Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set
Alignment

Peng Jin'? | Hao Li’?, Zesen Cheng!?, Jinfa Huang?, Zhennan Wang?,
Li Yuan'?3, Chang Liu*", Jie Chen'?31
1School of Electronic and Computer Engineering, Peking University, Shenzhen, China
2AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzhen, China
3Peng Cheng Laboratory, Shenzhen, China
“Department of Automation and BNRist, Tsinghua University, Beijing, China

{jp21, cyanlaser, jinfahuang } @stu.pku.edu.cn, {lihao1984, yuanli-ece } @pku.edu.cn,
wangzhennan2017 @email.szu.edu.cn, liuchang2022 @tsinghua.edu.cn, chenj@pcl.ac.cn

Abstract

Text-video retrieval is a challenging cross-modal
task, which aims to align visual entities with natu-
ral language descriptions. Current methods either
fail to leverage the local details or are computation-
ally expensive. What’s worse, they fail to leverage
the heterogeneous concepts in data. In this paper,
we propose the Disentangled Conceptualization and
Set-to-set Alignment (DiCoSA) to simulate the con-
ceptualizing and reasoning process of human beings.
For disentangled conceptualization, we divide the
coarse feature into multiple latent factors related to
semantic concepts. For set-to-set alignment, where
a set of visual concepts correspond to a set of textual
concepts, we propose an adaptive pooling method
to aggregate semantic concepts to address partial
matching. In particular, since we encode concepts
independently in only a few dimensions, DiCoSA
is superior at efficiency and granularity, ensuring
fine-grained interactions using a similar computa-
tional complexity as coarse-grained alignment. Ex-
tensive experiments on five datasets, including MSR-
VTT, LSMDC, MSVD, ActivityNet, and DiDeMo,
demonstrate that our method outperforms the exist-
ing state-of-the-art methods.

1 Introduction

Recent years have witnessed encouraging progress in text-
video retrieval, which enables humans to associate textual con-
cepts with video entities and vice versa [Wang ef al., 2021b;
Jin er al., 2023b]. As illustrated in Figure 1, humans per-
ceive the cross-modal matching task by conceptualizing high-
dimensional inputs from multiple modalities and reasoning
with concepts to achieve partially matched set-to-set align-
ment. In stark contrast, machine models typically represent
each modality as a perceptual whole.

Corresponding author: Chang Liu, Jie Chen.
*Code is available at https://github.com/jpthul7/DiCoSA.
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Figure 1: In text-video retrieval, a set of visual concepts corresponds
to a set of textual concepts. More importantly, the semantic concepts
across text and video are typically partially matched. For example,
the description is not exhaustive and does not describe the visual
concepts, i.e., “woman” and “car”.

Existing methods for text-video retrieval mainly focus on
learning a joint feature representation space for different
modalities, where text-video similarities could be measured
to enable cross-modal matching. Such cross-modal represen-
tation learning methods allow for both global alignment [Liu
et al., 2019; Gabeur et al., 2020] and local alignment [Wang
et al., 2022; Wray et al., 2019; Chen et al., 2020] between
text and video feature representations. The global alignment
methods exploit high-level semantics for text-video retrieval.
For example, CLIP4Clip [Luo et al., 2022] adopts the text-
image pre-training model CLIP [Radford et al., 2021] to trans-
fer the knowledge for enhancing global representation. To
leverage the local details, the local alignment methods study
fine-grained semantic alignment for text-video retrieval. For
instance, T2ZVLAD [Wang et al., 2021b] shows the potential
of local alignment which aligns each word and each frame
individually to improve fine-grained retrieval.

However, existing methods are deficient in the following
three aspects. (i) The global alignment (Figure 2, left) may
treat discriminative regions equally and fail to capture local
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Figure 2: Global alignment (left) treats discriminative regions equally and fails to capture local details. Local alignment (middle) is
computationally expensive due to the exhaustive matching operation. The previous methods typically characterize semantic concepts of texts

and videos in a state of entanglement. In stark contrast, our DiCoSA (

) aligns texts and videos on heterogeneous semantic concepts to

achieve humanlike set-to-set matching. Specifically, we divide the coarse feature into multiple latent factors related to semantic concepts (e.g.,
“man” and “skis”). Then we propose adaptive pooling to aggregate semantic concepts to address the partial matching in set-to-set alignment.
Here, D, N,, and N, denote the feature dimension, the frame length, and the text length, respectively.

details in texts and videos. (i) The local alignment (Figure 2,
middle) aligns each word and per frame individually and is
computationally expensive due to the exhaustive matching
operation. (iii) Both global and local alignments coarsely
represent the text (video) as a perceptual whole encoded by a
set of concepts. As a result, they may fail to leverage the het-
erogeneous concepts in data and tend to focus on identifying
the invariant features. As an example to illustrate, the video
in Figure 1 involves a set of concepts such as “man”, “skis”,
“woman”, and “horse”. To align with the text query, the video
representations learned by the existing coarse approaches may
continuously rely on the salient factors “man” and “horse”,
and yet ignore other important factors (e.g., “woman” and
“skis”) and the relations among these factors. This flaw might
make these approaches stuck in the local invariant matching
and misunderstand the cross-modal interaction and context.

A reasonable solution to tackle the cross-modal matching
task is to align texts and videos on heterogeneous semantic
concepts (Figure 2, right). The core insight is simulating the
human process of conceptualizing things and reasoning on the
sets of concepts. To learn explanatory and discriminative fac-
tors of variations, we adopt disentangled representations learn-
ing. A disentangled representation independently encodes
information about each latent factor in only a few dimensions.

To this end, we propose the Disentangled Conceptualization
and Set-to-set Alignment (DiCoSA), as shown in Figure 3. In
detail, we disentangle high-dimensional coarse features into
compact latent factors which explicitly encode textual seman-
tics and visual entities. Then, we optimize latent factors from
both inter-concept and intra-concept perspectives. In the inter-
concept perspective, we minimize the inter-concept mutual
information to find representation subspaces with minimal
relevance to each other for decoupling representation. In the
intra-concept perspective, we maximize the mutual informa-
tion of each latent factor pair separately to align language and
video within each concept. However, due to the information
across modalities typically being only partially matched [Liu
et al., 2021], we cannot blindly leverage superficial correla-
tions between latent factors for text-video retrieval. To address
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this problem, as shown in the bottom panel of Figure 3, we
propose an uncertainty-aware module to estimate the confi-
dence of each cross-modal concept matching. Finally, we
use the confidence as the weight to aggregate all factor pairs
to calculate the similarity of text and video, which is called
adaptive pooling.

In particular, since the dimension of the latent factor (R%)
is lower than the original feature dimension (RP), our method
ensures fine-grained interactions with local alignment using
a similar computational complexity as global alignment. Our
contributions are summarized as follows:

* We propose a disentangled conceptualization method for
text-video retrieval, which divides the coarse features
into multiple latent factors related to semantic concepts
and achieves humanlike set-to-set matching.

To address the partial matching of visual entities and
various phrases, we propose adaptive pooling to locate
mismatched cross-modal concepts and aggregate all fac-
tor pairs to calculate the similarity of text and video.

We conduct extensive experiments on five datasets, i.e.,
MSR-VTT, LSMDC, MSVD, ActivityNet and DiDeMo,
and achieve new state-of-the-art retrieval performance.

2 Related Work

Text-Video Retrieval. Most works [Jin et al., 2022; Jin
et al., 2023b] of text-video retrieval is based on contrastive
learning [Zhang er al., 2021; Zhang er al., 2022a; Zhang et
al., 2022b; Zhang et al., 2023] to map text and video to the
same semantic space. For example, CLIP-ViP [Xue et al.,
2022] explores factors that hinder video post-pretraining on
pre-trained image-text models and effectively leverage image-
text pre-trained model for post-pretraining. HBI [Jin et al.,
2023a] designs a new framework of multivariate interaction
for cross-modal representation learning [Li et al., 2022a;
Li et al., 2022b; Cheng et al, 2023; Ye et al., 2023].
DRL [Wang et al., 2022] aligns each word and each frame
individually to achieve token-wise interaction. However, a vi-
sual entity may relate to multiple frames, and also a frame may
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Figure 3: Our DiCoSA framework for text-video retrieval. Here, B, D, K, N, and IV, denote the batch size, the original feature dimension,
the number of concepts, the frame length, and the text length, respectively.

relate to multiple visual entities. Therefore, the previous meth-
ods cannot achieve element-level matching between semantic
concepts. By contrast, our model benefits from the disentan-
gled latent factors for element-level cross-modal matching.

Disentangled Representation. This concept was first pro-
posed by [Bengio and others, 2009], which aims to sepa-
rate the latent factors of variations behind the data. Re-
cently, disentangled representation learning has received
lots of attention [Sreekar ef al., 2021; Wang et al., 2021a;
Tran et al., 2017; Suter et al., 2019; Van Steenkiste et al., 2019;
Locatello et al., 2019]. However, how to use the disentan-
gled latent factors for fine-grained retrieval remains largely
unexplored for text-video retrieval. Based on the information-
theoretic view [Chen et al., 2016; Do and Tran, 2019], several
works provide a more detailed description [Do and Tran, 2019;
Eastwood and Williams, 2018; Ridgeway and Mozer, 2018]
by explicitly measuring the properties of a disentangled rep-
resentation [Eastwood and Williams, 2018; Ridgeway and
Mozer, 2018]. We adopt the information-theoretic definition
and show that the proposed DSCA converges with semantic
disentanglement.

3 Methodology

We focus on the tasks of text-to-video and video-to-text re-
trieval. In the text-to-video retrieval task, given a query text t
and candidate videos v, our goal is to rank all videos accord-
ing to semantic similarity. Similarly, the goal of video-to-text
retrieval is to rank all candidate text based on the query video.
The problem is formulated as a modality similarity measure-
ment, where the similarity of matched text-video pairs is as
high as possible and the similarity of unmatched pairs is as
low as possible. Figure 3 illustrates the overall framework.
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3.1 Text-Video Joint Encoding

For text representation, we adopt the text encoder of CLIP
(ViT-B/32) [Radford et al., 2021]. The output from the [CLS]
token is taken as the text representation. For the input text t,
we denote the generated representation as 7' € R,

For video representation, we first evenly extract the frames
from the video clip as the input sequence of video v =
{v1,v2,...,vn,|}, where N, denotes the frame length. Sub-
sequently, we use ViT [Dosovitskiy ef al., 2021] to encode
the frame sequence. Following CLIP, we adopt the out-
put from the [CLS] token as the frame embedding. After
that, we use a temporal transformer (a 4-layer transformer)
to aggregate the embedding of all frames and obtain the
frame representation F'. Inspired by [Gorti er al., 2022;
Bain et al., 2022], we aggregate frame representation with
text as the condition. In detail, we calculate the inner product
between the text representation 7' and frame representation
F ={f1, fa,..., fn,}. We get the weight of the frames by:

exp((T) " fi/7)
iy exp((T)T fi/7)’

i=1 €XP
where 7 is the trade-off hyper-parameter. The smaller 7 allows
visual features to take more textual conditions into account
during aggregation. The final video representation V € R” is

defined as V = Zfil a; fi.

3.2 Disentangled Conceptualization from Both
Inter-Concept and Intra-Concept Perspectives
The above encoding methods only generate the holistic text

representations 7' and video representations V. These repre-
sentations characterize semantic concepts of the input texts

ey

%
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Method \ Text->Video

| Video->Text

‘ R@I11 R@51 R@I10T MdR] MnR] ‘ R@I11T R@51 R@I10T MdR] MnR]
CE [Liu et al., 2019] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 53 25.1
MMT (Gabeur et al.. 20201 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
Support-Set [Pawick er al.. 2021] 30.1 58.5 69.3 3.0 - 28.5 58.6 71.6 3.0 -
T2VLAD [wang et al.. 2021b] 29.5 59.0 70.1 4.0 - 31.8 60.0 71.1 3.0 -
TT-CE ICroitoru er al., 2021] 29.6 61.6 74.2 3.0 - 32.1 62.7 75.0 3.0 -
FROZEN (Bain et al., 20211 31.0 59.5 70.5 3.0 - - - - - -
CLIPACIIp [Luo et al., 2022] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6
CLIP2Video [Fang er al., 20211 45.6 72.6 81.7 2.0 14.6 435 72.3 82.1 2.0 10.2
EMCL-Net [jin er al.. 2022] 46.8 73.1 83.1 2.0 - 46.5 73.5 83.5 2.0 -
X-Pool (Gorti er al., 2022] 46.9 72.8 82.2 2.0 14.3 44 .4 73.3 84.0 2.0 9.0
TS2-Net [Liu er al.. 2022] 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2
DiCoSA (Ours) \ 47.5 74.7 83.8 2.0 13.2 \ 46.7 75.2 84.3 2.0 8.9

Table 1: Retrieval performance on the MSR-VTT dataset. “1” denotes that higher is better. “|” denotes that lower is better.

and videos in a state of entanglement. Therefore, a direct
similarity matching of these representations cannot ensure
adequate set-to-set cross-modal matching between a set of
various phrases contained in the text description and a set of
varying visual entities in the video sequence. In the following,
we learn explanatory disentangled factors of variations in text
and video representations to explicitly measure and understand
the cross-modal relevance.

We start with the text representation 7' € R”. Following
the setting of disentangled representation learning [Ma et al.,
2019], we assume that each text representation is disentangled
into K independent latent factors, i.e., E' = [e},€h, ..., e ].

Each latent factor e}, € R% represents a specific semantic
concept in the text, and the independence of the latent factors
ensures that those semantic concepts are not related to each
other. Specifically, we independently project the text represen-
tation 7" into K components, and obtain the ky, latent factor
e} as follows,

ek = WIT, @)

where W} R%*P s trainable parameter. The latent fac-
tor e, of video representation can be calculated in the same
way, i.e., ef, = WV In this way, we project features explic-
itly into representation subspaces corresponding to different
concepts. The model is then able to optimize and reason infor-
mation separately from different representation subspaces.

Inter-Concept Decoupling

In order to find representation subspaces with minimal rel-
evance to each other and hence improve the respective dis-
criminative power for semantic matching task, we propose to
minimize the inter-concept mutual information. Given two
latent factors e§ and €Y, their mutual information is defined in
terms of their probabilistic density functions:

plei, €F)

Iees P(eDp(e?)

fret) =By |plel,e?)log 3)

Obviously, the mutual information is hard to measure directly.
To this end, we implicitly measure the mutual information via
an encoder discriminator architecture. Concretely, given latent
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factors et € R% and e¥ € R%, we first normalize them by
the following formula:

. el —Elef]

s e’ —Ele’]
Var [¢f]’

Var [e?] '

v

“

where 2%, z¥ have the same mean and standard deviation. In
this manner, we scale the latent factors to the standard scale.
Then, we calculate the covariance of 2! and z? as follows,

Ci,j = Etﬂ, [(Zf Zﬂ ;

)" %

&)
where z} and 27 are the normalized features of ¢} and e,
respectively.

Lemma 1. Maximizing (minimizing) I(e!; ej

) is equivalent
to maximizing (minimizing) C; j, i.e., C; j o< I(ef; eY).
Based on Lemma 1, the final inter-concept decoupling loss
Lp is calculated as follows,

2
Lp=) Y (Cij)
i g
This loss minimizes the mutual information of negative pairs

(e}, %), thereby decoupling the latent factors.

Intra-Concept Alignment

To comprehensively capture K latent factors from both text
and video representations, we are required to mine semantic
concepts from the text-video pairs. To this end, we optimize
the representation subspace corresponding to each latent factor
separately. The key insight here is that we consider each repre-
sentation subspace independently, instead of text-video pairs,
to comprehensively describe the latent factors and capture
their relevance. Specifically, we maximize the mutual informa-
tion between the text latent factor and the corresponding video
latent factor within the same subspaces. The intra-concept
alignment loss L 4 is formulated as:

La=) (1-Ci)

%

(6)

(N

This loss maximizes the mutual information of each positive
pair (e, e?) separately.

271
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\ LSMDC \ MSVD
Method

\ R@11T R@517 R@10T MdR| MnR| \ R@11T R@51 R@10T MdR| MnR|
FROZEN [Bain et al.. 20211 15.0 30.8 39.8 20.0 - 33.7 64.7 76.3 3.0 -
CLIP4CIip [1uo er al., 2022 22.6 41.0 49.1 11.0 61.0 452 75.5 84.3 2.0 10.3
EMCL-Net (jin et al.. 2022] 239 424 50.9 10.0 - - - - - -
TS2-Net [Liveral., 2 23.4 423 50.9 9.0 56.9 - - - - -
X-Pool [Gori er al.. 2022 25.2 43.7 53.5 8.0 53.2 47.2 77.4 86.0 2.0 9.3
DiCoSA (Ours) \ 254 43.6 54.0 8.0 41.9 \ 474 76.8 86.0 2.0 9.1
Method | ActivityNet | DiDeMo

\ R@1T R@51 R@10t MdR]| MnR|] \ R@11T R@51 R@10t MdR]| MnR|]
CE [Liu et al., 20191 18.2 47.7 63.9 6.0 23.1 16.1 41.1 - 8.3 43.7
ClipBERT |[1cier al., 202 21.3 49.0 63.5 6.0 - 20.4 48.0 60.8 6.0 -
TT-CE ICroitoru et al., 20211 23.5 57.2 - 4.0 - 21.6 48.6 62.9 6.0 -
CLIP4CIip (Luo er al., 2022] 40.5 72.4 83.6 2.0 7.5 42.8 68.5 79.2 2.0 18.9
TS2-Net [Liu e al., 2022 41.0 73.6 84.5 2.0 8.4 41.8 71.6 82.0 2.0 14.8
DiCoSA (Ours) \ 42.1 73.6 84.6 2.0 6.8 \ 45.7 74.6 83.5 2.0 11.7

Table 2: Text-to-video retrieval performance on other datasets. “1” denotes that higher is better. “|” denotes that lower is better.

3.3 Set-to-Set Alignment via Adaptive Pooling

However, the information across text and video is typically
partially matched [Liu et al., 2021]. We hence cannot directly
and blindly leverage superficial correlations between latent
factors for set-to-set alignment. To this end, we propose adap-
tive pooling to locate those mismatched cross-modal concepts
and reduce their impact on the final similarity calculation.

To reveal the mismatched cross-modal latent factors, we
design an uncertainty-aware module to estimate the confi-
dence of each cross-modal concept matching. Specifically,
we concatenate latent factor e! € R= with the latent factor

ej € R in the iz, subspace, generating the input data of the

uncertainty-aware module é; = [ef,e?] € R% . Then, the
confidence of the 7;;, subspace is obtained by:
gi = MLP(¢é;), ®)

where “MLP” consists of two linear layers and an activation
function. Usually, small g; indicates that the concept corre-
sponding to the 74, subspace is matched with a low probability.
Then, we use the confidence as the weight to aggregate all
factor pairs to calculate the similarity of text and video, which
is called adaptive pooling. Finally, the similarity is defined as:

S =
Z ||€’|| He“H

3.4 Training Objective

Following common practice, we leverage InfoNCE loss [Oord
et al., 2018] to optimize cross-modal similarity:

€))

o 1 XB: exp Sll/T)
2 =1 Ek: 1€xp(Sik/7") (10)
exp Skk/’r)

Pt

Zl 1 exp(Sy, k)T )

942

where B is the batch size and 7 is a pre-defined temperature
prior. S; is the similarity between the [y, text and the ky,
video. Combining the objective functions for cross-modal
similarity Lg, inter-concept decoupling £ p and intra-concept
alignment £ 4 mentioned above, we get the total training loss
L = Ls+ alp + BLa, where o and (§ are the trade-off
hyper-parameters.

3.5 Intuitive Analysis

Current methods mainly perform global alignment or local
alignment. Now we explain other advantages of the pro-
posed DiCoSA besides disentangled representation, mainly in
three aspects. (i) Humanlike set-to-set matching. Humans
perceive the world by conceptualizing high-dimensional in-
puts from multiple modalities such as vision and language.
Through conceptualization, humans integrate things into con-
ceptual networks and make inferences based on them. Our
method simulates the human process of conceptualizing things
and reasoning text and video with concepts to achieve set-to-
set cross-modal matching. (ii) Avoiding curse of dimension.
As the dimension of representation space increases, the model
becomes more and more difficult to optimize, which is known
as the curse of dimension [Kuo and Sloan, 2005]. Therefore,
we choose to optimize the decoupled subspace (R%) at lower
dimensions rather than directly learn the representation space
(RP), which we will discuss in experiments (see Figure 4 (c)
and (d)). (iii) Efficiency. Our method combines efficiency and
granularity well. We calculate inference time on the MSRVTT
dataset, which we will discuss in experiments (see Table 4).

4 Experiments

4.1 Experiment Setup

Datasets. MSR-VTT [Xu et al., 2016] contains 10,000
YouTube videos, each with 20 text descriptions. We follow
the 1k-A split [Liu et al., 2019] with 9,000 videos for train-
ing and 1,000 for testing. LSMDC [Rohrbach et al., 2015]
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Figure 4: Ablation study on the MSRVTT dataset. Effect of (a) the trade-off hyper-parameter «; (b) the trade-off hyper-parameter 3. The
comparison with the global alignment and the local alignment (c) on the text-to-video task; (d) on the video-to-text task.

Text->Video

Video->Text Text->Video

‘ ‘ Method

Method

R@It R@5t MnR| R@1T R@51 MnR| || R@11T R@5t MnR]
Baseline 45.9 72.0 14.1 45.2 73.5 9.8 K=2 46.2 72.3 13.2
+ Latent Factors 46.2 73.9 14.0 46.0 73.6 10.2 K= 46.7 73.0 13.0
+ Inter-Concept Decoupling £p 46.5 73.4 13.2 46.1 74.1 9.9 =8 47.5 74.7 13.2
+ Intra-Concept Alignment £ 4 47.1 73.6 133 46.1 74.0 10.0 K=16 44.6 72.0 12.9
+ Adaptive Pooling 47.5 74.7 13.2 46.7 75.2 8.9 K=32 43.2 71.5 14.5

Table 3: (I). Ablation study for the architecture design on the MSR-VTT dataset. “Baseline” denotes the global alignment. “{”” denotes that
higher is better. “}” denotes that lower is better. (II). Ablation study for the number of concepts K on the MSR-VTT dataset.

contains 118,081 video clips from 202 movies. We follow
the split of [Gabeur er al., 2020] with 1,000 videos for test-
ing. MSVD [Chen and Dolan, 2011] contains 1,970 videos.
We follow the official split of 1,200 and 670 as the train and
test set, respectively. ActivityNet Caption [Krishna ef al.,
2017] contains 20K YouTube videos. We report results on
the “vall” split of 10,009 and 4,917 as the train and test set.
DiDeMo [Anne Hendricks et al., 2017] contains 10k videos
annotated 40k text descriptions. We follow the training and
evaluation protocol in [Luo er al., 2022].

Metrics. We choose Recall at rank L (R@L, higher is better),
Median Rank (MdR, lower is better) and mean rank (MnR,
lower is better) to evaluate the performance.

Implementation Details. Following previous works [Luo
et al., 2022; Liu et al., 2022; Jin et al., 2022], we utilize the
CLIP (ViT-B/32) [Radford et al., 2021] as the pre-trained
model. The dimension of the feature is 512. The temporal
transformer [Vaswani et al., 2017; Li et al., 2022c] is com-
posed of 4-layer blocks, each including 8 heads and 512 hidden
channels. The temporal position embedding and parameters
are initialized from the CLIP’s text encoder. We use the Adam
optimizer [Kingma and Ba, 2014] with a linear warmup. The
initial learning rate is le-7 for the text encoder and video
encoder and le-3 for other modules. If not otherwise speci-
fied, we set 7 = 0.01, K = 8, a = 0.01, 3 = 0.005. The
network is optimized with the batch size of 128 in 5 epochs.
During the inferring phase, we assume that only the candi-
date set is known in advance. We follow inferring schedules
from [Bogolin et al., 2022].

4.2 Comparisons with State-of-the-art Methods

We compare the proposed DiCoSA with other methods on
five benchmarks. In Table 1, we show the results of our
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method on the MSR-VTT dataset. Our model outperforms
the recently proposed SOTA methods on both text-to-video
retrieval and video-to-text retrieval tasks. Table 2 shows text-
to-video retrieval results on the LSMDC, MSVD, ActivityNet
and DiDeMo datasets. The results on all five datasets demon-
strate that our method is capable of dealing with both short
and long videos. DiCoSA achieves consistent improvements
across different datasets, which demonstrates the effectiveness
and generalization ability of our method.

4.3 Ablation Study

Architecture Design. To illustrate the importance of each
part of our method, we conduct ablation experiments on the
MSR-VTT dataset. From Table 3 (I), we can draw the follow-
ing observations: (i) The model using latent factors achieves
comparable or better performance than the baseline on the two
retrieval tasks. We consider that it is because the latent factor
dimension is small, thus alleviating the curse of dimension.
(i1) Compared with the optimization of latent factors only from
the inter-concept perspective, the improvement of the optimiza-
tion from both inter-concept and intra-concept perspectives is
more significant. We consider that it is because intra-concept
alignment avoids the interference of mismatched cross-modal
concepts in the learning of other concepts. (iii) “Adaptive
pooling” can locate the mismatched cross-modal concepts
and improve the respective discriminative power for set-to-set
matching. Our full model achieves the best performance. This
demonstrates that the four parts are beneficial for aligning
visual content and textual semantics.

Effect of the Number of Concepts. The concept size K
controls the number of latent factors E = [eq, ea,...,ex],

where e;, € R%. We start with a small size and increase it
to large ones. In Table 3 (II), overall performance improves
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Factor 8 Factor7 Factor 6

“talking”
Similarity s4: 0.64
Confidence gg4: 0.11

“woman”
Similarity s;: 0.68
Confidence g,: 0.07

““

man
Similarity sg: 0.68
Confidence gg: 0.09

”»

Figure 5: Attention visualization of latent factors. We take Video0070 in the MSR-VTT dataset as an example.

| Complexity Time (ms) |

Text->Video

| Video->Text

Method

\ \ R@1tT R@51 R@10T MdR| MnR] \ R@11T R@51 R@10T MdR| MnR]
Global Alignment O(D) 806 459 72.0 81.7 2.0 14.1 45.2 73.5 82.6 2.0 9.8
Local Alignment | O(N:N, D) 1158 46.8 72.6 82.6 2.0 13.4 46.4 72.2 82.3 2.0 13.4
DiCoSA (Ours) \ O(D) 978 \ 47.5 74.7 83.8 2.0 13.2 \ 46.7 75.2 84.3 2.0 8.9

Table 4: The comparison with the global alignment and the local alignment on the MSR-VTT dataset. 1’ denotes that higher is better.
“}” denotes that lower is better. We report the average inference time for processing the test set (1k videos and 1k text queries) using two Tesla
V100 GPUs. Here, D, N,, and N; denote the feature dimension, the frame length and the text length, respectively.

and then decreases. On the one hand, we find that fewer
concepts limit the ability to leverage fine-grained information.
On the other hand, a larger number of concepts reduces the

dimension of each latent factor e¢;, € R7 , which limits the
discriminability of the factors. We set the concept size K = 8
to achieve the best performance in practice.

Parameter Sensitivity. The parameter « indicates the impor-
tance of L. We evaluate the scale range setting o € 0.0, 1.5]
as shown in Figure 4 (a). We find that R@1 is improved from
46.7% to 47.5% when o« = 0.005 and saturated with o = 0.01
for text-to-video retrieval. As a result, we adopt a = 0.01
to achieve the best performance. In Figure 4 (b), we show
the influence of the hyper-parameter 5. We evaluate the scale
range setting 3 € [0.0,0.05]. We find that the model achieves
the best performance at 8 = 0.005, so we set it as the default.

Comparisons to Other Baseline Methods. We further com-
pare our method with other baseline methods in Table 4. Since

the dimension of latent factor (R% ) is lower than the original
feature dimension (R”), our method introduces negligible
computational overhead. Moreover, our method brings re-
markable improvements by disentangled conceptualization
and set-to-set alignment. We also show the training process
of our method and baseline methods in Figure 4 (c) and (d).
Because we optimize the decoupled subspace at a lower di-
mension (R% ), our method has the most efficient performance
improvement. We observe that the performance of our method
in early epochs is lower than other methods. We consider that
it is because our disentangled alignment is far removed from
the CLIP pre-training objective and therefore cannot directly
transfer the knowledge of CLIP in early epochs.
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4.4 Qualitative Analysis

In Figure 5, we show the visualization of latent factors. In our
method, each latent factor individually focuses on a specific
detail. Specifically, Factor 6 focuses on “talking”; Factor 7
notices “woman”; and Factor 7 corresponds to “man”. Our
latent factors are explainable to some extent. Therefore, the
proposed method can be used as a tool for visualizing the
cross-modal interaction and help us understand the existing
retrieval model. Interestingly, we find that the factor pair
corresponding to action (“talking”) has higher confidence than
those corresponding to entities (“woman” and “man’). This
result illustrates that the model tends to judge cross-modal
similarity by actions rather than entities.

5 Conclusion

In this paper, we propose the Disentangled Conceptualization
and Set-to-set Alignment (DiCoSA) for text-video retrieval.
DiCoSA is superior at computation efficiency and granularity,
ensuring fine-grained interactions with local alignment using a
similar computational complexity as global alignment. Exper-
imental results on five text-video retrieval benchmark datasets
show the advantages of the proposed method. In the future,
we hope that the disentangled features learned by our method
could also be applied to other cross-modal tasks.
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