has white-box access to the backdoored model, which is
the same as current detection strategies [Hayase et al., 2021;
Tang et al., 2021; Ma et al., 2023]. We assume the defender
has a small set of clean reference data for detection. The goal
of the defender is to identify the malicious input on-the-fly
and ensure the accuracy and robustness of the prediction.

3.2 Overview
The overall framework of Orion is shown in Figure 2. The de-
tection mainly consists of three steps. (i) Attaching and train-
ing S-Nets: Given an off-the-shelf backdoored model, the de-
fender first attaches some side nets to the model to make it a
multi-output branchy network. Then the holdout clean data is
used to train the newly added side branches without modifi-
cation to the original model. (ii) Calculating the outlier score:
For each sample fed into the network, we calculate the outlier
score of the sample by leveraging the output of each branch.
(iii) Anomaly detection. Finally, we choose the threshold for
determining which samples are poisoned based on the outlier
score. For the identified abnormal samples, users can dis-
card them or restore their original labels using the output of
shallow branches. The corrected samples can be further uti-
lized to retrain the model for purification. Since we consider
the scenario where a user with limited computing resources
tends to use an untrusted third-party model, the user may not
have enough resources to retrain the whole model. So in this
work, we mainly focus on detecting backdoor samples.
Notation. Let (x, y) ∈ (X,Y) be an input sample to the
model, where x is the input picture in the image classifica-
tion task and y ∈ {1, ..., c} denotes its ground-truth label, c
is the total number of classes. For a model contains n in-
ternal layers, the classification process of x can be expressed
as Fc(fn(...f2(f1(x)))), which outputs the probability that x
belongs to each category. Here, f is the feature extractor con-
sisting of convolution layers, activation layers, and pooling
layers. Fc represents the classifier which typically consists of
multiple fully connected layers with a softmax function. For
simplicity, we abbreviate the activation output at layer i as fi.
The i-th S-Net takes fi(x) as input and outputs the classifica-
tion results of x based on the shallow i layers.

3.3 Attaching and Training S-Nets
The branchy network is constructed by integrating S-Nets
into internal layers. Each S-Net comprises a feature process-
ing module and a classification module. The size of features
extracted from convolution blocks at various depths varies,
and excessively large features are not conducive to classifier
training. To mitigate this issue, we leverage the feature pro-
cessing module to reduce the feature parameters of different
layers to an appropriate size. The classification module takes

Figure 2: Pipeline of Orion.

the reduced features as input and performs the same classifi-
cation function as the original task.

Feature Processing Module. The feature processing mod-
ule in S-Nets aims to reduce the size of fi(x) for classifica-
tion. We employ a pooling strategy mixed with max pooling
and average pooling [Lee et al., 2016], which can learn the
mixing proportion parameters from the data without manual
guidance. We set the pooling size as 4x4, which means that
any feature map larger than this will be pooled into 4x4, while
smaller feature maps will remain unchanged.

Classification Module. For the design of the classification
module, we opt to use a single fully connected layer. Such
a simple design can make the classification results of S-Nets
mainly depend on the features extracted from the main branch
network so as to better monitor the prediction evolution of the
backdoor samples in the forward propagation process. We use
the clean reference set to train the parameters of the S-Nets
by backpropagation. The training loss of the i-th S-Net is
defined as

Li = LCE(Fi(Mi(fi(x))), y) (1)

where Mi and Fi mean the mixed pooling function and classi-
fication function of the i-th S-Nets. LCE is the cross entropy
loss. We simplify the output of the i-th S-Net to Fi(x).

Location of the S-Nets. Regarding the placement of the S-
Nets, we opt for equally spaced internal layers to implant
S-Nets. Intuitively, if the S-Nets are only distributed in the
shallow layers, the classification accuracy of both normal and
backdoor samples may be very low, and both deviate from the
final output. On the contrary, if they are all added at the deep
level, it is possible that the learning is converged and the out-
puts of the S-Nets tend to be consistent with the last one. As
a result, it is difficult to distinguish the two types of inputs,
which is also verified by our experiments.

3.4 Outlier Score Definition
As mentioned above, we consider a multi-exit branchy net-
work with (n − 1) S-Nets and n outputs. For normal in-
put, the dominant features of different convolutional layers
are consistent, representing features of the target objects. The
outputs of different S-Nets are similar, with the accuracy in-
creasing with the depth of the network and approaching the
final output of the main branch network. Since the backdoor

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

866



sample is generated by superimposing the normal sample and
the trigger, it contains both the characteristics of the origi-
nal class and the target class. Different S-Nets may focus on
distinct areas of the images, resulting in variations in branch
outputs. We find that the side outputs of backdoor samples
have three distinct characteristics in the forward propagation
process that are not present in the normal inputs. We exploit
these differences to design our metrics.

Consistency. First, we find that shallow S-Nets cannot
identify backdoors, and misclassification is only achieved in
deeper layers. However, most of the normal features can be
learned at an early stage. So, we calculate the consistency
between the output of S-Nets and that of the main branch net-
work

Φc(x) =
n−1∑
i=1

||Fi(x)− Fn(x)||1, (2)

which is the sum of L1 distance between all S-Nets outputs
and the final result. The L1 distance can characterize both
magnitude and direction changes of the predictions. How-
ever, normal samples that are hard to learn may also lead to
shallow misclassification. So we further consider the stability
and determinacy of the inner predictions.

Stability. Stability measures the frequency and magnitude
of changes in the outputs of branch nets. The outputs of the
backdoor input are more variable during the forwarding pro-
cess. However, variations in the output of benign samples
can also arise during the learning process due to the limited
capability of shallow S-Nets. As the depth of the network in-
creases, the ground truth label becomes more confident, while
the confidence of other labels decreases. In order to reduce
this effect, we only consider the direction change of the inter-
nal predictions and compute the cosine similarity of adjacent
S-Nets outputs as below

Φs(x) =
n−1∑
i=1

(1− cossim(Fi(x), Fi+1(x))). (3)

Determinacy. Determinacy indicates how certain the net-
work is about the current classification result. When the inter-
nal classification result matches the final output, the changes
in confidence levels are consistent across different samples.
As learning proceeds, a well-functioning network tends to
classify samples with increasing certainty into the labeled
class. So we focus on the confidence level when S-Nets’ out-
puts deviate from the main branch result. We observe that
backdoor samples exhibit higher false confidence than nor-
mal inputs, which can be attributed to the competitive nature
of the original and trigger features in the classification pro-
cess. As a result, the backdoor sample may be classified with
high confidence as the original class in the shallow layers,
and as the target class in deeper layers, leading to a higher
false confidence. On the contrary, normal inputs tend to be
less certain when misclassified, so all categories have low
confidence. We denote the output label of the i-th S-Net as
Pi(x) = argmax

j∈{1,...,c}
Fi(x). Determinacy is defined as

Φd(x) =
n−1∑
i=1

max(Fi(x))I(Pi(x) ̸= Pn(x)), (4)

where I is the indicator function and max outputs the largest
predicted confidence. The stability and determinacy metrics
facilitate differentiation between hard-to-learn normal fea-
tures and backdoor features in deep layers (C3). So the final
outlier score of x is

Φ(x) = α ∗ Φc(x) + β ∗ Φs(x) + γ ∗ Φd(x), (5)

in which α, β and γ are hyperparameters to tradeoff between
the three matrics. We first amplify the three elements such
that the benign samples have equal means on the three factors.
Then due to the different separability of the three metrics, we
make the amplified consistency : determinacy : stability as
2 : 2 : 1. The resulting parameters are similar across different
datasets and attacks. In this paper, we set α : β : γ as 1 : 2 : 6.

3.5 Rejecting and Relabelling Strategy
Anomaly Detection. Since normal and backdoor samples
can be well distinguished in terms of the outlier score, we
can use clean data to determine the detection threshold. We
select the threshold value that can make 95% of the reference
data pass the detection, which means any sample with an out-
lier score larger than the threshold will be judged as mali-
cious. This is a straightforward anomaly detection algorithm,
thanks to the strong separability of the outlier score, and the
malicious values are significantly larger than the benign ones.

Label Recovery. As mentioned above, backdoors tend to
take effect in deep layers, while shallow layers may capture
the original features of the sample. So we can use the out-
puts of shallow S-Nets to estimate the original class of back-
door inputs. We use the plurality voting mechanism for label
recovery. Specifically, we choose the label with the highest
number of occurrences for all internal predictions that differ
from the output of the main branch network. If there are mul-
tiple candidate classes, the one with the highest confidence is
selected. The label recovered for input x is denoted as

R(x) = argmax
j∈{1,...,c}

n−1∑
i=1

I(Pi(x) = j and Pn(x) ̸= j) (6)

4 Evaluations
4.1 Setup
Datasets and Architectures. We perform experiments
on three datasets CIFAR-10, GTSRB and Tiny-Imagenet
[Krizhevsky and Hinton, 2009; Stallkamp et al., 2012; Le and
Yang, 2015]. CIFAR-10 and GTSRB have an image size of
32x32 and contain 10 and 43 classes, respectively. CIFAR-
10 has 50,000 and 10,000 samples for training and testing.
GTSRB contains 39,209 training and 12,630 validation im-
ages. Tiny-Imagenet is a subset of ImageNet, containing 200
classes. Each class contains 500 training data and 50 test
samples. The image size is 64x64 pixels. For model archi-
tectures, we employ two types of CNNs: VGG [Parkhi et al.,
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Figure 3: Visualization of attention over layers. Red indicates important parts for classification, and blue represents less critical parts. The top
row is the result of a benign sample, and the bottom row is the result of poisoned input with a trigger in the lower right corner of the image.

2015] with batch normalization and ResNet [He et al., 2016].
Specifically, we use VGG16-bn for CIFAR-10 and GTSRB
and ResNet-56 for Tiny-Imagenet.
Attacks and Baselines. We verify the effectiveness of
Orion on six backdoor attacks: BadNets, Blended, WaNet,
IAD, TaCT, and Feature attack [Zhong et al., 2022]. They
cover a variety of trigger patterns: patches, visually hid-
den global noise, sample-specific modifications, and feature-
hidden perturbations. We also compare with Spectre, SCAn,
and Beatrix, three state-of-the-art backdoor sample detection
methods. They all require a small clean reference dataset for
detection, which is the same as Orion. All the attack and de-
fense methods are illustrated in Section 2. For the attacks,
we set the poisoning rate no higher than 0.1, transparency in
Blended as 0.2, the cross rate in IAD as 0.1, and the cover rate
in TaCT as 0.05. Other attack parameters use the default set-
ting in their original papers. Backdoored models are trained
with poisoned data from scratch for 50-200 epochs. With-
out an additional illustration, all defense methods have 1% of
the training set as a clean reference set for sample detection.
More details about the setting and performance of the attacks
are shown in Appendix A.
Training Details and Metrics. We adopt the Adam opti-
mizer to train each S-Net for 25 epochs, with a learning rate
of 0.001. The clean reference set is augmented for training.
We use precision (PRE) and recall (REC) rates to measure the
effectiveness of backdoor sample identification. PRE is de-
fined as the ratio of accurately identified backdoor samples to
the total number of identified malicious inputs. REC is calcu-
lated by dividing the number of correctly identified backdoor
images by the total number of poisoning samples. We further
consider the F1-score (F1), the weighted harmonic mean of
the two metrics, to evaluate the detection performance.

4.2 Design Rationale Verification
First, we verify the intuition that backdoor features tend to
locate at deeper layers, making the outputs of shallow S-Nets
diverge from the final classification. We use Grad-Cam [Sel-
varaju et al., 2017] to visualize the attention of classification
in different layers, i.e., which parts of the image play an es-
sential role in the prediction. Figure 3 shows that for regular
input, the attention is gradually focused on the target object
from shallow to deep layers. In contrast, backdoor samples
focus on both the object and the trigger in shallow layers,
while in deeper layers, all attention is shifted to the trigger

(a) BadNets (b) IAD

Figure 4: Prediction accuracy over layers. The target classes for
BadNets and IAD are 1 and 3, respectively.

area. This indicates that the shallow network still retains
the original features of backdoor samples, which also makes
our label recovery strategy possible. We further evaluate the
performance of normal and malicious samples in different S-
Nets. The prediction accuracy of each S-Nets for data belong-
ing to different categories is shown in Figure 4. We present
the results of typical universal backdoor attack BadNets and
dynamic attack IAD on CIFAR-10. The target classes are 1
and 3, respectively. The line for the target label represents
the result of backdoor input and the rest lines for standard
data. The results show that the accuracy of normal samples
shows a steady increase layer by layer and can achieve high
performance in shallow layers. However, the classification
accuracy of backdoor samples is notably low in the early lay-
ers but rapidly improves in the deep layers. This verifies the
hypothesis that backdoor features mainly impact the classifi-
cation process in the deep layers, leading to the inconsistency
between the shallow and deep outputs of malicious samples.
We provide more results of CIFAR-10 under other attacks in
Appendix B.

4.3 Backdoor Sample Detection Results
Effectiveness
We verify the effectiveness of Orion on six different back-
door attacks. The results of IAD, TaCT, and Feature attacks
on Tiny-Imagenet are omitted since the attacks can hardly
succeed. We randomly select 500 benign samples and 500
malicious inputs for testing and take the average result of
three replicate experiments. As shown in Table 1, none of the
three baselines can identify feature-hidden backdoor attacks
because they all rely on the separability of the feature repre-
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Dataset Attacks Spectre SCAn Beatrix Orion
PRE REC F1 PRE REC F1 PRE REC F1 PRE REC F1

CIFAR-10

Badnets 95.37 87.30 91.15 89.70 93.80 91.70 96.90 91.40 94.06 99.50 97.80 98.60
Blended 93.30 88.24 90.69 91.47 92.80 92.13 95.00 94.90 94.94 98.90 97.60 98.20
WaNet 100.0 74.07 85.10 92.36 88.79 90.53 95.20 89.20 92.18 99.79 97.80 98.70
IAD 32.38 43.40 37.08 34.20 27.87 30.71 93.60 91.40 92.50 98.00 99.80 98.90
TaCT 85.36 58.33 69.30 95.00 88.80 91.79 94.47 92.40 93.43 99.79 97.00 98.37
Feature 88.69 0.16 0.31 88.33 0.40 0.79 28.20 6.23 10.21 93.70 98.60 96.10

GTSRB

Badnets 94.29 76.21 84.26 95.40 82.81 88.66 95.00 91.40 93.00 97.04 91.80 94.34
Blended 94.60 76.41 84.54 93.90 78.60 85.57 95.90 80.60 87.58 94.38 87.40 90.76
WaNet 96.20 79.66 87.15 92.30 83.40 87.62 94.11 90.80 92.42 95.50 99.80 97.60
IAD 95.60 37.24 53.60 83.23 64.40 72.61 92.60 90.80 91.69 95.00 91.60 93.37
TaCT 83.19 46.80 59.90 89.40 80.60 84.77 96.19 70.80 81.56 96.09 83.60 89.41
Feature 30.47 3.43 6.16 99.65 2.89 5.61 54.60 29.42 38.23 95.33 85.80 90.32

Tiny-Imagenet
Badnets 99.91 82.20 90.19 100.0 81.00 89.00 94.89 91.49 93.15 95.55 93.40 94.44
Blended 91.45 68.33 78.21 89.18 77.40 82.87 88.36 58.20 70.17 91.02 77.00 83.42
WaNet 77.30 67.21 71.90 76.24 70.16 73.07 82.50 75.30 78.73 88.49 75.40 81.42

Table 1: Comparison of Orion with baselines. PRE indicates precision (%), REC represents recall (%), and F1 is the weighted harmonic
mean of precision and recall to measure the effectiveness of detection.

sentation. Spectre and SCAn fail to defend against dynamic
attacks IAD because their statistical assumptions about fea-
ture maps are based on universal triggers. Orion is effective
for all the attacks and can achieve an F1-score of 90% un-
der feature-hidden attacks. Orion also outperforms the three
baselines on all other attack schemes, since the 1% clean data
we use is a rather challenging setting for existing OOD detec-
tion similar methods, which require a large number of clean
samples to estimate the statistical distribution of the clean
data. However, relying on the strong learning ability of the
deep neural network, shallow S-Nets can achieve good accu-
racy even with limited data. So the detection performance of
Orion under a small amount of clean data is still ideal.

Ablation Studies
Sensitivity to Different Metric Designs. We verify the ef-
fectiveness of three metrics in the outlier score definition.
Figure 5 shows the distribution of the benign and back-
door samples under different metrics with BadNets attack on
CIFAR-10. The results indicate that the two types of input
are divisible on all three metrics, with consistency being
the strongest. Stability and determinacy characterize the fre-
quency and degree of changes in the evolution of predictions,
which can further enhance the separability of the samples.
The outlier score that considers all three works best.

Sensitivity to Number of S-Nets. The number of S-Nets
affects the effectiveness of Orion. If they are all distributed at
deep or shallow layers, too few S-Nets may not recognize the
deviation during the learning process. Large side net density
can also weaken their ability to capture changes and intro-
duce more model training overhead and detection time. We
measure the effect of different numbers of S-Nets on the de-
tection performance under BadNets attack on CIFAR-10, and
the results are shown in Figure 6. It is shown that both too
many and too few S-Nets can result in a decrease in perfor-
mance and the number of S-Nets ranging from 4 to 6 is found
to achieve the optimal results.

Figure 5: Sample distribution under different metrics. The orange
bars indicate backdoor samples, and the blue bars represent normal
input. The numbers above each subfigure are corresponding quanti-
tative results which are precision (P), recall (R) and F1-score (F).

Sensitivity to Reference Set Size. We also assess how dif-
ferent sizes of reference data affect the performance of Orion.
The results of CIFAR-10 under BadNets attack are presented
in Table 2. It is shown that the detection performance be-
comes better with the increase in clean data size. More
clean data can improve the accuracy of S-Nets, which allows
them to identify the normal features in backdoor samples and
makes the shallow predictions of normal inputs more accu-
rate. Even with 0.5% clean data, Orion can still achieve 95%
precision, which is a very tough situation in state-of-the-art
detection schemes. More results of other datasets and attacks
can be found in Appendix C.
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Figure 6: Impact of different numbers of S-Nets.

Reference set PRE REC F1

0.1% 85.64 33.40 48.06
0.5% 95.31 93.40 94.34
1% 99.50 97.80 98.60
5% 98.60 98.90 98.70
10% 99.20 99.39 99.29

Table 2: Impact of different numbers of clean data for detection.

Network Flops
(G)

Params
(M)

Training
(s/epoch)

Detection
(ms)

VGG16-bn 0.6 (0.6) 15.3 (15.5) 3.5 1.7
ResNet-56 0.3 (0.3) 0.9 (1.5) 4.2 0.8

Table 3: Overhead of Orion. Flops denotes the number of floating-
point operations per second for a single input. Params means the
total number of model parameters. Inside the parentheses are the
values after adding S-Nets. Training denotes the training time of
S-Nets. Detection reports the additional time cost introduced by de-
tection for each sample.

4.4 Overhead Analysis
Due to the importance of overhead in online settings, we re-
port Orion’s computational and time cost in Table 3. We
demonstrate the results of VGG16 with batch normalization
on CIFAR-10 and ResNet-56 on Tiny-Imagenet. All the ex-
periments are carried out on a single NVIDIA GeForce RTX
3090 GPU. Flops and Params represent the amount of com-
putation and the number of parameters introduced by attach-
ing S-Nets. It is shown that the additional computation is
negligible, and the parameter increase coming from the fully
connected layers in S-Nets is also reasonable. The training of
S-Nets is faster than that of the main branch network and can
be done offline. The detection time for each sample is also
negligible. Since the overhead is proportional to the number
of S-Nets, users can vary their density to balance accuracy
and efficiency according to their specific requirements.

4.5 Original Label Recovery
Figure 7(a) shows the original label recovery accuracy of
CIFAR-10 under various attacks. We achieve an average 80%
recovery accuracy on static backdoor attacks with universal
triggers, such as BadNets, Blended, and WaNet. We can also

(a) Attacks (b) Labels

Figure 7: Clean label recovery accuracy of CIFAR-10. (a) Results
under different attacks (AT1-6: BadNets, Blended, WaNet, IAD,
TaCT, Feature attack). (b) Results of samples belonging to differ-
ent original classes under BadNets attack.

successfully restore the original labels of the majority of sam-
ples on dynamic and feature-hidden attacks. We only fail on
the TaCT attack at an accuracy of 20%. The possible rea-
son is that TaCT complicates the boundaries between cate-
gories, which enlarges the diversity of shallow predictions of
clean data. We also evaluate the recovery accuracy of sam-
ples of different source labels. The results in Figure 7(b) show
that the recovery rates of different original classes are similar,
where 1 is the target label of the attack.

5 Adaptive Attack
Beyond the existing backdoor variants, we further consider
Orion’s robustness against adaptive attacks where the attacker
is aware of the defense and tries to bypass it. Orion is based
on the high deviations between the shallow and deep layers
output for backdoor samples, so the attacker can constrain
such deviations during the backdoor implantation. We con-
struct the attack by alternately training the main branch with
poisoned data and the S-Nets with clean data. Specifically,
the main network is updated with the loss of poisoning data
on both the main and the side net, and S-Nets are learned
on clean data separately. After 100 rounds of training, the
attack success rate of the backdoored model is 99.24% and
the clean accuracy is 88.22%. We use the S-Nets trained by
the attacker and by the defender with another clean data set
to evaluate the detection performance of Orion, and the F1-
scores are 6.7% and 97.2% respectively. This indicates that
the malicious model can only achieve small deviations on its
own S-Nets, but cannot transfer to the defender’s ones. In this
case, Orion is able to defend against adaptive attacks as long
as the defender has a private clean reference set.

6 Conclusion and Future Work
In this work, we develop a novel online backdoor detection
framework Orion based on dynamic evolution analysis of
sample predictions. We introduce side nets to output inter-
nal classification and monitor the evolution of prediction us-
ing a multi-exit branchy network. Extensive experiments on
three datasets under six attacks verify the effectiveness and
generality of our scheme. Orion outperforms existing de-
tection techniques in all regimes and can defend against ad-
vanced feature-hidden attacks where state-of-the-art defenses
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fail. Meanwhile, by using shallow side outputs, Orion can
recover the original labels of the tampered images at an accu-
racy of 80% on basic backdoor attacks.

We also propose two potential directions for future re-
search. Firstly, as with most backdoor detection methods,
Orion relies on a clean reference dataset for S-Nets training.
Therefore, exploring data-free alternatives to apply Orion is a
meaningful avenue for future work. Secondly, our approach
can also be extended to other models such as vision trans-
formers, as long as the model can output at shallow layers.

A Detailed Attack Setup
We verify the effectiveness of Orion under six backdoor at-
tacks: BadNets, Blended, WaNet, IAD, TaCT, and Feature
attacks. We consider the single-target attack, where all sam-
ples with triggers will be misclassified as one target class.
The detailed attack settings are shown in Table 4. We en-
sure that each attack model performs well while maintaining
high prediction accuracy on benign data. All attacks are im-
plemented through data poisoning, i.e., planting backdoors by
attaching triggers to part of the training dataset and modifying
their labels to the target class. The trigger design algorithm
and implantation method vary for different attacks. Figure 8
shows the attack samples of different backdoor attacks, in-
cluding local modification and global noise perturbation. In
our attempts to execute an attack, we strive to minimize the
trigger size and poisoning rate to maximize the efficacy of
the backdoor. This strategy enhances the covert nature of the
backdoor and strengthens the validation of Orion in a more
rigorous scenario. The attacks we experiment with encom-
pass a diverse range of categories.

Basic Attacks. BadNets [Gu et al., 2019] is a basic back-
door attack that uses a universal trigger with a fixed pattern
determined in advance. We use a square all-white pixel block
as the trigger and place it in the bottom right corner of the
input to construct poisoning data.

Visually Hidden Attacks. Blended and WaNet [Chen et
al., 2017; Nguyen and Tran, 2021] are two typical visually
hidden backdoor attacks. This type of attack aims to gener-
ate poisoning samples that are imperceptible to human eyes.
Blended can adjust the transparency of triggers on top of Bad-
Nets, and we use an opacity of 0.2 for all the attacks. Unlike
previous attacks that use patch-like triggers, WaNet gener-
ates attack samples by scrambling the entire image. It uses
a small and smooth warping field to construct backdoor im-
ages. Specifically, we use a grid size of 4x4, and the strength
of the warping field is 0.5.

Dynamic Attacks. Dynamic backdoor attacks consider a
sample-specific trigger. Different inputs require different trig-
gers, and using triggers of other samples will not produce
malicious functions. IAD [Nguyen and Tran, 2020] uses an
input-conditioned generator to construct attack samples. In
order to make the trigger of one sample invalid for the oth-
ers, IAD needs to construct a cross-dataset, which consists of
mismatched samples and triggers while keeping their original
class labels. We set the cross rate as 0.1, and the cross-test ac-
curacy of CIFAR-10 and GTSRB are 88.57% and 94.53%.

Figure 8: Poisoned samples of various attacks.

Robust Attacks. Robust attacks can evade some backdoor
defense methods. [Tang et al., 2021] proposed a label-
specific attack TaCT, where only inputs from a specific source
class are misclassified as the target label when stamped with
the trigger. They proved that such a complicated misclassi-
fication strategy can make the model representation of mali-
cious samples and benign inputs less distinguishable, thus by-
passing existing defenses [Wang et al., 2019; Gao et al., 2019;
Chou et al., 2020; Chen et al., 2019a]. IAD requires a cover-
set, where images from cover classes are classified correctly
even if they appear together with the trigger. In our experi-
ments, we set 0 as the source class, 1 as the target label, 5
and 7 as the cover classes, and the cover rate is the same as
poisoning rate.

Feature-Hidden Attacks. Recently, [Zhong et al., 2022]
proposed a novel feature-hidden attack that is imperceptible
in both input space and model representation. Their trig-
gers are obtained by sampling from a polynomial distribu-
tion, and a U-net-based network generates the parameters of
the polynomial distribution. The attack samples of feature-
hidden backdoor attacks are confused with benign inputs in
the feature representation, thus being able to resist backdoor
defenses based on feature separability. We use the same at-
tack settings as in the original paper.

B More Results of Intuition Experiments
We present more results of our design rationale verification
experiments. Figure 9 shows the prediction accuracy of dif-
ferent S-Nets on CIFAR-10 under other attacks. The experi-
mental results are similar to those of BadNets and IAD. Un-
der different attack strategies, the backdoors all produce ma-
licious effects only at the deeper layers, and the shallow S-
Nets fail to achieve misclassification. In contrast, the features
of clean samples are learned at the shallow layers and are en-
hanced with the depth of the network.

C More Results of Ablation Studies
We show more results of our ablation study on the impact
of the reference set size. Table 5 shows the performance of
Orion with different amounts of clean data. It can be found
that more clean data leads to more accurate backdoor detec-
tion. Even with only 0.1% clean data, Orion can identify the
majority of malicious samples in most cases.
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Dataset Attacks Trigger size Poisoning rate Target label ASR PA

CIFAR-10

BadNets 5 x 5 0.05 1 97.94% 91.34%
Blended 5 x 5 0.05 1 85.88% 90.89%
WaNet global 0.10 1 97.45% 90.78%
IAD global 0.10 3 99.39% 93.58%
TaCT 5 x 5 0.05 1 94.40% 92.22%
Feature global 0.10 0 99.69% 86.26%

GTSRB

BadNets 5 x 5 0.05 1 96.65% 97.97%
Blended 5 x 5 0.10 1 94.11% 96.57%
WaNet global 0.10 0 85.66% 94.95%
IAD global 0.10 1 99.71% 98.51%
TaCT 5 x 5 0.10 1 100.0% 98.38%
Feature global 0.10 0 99.80% 95.68%

Tiny-Imagenet
BadNets 6 x 6 0.05 1 96.65% 47.44%
Blended 6 x 6 0.10 1 85.57% 46.77%
WaNet global 0.10 1 89.55% 44.97%

Table 4: Detailed attack settings. ASR means the attack success rate, which is the proportion of samples with triggers that are classified as
target labels. PA represents the prediction accuracy of clean data.

(a) Blended (b) WaNet (c) TaCT (d) Feature

Figure 9: Prediction accuracy over layers.

Dataset Attacks 0.1% 0.5% 1% 5% 10%
PRE REC F1 PRE REC F1 PRE REC F1 PRE REC F1 PRE REC F1

CIFAR-10

BadNets 85.64 33.40 48.06 95.31 93.40 94.34 99.50 97.80 98.60 98.60 98.90 98.70 99.20 99.39 99.29
Blended 95.48 97.20 96.33 95.14 98.00 96.55 98.90 97.60 98.20 98.79 98.20 98.49 98.60 99.80 99.20
WaNet 95.16 98.40 96.75 95.00 98.80 96.86 99.79 97.80 98.70 98.79 98.80 98.89 98.80 99.20 99.00
IAD 94.33 93.20 93.76 97.20 97.40 97.30 98.00 99.80 98.90 98.80 99.00 98.90 99.60 99.60 99.60
TaCT 93.96 96.60 95.26 97.20 94.92 96.04 99.79 97.00 98.37 98.60 96.30 98.60 99.00 99.00 99.00

Feature 94.12 99.40 96.69 94.44 98.60 96.47 93.70 98.60 96.10 96.59 96.40 96.49 95.69 97.80 96.73

GTSRB

BadNets 73.38 97.60 83.77 95.62 91.80 93.67 97.04 91.80 94.34 95.60 100.0 97.75 96.33 99.80 98.04
Blended 75.29 88.40 81.32 82.58 92.00 87.03 94.38 87.40 90.76 94.50 99.80 97.08 96.14 99.80 97.93
WaNet 74.00 96.20 83.65 84.33 98.00 90.65 95.50 99.80 97.60 95.76 99.40 97.54 96.70 99.80 98.22
IAD 75.41 98.80 85.54 83.83 99.60 91.04 95.00 91.60 93.37 95.41 100.0 97.65 95.41 99.80 97.55
TaCT 71.68 87.60 78.84 82.71 89.00 85.74 96.09 83.60 89.41 94.84 99.40 97.07 94.16 100.0 96.99

Feature 73.22 96.80 83.37 80.45 98.80 88.68 95.33 85.80 90.32 95.37 99.00 97.15 97.65 100.0 98.81

Tiny-Imagenet
BadNets 66.33 92.20 77.15 82.55 95.60 88.60 95.55 93.40 94.44 94.48 99.40 96.88 95.33 98.20 96.74
Blended 63.18 85.80 72.77 78.49 87.60 82.79 91.02 77.00 83.42 95.69 89.00 92.22 96.25 92.40 94.28
WaNet 66.34 82.00 73.34 76.44 84.40 80.22 88.49 75.40 81.42 95.49 84.80 89.83 95.99 91.00 93.42

Table 5: Impact of different clean data size.
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