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Abstract

Modeling visual data as tokens (i.e., image patches)
using attention mechanisms, feed-forward networks
or convolutions has been highly effective in re-
cent years. Such methods usually have a common
pipeline: a tokenization method, followed by a set
of layers/blocks for information mixing, both within
and among tokens. When image patches are con-
verted into tokens, they are often flattened, discard-
ing the spatial structure within each patch. As a
result, any processing that follows (eg: multi-head
self-attention) may fail to recover and/or benefit
from such information. In this paper, we argue
that models can have significant gains when spa-
tial structure is preserved during tokenization, and
is explicitly used during the mixing stage. We pro-
pose two key contributions: (1) Structure-aware To-
kenization and, (2) Structure-aware Mixing, both of
which can be combined with existing models with
minimal effort. We introduce a family of models
(SWAT), showing improvements over the likes of
DeiT, MLP-Mixer and Swin Transformer, across
multiple benchmarks including ImageNet classifica-
tion and ADE20K segmentation. Our code is avail-
able at github.com/kkahatapitiya/SWAT.

1 Introduction
Convolutional architectures (CNNs) [He et al., 2016] have
been dominant in computer vision for a while now. When
they were first introduced for large-scale training in image
domain, their benefits were quickly realized over Multi-layer
Perceptrons (MLPs). In addition to efficient weight sharing,
the inductive bias generated by exploring the local structure in
images was one of the key factors for its success [LeCun et al.,
2015]. In language domain however, CNNs were less effective
due to lack of such strong local structure. Consequently, at-
tention mechanisms emerged dominant, exploring long-range
relationships and modeling language as a sequence [Dauphin
et al., 2017]. More recently, attention models– specifically
Transformers [Vaswani et al., 2017], have been extended to
represent visual data [Dosovitskiy et al., 2021], with the key
concept of tokenizing an input image to create a sequence

(or a set), often discarding their structure. Within a short pe-
riod of time, such token-based models (i.e., class of models
such as ViTs [Dosovitskiy et al., 2021] and MLP-Mixers [Tol-
stikhin et al., 2021]) have outperformed CNNs on most visual
tasks. However, we ask, could the spatial structure– when
preserved, benefit token-based models and further improve
their performance?

Token-based models in computer vision are rapidly evolv-
ing. From Vision Transformers [Dosovitskiy et al., 2021] to
MLP-Mixers [Tolstikhin et al., 2021] and hybrid-architectures
[Peng et al., 2021; Wu et al., 2021], intriguing concepts
are being introduced and tested on tasks including classi-
fication [Dosovitskiy et al., 2021; Touvron et al., 2021b;
Liu et al., 2021], detection [Zhu et al., 2020; Dai et al., 2021]
and segmentation [Xie et al., 2021; Duke et al., 2021], to
name a few. All such models can be framed with two main
components: (1) Tokenization, which converts image patches
into tokens, and (2) Mixing (attention-based as in Multi-head
Self Attention (MHSA), MLP-based or convolution-based),
which shares information within and among tokens. In general,
during tokenization, an image patch is directly mapped into
a token, not preserving the spatial structure within a token.
After this mapping, models usually focus on global patterns
among tokens, without capturing local spatial structure within
tokens.

Structure is an important cue in visual data. In images, 2D
spatial structure preserves geometry and object-part relation-
ships. Simply put, structure gives meaning to visual data in
human perspective. However, in machine perspective, if a jum-
bled set of image patches are tokenized and processed through
a token-based model, it can give the same classification perfor-
mance (as it is a set operator), even though the input is really
meaningless to a human [Naseer et al., 2021]. This is in fact
a drawback of token-based models (eg: can be prone to such
an adversarial attack), which could be addressed by structure-
aware modeling. Not only the structure among tokens, but
also the structure within tokens is equally-important which is
often discarded during tokenization. It is particularly benefi-
cial to maintain the structure within tokens for fine-grained
prediction tasks such as segmentation.

In this paper, we propose to preserve and make use of the
spatial structure both within and among tokens. To do this
we focus on two components: (1) Structure-aware Tokeniza-
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Figure 1: Performance vs. Complexity on ImageNet-1K [Deng et al., 2009]. We implement our proposed (1) Structure-aware Tokenization,
and (2) Structure-aware Mixing in common token-based architectures including DeiT [Touvron et al., 2021b], Swin [Liu et al., 2021],
MLP-Mixer [Tolstikhin et al., 2021], ResMLP [Touvron et al., 2021a] and VAN [Guo et al., 2022]. The resulting family of SWAT models
consistently outperform their counterparts, with minimal increase in complexity. We consider the system-agnostic metrics such as FLOPs and
Parameters as the complexity measures here.

tion and (2) Structure-aware Mixing1, both of which can be
adopted in existing token-based architectures with minimal ef-
fort. Our Structure-aware Tokenization converts image patches
to tokens, but preserves the spatial structure within a patch as
channel segments of the corresponding token. Our Structure-
aware Mixing benefits from the preserved structure by con-
sidering local neighborhoods both within and among tokens,
based on 2D convolutions. We also refer to this as token
mixing with channel structure and channel mixing with token
structure. With these two contributions, we introduce a family
of models: SWAT, and compare against common baselines
such as DeiT [Touvron et al., 2021b], Swin Transformer [Liu
et al., 2021], MLP-Mixer [Tolstikhin et al., 2021], ResMLP
[Touvron et al., 2021a] and VAN [Guo et al., 2022]. Our
models show consistent improvements over baseline models
on multiple benchmarks including ImageNet-1K [Deng et al.,
2009] classification and ADE20K [Zhou et al., 2019] seman-
tic segmentation. We further visualize fine-grained attention
patterns captured by our structure-aware modeling. Perfor-
mance gains on ImageNet-1K classification against complex-
ity (measured by system-agnostic metrics such as FLOPs and
Parameters) are shown in Fig. 1.

2 Related Work
Token-based models: Transformer architectures from lan-
guage domain [Vaswani et al., 2017; Devlin et al., 2019]
have been recently adopted to visual data in the seminal
work ViT [Dosovitskiy et al., 2021]. Even though atten-
tion mechanisms already existed in computer vision [Wang
et al., 2018; Zhao et al., 2020], their true potential was re-
alized when introduced with tokenization. Since then, a
variety of token-based models have been introduced, some
with the use of MLPs [Tolstikhin et al., 2021; Touvron et
al., 2021a] or convolutions [Trockman and Kolter, 2022;
Liu et al., 2022]. DeiT [Touvron et al., 2021b] introduces

1Information sharing based on either attention (MHSA), MLPs or
convolutions is commonly referred to as Mixing in this paper.

an efficient training recipe, and [Caron et al., 2021; Ranas-
inghe et al., 2022] use self-supervision. Swin Transformer
[Liu et al., 2021] introduces attention within shifted-windows,
while downsampling progressively similar to [Heo et al., 2021;
Wang et al., 2021; Fan et al., 2021]. Another direction explores
efficiency of such models [Zhai et al., 2021; Bello, 2020;
Graham et al., 2021; Tang et al., 2021; Yue et al., 2021;
Ryoo et al., 2021].

Token adoption in vision tasks: Token-based models are
already applied in most vision applications, including clas-
sification [Touvron et al., 2021b; Liu et al., 2021], object
detection [Zhu et al., 2020; Carion et al., 2020], segmenta-
tion [Xie et al., 2021; Duke et al., 2021], image generation
[Cao et al., 2021; Esser et al., 2021], video understanding
[Nagrani et al., 2021; Fan et al., 2021; Arnab et al., 2021;
Dai et al., 2022], dense prediction [Yang et al., 2021a;
Ranftl et al., 2021], point clouds processing [Zhao et al., 2021;
Guo et al., 2021] and reinforcement learning [Chen et al.,
2021a; Shang et al., 2022].

Structure with token-based models: Some prior work in
token-based models have explored structure, using hybrid
architectures with convolutions [Xiao et al., 2021; Peng et
al., 2021; d’Ascoli et al., 2021]. A structure-based grouping
method is proposed in T2T-ViT [Yuan et al., 2021b]. With a
complementary motivation to ours, TNT [Han et al., 2021]
and NesT [Zhang et al., 2021] both consider a sub-token
structure within tokens, but introduce additional tokens and
become heavier with extra processing. [Yuan et al., 2021a]
has similarities with our channel mixing with token structure.
Models such as ConvMixer [Trockman and Kolter, 2022],
ConvNeXt [Liu et al., 2022] and VAN [Guo et al., 2022]
also consider a convolutional design as ours (w/ Pointwise
Conv and Depthwise Conv). However, they only consider
structure among tokens, not structure within tokens. To our
knowledge, this is the first work to preserve structure within
tokens, without extra tokens or processing, i.e., with a minimal
change in footprint.
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Figure 2: SWAT Overview: We show the architecture of SWAT (bottom) and a baseline model (top) in this figure. We propose two main
contributions: (1) Structure-aware Tokenization and, (2) Structure-aware Mixing, which can be applied to common Transformer or Mixer
architectures with minimal effort. Structure-aware tokenization preserves the spatial structure within a token, as channel segments. Simply put,
first, we tokenize with a patch size (p/α× p/α) instead of (p× p), resulting in ×α2 more intermediate tokens. Next, we restructure α× α
neighboring tokens into one token (concatenating in channel dimension), which gives the same number of tokens (and the channel dimension)
into Mixing operations, ensuring no additional cost in the downstream. However, now, this newly-preserved structure within tokens can be
explored for better downstream processing, which was very limited previously. More on how we use the structure in Mixing is shown in Fig. 3
and Fig. 4.

3 Spatial Structure Within and Among Tokens
In SWAT family of models, we explore the benefits of preserv-
ing spatial structure not only among tokens, but within tokens
as well. To do this with a general framework, we consider all
token-based models (eg: ViTs [Dosovitskiy et al., 2021], Mix-
ers [Tolstikhin et al., 2021]) as a unified architecture, which
consists of two main components: (1) Tokenization, for con-
verting image patches into tokens, and, (2) Mixing, for sharing
information within and among tokens. Mixing can mean either
the use of Multi-Layer Perceptron (MLP), Multi-Headed Self-
Attention (MHSA) or convolution for information sharing.
In this framework, we suggest improvements to both Tok-
enization and Mixing. When these components are adopted
together in a network, it can preserve and utilize the spatial
structure. Namely, we introduce Structure-aware Tokeniza-
tion and Structure-aware Mixing, which we describe below in
detail.

3.1 Structure-aware Tokenization
Here, we propose to preserve the spatial structure within to-
kens, not imposing any additional burden on downstream pro-
cessing. The idea is to keep spatial information within tokens
separated as its channel segments, so that the ‘mixing’ compo-
nent can later take advantage of it. In general, image patches
are converted into tokens by sliding a large convolutional ker-
nel with a stride (eg: a 16 × 16 kernel with a stride of 16),
which extracts a set of tokens. In such a setting, all the spatial
information within a patch is directly fused into the channels
of the corresponding token, losing the explicit structure in the
process. In our method, we replace this direct fusion, retaining
structural information within tokens.

More concretely, let us consider an input image of size

H ×W × 3, and a baseline tokenizer which converts image
patches into tokens by extracting non-overlapping patches of
size p × p. This is usually implemented as a convolutional
layer with C kernels of size (p × p), applied at a stride of
p. The output here will be an H/p × W/p 2D structure of
tokens, which is reshaped to create a sequence of HW/p2

tokens of embedding dimension C (refer Fig. 2 top). Even
though these tokens are processed downstream as a sequence,
they can be reshaped back into the original 2D structure of
H/p ×W/p whenever necessary. It has been observed that
the tokens preserve this structure (among tokens) through
skip connections and positional encodings [Caron et al., 2021;
Naseer et al., 2021], even after a series of Mixing blocks.
However, the structure within a p × p patch is irreversibly
lost, i.e., although each token is a linear abstraction of p× p
pixels, remapping the token back to its original p× p shape in
subsequent layers is not directly feasible.

In contrast, the proposed tokenizer in SWAT retains the
structure within a token (refer Fig. 2 bottom). We do this by
first having C/α2 convolutional kernels of size (p/α× p/α)
(where α > 1) and applying it with a stride of p/α. The
resulting intermediate set of tokens will have a 2D structure
of αH/p × αW/p and a dimension of C/α2. Next, such
α × α neighboring tokens are reshaped into a single token
(concatenating in the channel dimension), creating the same
number of tokens HW/p2 as the baseline, with the embedding
dimension of C. By doing so, we now have an α × α 2D
structure within each token– as its channel segments, which
can be preserved throughout downstream processing, by the
same principles: skip connections and (optional) positional
embeddings. Note that the SWAT tokenizer will have a fewer
parameters, in fact, 3Cp2/α4, compared to that of the baseline
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Figure 3: SWAT Transformer Block: We benefit from 2D channel
structure (within tokens) in token mixing, and 2D token structure
(among tokens) in channel mixing: (1) We insert a 2D Conv in-
parallel to each Linear projection in attention (MHSA) block, applied
on a reshaped input. It explicitly considers a structured local neigh-
borhood within a token during token mixing. (2) In channel mixing,
we first replace Linear layers with Pointwise Conv as a design deci-
sion for implementation simplicity. Next, we insert a 2D Depthwise
Conv to consider a structured local neighborhood among tokens. Key
tensor reshape operations are highlighted.

(3Cp2), which can impair the learning capacity. To avoid
this in practice, we use a bottleneck structure of multiple
layers instead of a single convolution layer (still having the
same downsampling factor of 1/α as the baseline), which
will enable the tokenizer to have an equivalent capacity, while
introducing structure within tokens.

3.2 Structure-aware Mixing
To make use of the structured tokens (w/ spatial structure
both within and among) generated by the SWAT tokenizer, we
propose Structure-aware Mixing. The idea is straightforward:
when we have such a 2D structure, the corresponding elements
(either tokens or channels) will have the notion of neighboring
elements in the 2D space, which gives an inductive bias that
we can benefit from. Our approach uses this locality in a form
of 2D convolutions, mixing information in a local region of
elements, in addition to the usual global information sharing in
Transformer/Mixer models. We present this idea in two parts:
(1) Token Mixing with Channel Structure and, (2) Channel
Mixing with Token Structure.

Token Mixing with Channel Structure

Token Mixing happens in different ways in Transformers
[Dosovitskiy et al., 2021; Touvron et al., 2021b] and Mix-
ers [Tolstikhin et al., 2021; Touvron et al., 2021a]. In Trans-
formers, each token attends to every other token pairwise
and dynamically (w/ input-dependent weights). In an atten-
tion block, a MHSA layer is sandwiched between two Linear
projection layers. Here, by design, token mixing (i.e., infor-
mation sharing among tokens) happens while also mixing
channels. These Linear layers may reshuffle channels and

Figure 4: SWAT Mixer Block: In both token mixing and channel
mixing, we first replace Linear layers with Pointwise Conv, applied
on a reshaped input (eg: a Linear layer on a (B ×N × C) shaped
tensor equals to a Pointwise Conv on (B×C×N ), in a PyTorch-like
channel-first Conv implementation). This is a design decision for
implementation simplicity, which makes no change in how an input
is processed. Now, we can easily explore the 2D channel structure
(within tokens) in token mixing and, 2D token structure (among
tokens) in channel mixing, by inserting a 2D Depthwise Conv. Key
tensor reshape operations are highlighted.

waste our newly-introduced structure within tokens, as there
is not even a skip-connection to save it. In contrast, in Mixers,
token mixing is done with static relations (w/ learned weights),
while not reshuffling channels. Simply put, tokens are mixed
channel-wise, without damaging the structure within tokens.
Therefore, we follow different designs in Transformers and
Mixers to introduce our token mixing with channel structure.
Transformers: We insert a 2D Conv in-parallel2 to the Lin-
ear layers before and after MHSA, to explore the channel
structure (structure within tokens). See Fig. 3 bottom-left. Af-
ter SWAT tokenizer, the channel dimension C has an internal
structure of c×h×w (as in Fig. 2, with usual notation), which
we use to reshape the input as,

B ×N × C → B ×N × (chw) → (BN)× c× h× w.

Here, B represents batch, N , num. of tokens and C, embed-
ding dimension. When a 2D Conv is applied on this tensor3,
it can mix channel information similar to a Linear layer, but
also considering the inductive bias of channel structure.
Mixers: In Mixers, we first replace the two Linear layers in
token mixing with Pointwise 1×1 Conv. See Fig. 4 bottom-left.
We do this just to simplify the implementation, w/o changing
the underlying operation (i.e., Linear = 1× 1 Conv). Applying
a Linear layer on a tensor of shape B × C ×N is the same as
applying a Pointwise Conv on a tensor B×N ×C (again, we
consider a PyTorch-like implementation of channel-first Conv

2Why in-parallel? To retain a capacity (params) similar to the
baseline. Refer to Appendix for more details.

3Here we consider a PyTorch-like channel-first implementation of
convolution (eg: 2D Conv has an input shape of B × C ×H ×W ).
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and channel-last Linear). Now, we can conveniently consider
the 2D structure in channels (within tokens). Next, we insert
a 2D Depthwise Conv in-between the Pointwise Conv layers,
applied on a reshaped input as,

B ×N × C → B ×N × (chw) → (Bc)×N × h× w.

Altogether, this token mixing block now considers the channel
structure (i.e., structure within tokens).

Channel Mixing with Token Structure

Channel Mixing operation is the same for both Transformers
and Mixers. In a baseline, two Linear layers are applied on an
input tensor shaped as B×N ×C to mix channel information.
In SWAT, we wish to do this while considering the token
structure. Hence, we replace the two Linear layers with the
same sandwich block: 2D Depthwise Conv in-between two
Pointwise Conv, applied on an input reshaped as,

B ×N × C → B × (HW )× C → B × C ×H ×W.

See Fig. 3 or Fig. 4 bottom-right. This channel mixing block
now considers token structure (i.e., structure among tokens).

Specific hyperparameter settings and ablations related to
(1) newly-introduced structure within tokens, and (2) level
of structure-awareness in mixing, are included in Appendix.
When experimenting with pyramid architectures (eg: Swin),
we need to explicitly preserve structure when downsampling,
and how we do this is also described in Appendix.

4 Experiments
In this section, we evaluate our family of models, SWAT
on image classification and semantic segmentation. We use
Imagenet-1K [Deng et al., 2009] and ADE20K [Zhou et al.,
2019] as benchmarks to compare against common Trans-
former/Mixer/Conv architectures such as DeiT [Touvron et
al., 2021b], Swin [Liu et al., 2021], MLP-Mixer [Tolstikhin et
al., 2021], ResMLP [Touvron et al., 2021a] and VAN [Guo et
al., 2022]. In our ablations, we further evaluate the benefits of
preserving structure.

4.1 ImageNet Classification
ImageNet-1K [Deng et al., 2009] is a commonly-used clas-
sification benchmark, with 1.2M training images and 50K
validation images, annotated with 1000 categories. For all our
models, we report Top-1 (%) accuracy on single-crop evalua-
tion with complexity metrics such as Parameters and FLOPs.
We train all our models for 300 epochs on inputs of 224× 224
using the timm [Wightman, 2019] library. We use the original
hyperparameters for all backbones, without further tuning. All
models are trained with Mixed Precision.
SWAT is generally-applicable and scalable: In Table 1,
we present the performance of SWAT with the two main types
of token-based models: those using attention (MHSA) such
as DeiT [Touvron et al., 2021b] and Swin [Liu et al., 2021],
or those using MLPs such as Mixer [Tolstikhin et al., 2021].
In both model families, SWAT consistently outperforms the
baselines across different model scales, verifying that our
Structure-aware Tokenization and Structure-aware Mixing can

Model
Model Top-1 Params. FLOPs
scale (%) (M) (G)

DeiT (Touvron et al.)
Ti 72.2 5.7 1.3
S 79.8 22.1 4.6

B/32 75.5 88.2 4.3
Ti (+3.5) 75.7 5.8 1.4
S (+0.7) 80.5 22.3 4.9SWATDeiT (ours)

B/32 (+0.7) 76.2 86.3 4.5

Mixer (Tolstikhin et al.)
Ti 68.3 5.1 1.0
S 75.7 18.5 3.8

B/32 75.5 60.3 3.2
Ti (+4.0) 72.3 5.1 1.0
S (+2.2) 77.9 18.6 3.8SWATMixer (ours)

B/32 (+1.6) 77.1 58.4 3.3

Swin (Liu et al.)
Ti 81.3 28.3 4.5
S 83.0 49.6 8.7
Ti (+0.4) 81.7 27.1 4.7

SWATSwin (ours)
S (+0.3) 83.3 48.9 9.1

Table 1: SWAT is generally-applicable and scalable. We compare
SWAT with DeiT [Touvron et al., 2021b], MLP-Mixer [Tolstikhin et
al., 2021] and Swin [Liu et al., 2021] on ImageNet-1K. We report the
performance in Tiny, Small and Base/32 (i.e., patch size of 32×32)
configurations. SWAT models consistently outperform their coun-
terparts with minimal change in parameters or computations. All
models are trained for 300 epochs at 224× 224 resolution. Perfor-
mance improvement is in bold.

be applied in both cases. Specifically, we consider Tiny, Small
and Base/32 (i.e., patch size of 32×32) model scales, with
varying range of parameters and computations. These are
standard models reported in previous work. We implement
our tokenizer and replace Transformer/Mixing blocks with
ours in each configuration (eg: DeiT-Ti → SWATDeiT-Ti). In
all configurations, SWAT models show consistent improve-
ments. In SWATDeiT, Tiny version achieves the highest gain of
+3.5%, with +0.7% in Small and Base/32. In SWATMixer, all
Tiny (+4.0%), Small (+2.2%) and Base/32 (+1.6%) versions
show a considerable improvement over baselines. SWATSwin
shows +0.4% w/ Tiny and +0.3% w/ Small models. Overall,
SWAT models have minimal (or no) increment in parameters
or computations. The performance vs. complexity graphs are
shown in Fig. 1.

SWAT is competitive with SOTA: In Table 2, we imple-
ment SWAT with multiple families of token-based models,
either Transformer/Mixer/Convolutional, including DeiT [Tou-
vron et al., 2021b], Swin [Liu et al., 2021], Mixer [Tolstikhin
et al., 2021], ResMLP [Touvron et al., 2021a] and VAN
[Guo et al., 2022]. We report the performance in mid-sized
(14-30M parameters) standard configurations. We use the
same hyperparameter settings and training recipes as the cor-
responding original baselines. We observe consistent gains in
SWAT family of models: +2.2% in SWATMixer and +1.2% in
SWATResMLP, +0.7% in SWATDeiT, +0.4% in SWATSwin and
+0.6% in SWATVAN, with minimal change in parameters and
computations compared to baselines. This further shows that
SWAT can be generally-adopted to any token-based architec-
ture with minimal effort and cost.
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Model

Ty
pe Top-1 Params. FLOPs

(%) (M) (G)
ResNet (He et al.)

C
N

N

78.8 25.6 4.1
ResNeXt* (Xie et al.) 77.6 25.0 4.3
EfficientNet* (Tan and Le) 82.6 19.3 4.4
RegNetY* (Radosavovic et al.) 79.4 20.6 4.0
ConvMixer (Trockman and Kolter) 80.2 21.1 -
ConvNeXt (Liu et al.) 82.1 29.0 4.5
Mixer (Tolstikhin et al.)

M
L

P

75.7 18.5 3.8
SWATMixer (ours) (+2.2) 77.9 18.6 3.8
gMLP (Touvron et al.) 79.6 20.0 4.5
ResMLP* (Touvron et al.) 76.6 15.4 3.0
SWATResMLP* (ours) (+1.2) 77.8 15.6 3.1
PoolFormer (Yu et al.) 80.3 21.4 3.6
CycleMLP (Chen et al.) 81.6 27.0 3.9
DeiT (Touvron et al.)

A
tte

nt
io

n

79.8 22.1 4.6
SWATDeiT (ours) (+0.7) 80.5 22.3 4.9
T2T-ViT (Yuan et al.) 81.5 21.5 4.8
TNT (Han et al.) 81.5 23.8 5.2
NesT (Zhang et al.) 81.5 17.0 5.8
PVT (Wang et al.) 79.8 24.5 3.8
Twins (Chu et al.) 81.7 24.0 2.8
Focal (Yang et al.) 82.2 29.1 4.9
Swin (Liu et al.) 81.3 28.3 4.5
SWATSwin (ours) (+0.4) 81.7 27.1 4.7
ConViT (d’Ascoli et al.)

H
yb

ri
d

81.3 27.0 5.4
CvT (Wu et al.) 81.6 20.0 4.5
Conformer (Peng et al.) 81.3 23.5 5.2
CeiT (Yuan et al.) 82.0 24.2 4.8
MobileFormer* (Chen et al.) 79.3 14.0 0.5
VAN (Guo et al.) 82.8 26.6 5.0
SWATVAN (ours) (+0.6) 83.4 27.0 5.8

Table 2: SWAT is competitive with SOTA. We report experiments on
ImageNet-1K with different families of token-based models in mid-
sized configurations (14-30M params.). We implement SWAT with
DeiT [Touvron et al., 2021b], Swin [Liu et al., 2021], MLP-Mixer
[Tolstikhin et al., 2021], ResMLP [Touvron et al., 2021a] and VAN
[Guo et al., 2022] baselines, and train with original hyperparameter
settings. SWAT outperforms all baselines consistently with minimal
change in complexity, showing competitive performance with SOTA
models. In general, models are trained for 300 epochs at 224× 224
resolution (exceptions denoted with ∗ are discussed in appendix).
Performance improvement is in bold.

SWAT shows more fine-grained attention patterns: In
Fig. 5, we visualize token attention values in Tiny configu-
rations of DeiT [Touvron et al., 2021b] and SWATDeiT. We
use the code from DINO [Caron et al., 2021] paper as a base.
However, in our models, since we do not use a class token, we
cannot visualize the attention on a single token as in [Caron
et al., 2021]. Instead, we show the attention maps of the
final layer of each model, averaged across tokens. We con-
sider larger image size (1024 × 1024) compared to training
(224 × 224) to get higher resolution visualizations. We use
the same patch size of 16 and interpolate positional encod-
ings accordingly. We can see clear differences between the
attention in DeiT [Touvron et al., 2021b] and SWATDeiT. In
SWAT, we have more contrastive attention which resembles

Model
Structure-aware Top-1 Params. FLOPs

Tokenize Tk. Mix. Ch. Mix. (%) (M) (G)
DeiT 73.3 5.72 1.25

✓ 74.6 5.96 1.30
✓ 73.7 5.72 1.30

✓ 73.0 5.58 1.30
✓ ✓ 74.5 5.59 1.35

SWATDeiT ✓ ✓ ✓ 75.7 5.83 1.40
Mixer 68.3 5.07 0.97

✓ 70.8 5.28 1.01
✓ 68.9 5.08 0.97

✓ 67.9 4.88 0.94
✓ ✓ 70.2 4.88 0.95

SWATMixer ✓ ✓ ✓ 72.3 5.10 0.99

Table 3: Ablations on Structure with DeiT-Ti [Touvron et al.,
2021b] and Mixer-Ti [Tolstikhin et al., 2021] on ImageNet-1K. We
report the gains from (1) Structure-aware Tokenization, (2) Token
Mixing with Channel Structure, and (3) Channel Mixing with Token
Structure. Structure-aware inputs and Structure-aware Mixing gives
consistent improvements, as shown in bold. One key observation
shows that, our Tokenization and our Token Mixing should always
be coupled together.

fine-grained structures (eg: boundaries in object segments),
since we preserve such structure within tokens. In contrast,
DeiT attention is smoothed-out and subtle. Also, the attention
weights in the SWAT model are less-noisy. It is worth noting
that we use the same resolution (i.e., same number of tokens)
in both cases.

We include a detailed analysis of model throughput (im/s) in
SWAT models and their baselines at inference, in the Appedix.
We consider FLOPs and parameters as our metrics of com-
plexity, as they are system-agnostic and reproducible.

4.2 Ablations on ImageNet
In this section, We present ablations on Tiny versions of
SWATDeiT and SWATMixer. Specifically, in Table 3, we focus
on Structure-aware Tokenization, Token Mixing with Channel
Structure and Channel Mixing with Token Structure.

Structure-aware Tokenization: We compare different set-
tings with SWAT tokenizer. Bottom line is that Structure-
aware Tokenization should always be coupled with the
Structure-aware Token Mixing. It makes sense: if we pre-
pare tokens with structure and not take advantage of it during
mixing, it does not really have a benefit and the reduced capac-
ity (due to our Tokenization) may even drop the performance.
In DeiT [Touvron et al., 2021b], we see such performance
drop of −0.3% when we do not use the structure (within to-
kens) explicitly. In Mixer [Tolstikhin et al., 2021], this drop
is −0.4%. In both cases, when we specifically make use of
the newly-introduced structure within tokens, we see consis-
tent gains (+1.5% in DeiT and +2.3% in Mixer) over our
Tokenization-only versions.

Channel Structure (within tokens) in Token Mixing: Here,
we intend to consider a local neighborhood within tokens.
Even if such a structure is not present (i.e., not having our
Tokenization), models can benefit slightly: +0.4% in DeiT
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Figure 5: Visualization of token attention in DeiT-Ti [Touvron et al., 2021b] and SWATDeiT-Ti. We use the code from DINO [Caron et
al., 2021] for visualization. However since we do not use class tokens as in DINO, we show the attention averaged across tokens. SWAT,
as it preserves structure even within tokens, shows more contrastive and fine-grained attention maps compared to DeiT (even though we
consider same number of tokens, i.e., resolution, in both). Note the better-visible boundaries and segments in SWAT, compared to smoothed-out
variations in DeiT. Some cases where SWAT fails to capture fine details are also shown (to the right). Best viewed in color and zoomed-in.

[Touvron et al., 2021b] and +0.6% in Mixer [Tolstikhin et al.,
2021]. This is due to the inductive bias of replacing Linear
layers with Conv. However, the true potential of this comes
when a structure within tokens is explicitly available, where
we see a +1.2% improvement in DeiT [Touvron et al., 2021b]
and +1.9% in Mixer [Tolstikhin et al., 2021].

Token Structure (among tokens) in Channel Mixing:
Here, we consider a local neighborhood among tokens. In
DeiT [Touvron et al., 2021b], we see +1.3% boost, and in
Mixer [Tolstikhin et al., 2021], a +2.5% boost in performance.

4.3 Semantic Segmentation
ADE20K [Zhou et al., 2019] benchmark contains annotations
for semantic segmentation across 150 categories. It comes
with 25K annotated images in total, with 20K training, 2K
validation and 3K testing. We report mIoU for our models in
multi-scale testing (i.e., [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× the
training resolution) similar to previous work [Liu et al., 2021],
along with complexity metrics such as parameters, FLOPs
(for input size of 512 × 2048 similar to [Liu et al., 2021])
and frame-rate. We follow a similar training recipe to Swin
[Liu et al., 2021]. Our backbones are pretrained on ImageNet-
1K [Deng et al., 2009] for 300 epochs at 224 × 224, before
re-training with a decoder for segmentation at 512 × 512.
We use UperNet [Xiao et al., 2018] as our decoder within
mmsegmentation [OpenMMLab, 2020] framework. We
use the original hyperparameter settings as the baseline.

Results: In Table 4, we show the performance of SWATSwin
and SWATVAN backbones when used with the UperNet [Xiao
et al., 2018] head for semantic segmentation on ADE20K,
and compare with similar-sized baselines. SWATSwin gives
+0.7 mIoU and SWATVAN gives +0.6 mIoU improvement
over the respective baselines, when trained under the same
settings. However, FPS of the SWATSwin based model is
slightly lower, due to extra convolutions introduced in SWAT.
In the Appendix, we include segmentation masks generated
by SWATSwin and Swin [Liu et al., 2021] backbones, which
qualitatively show this improvement.

Method Backbone mIoU
Params. FLOPs

FPS
(M) (G)

DANet (Fu et al.)

Resnet-101 (He et al.)

45.2 69 1119 15.2
DLab.v3+ (Chen et al.) 44.1 63 1021 16.0
ACNet (Fu et al.) 45.9 - - -
DNL (Yin et al.) 46.0 69 1249 14.8
OCRNet (Yuan et al.) 45.3 56 923 19.3
UperNet (Xiao et al.) 44.9 86 1029 20.1

DeiT-S (Touvron et al.) 44.0 52 1099 16.2
Swin-Ti (Liu et al.) 45.8 60 945 18.5
SWATSwin-Ti (ours) 46.5 59 950 16.9
VAN-B2 (Guo et al.) 50.1 57 948 -

UperNet (Xiao et al.)

SWATVAN-B2 (ours) 50.7 55 952 -

Table 4: SWAT for semantic segmentation on ADE20K [Zhou et
al., 2019] dataset. We report results in the same setting as Swin [Liu
et al., 2021] using mmsegmentation [OpenMMLab, 2020] frame-
work. FPS is measured on a single V100 GPU. SWAT outperforms
respective baselines, but is slightly slower due to extra convolutions.

5 Conclusion

In this work, we present the merits of preserving spatial
structure, both within and among Tokens, in common Trans-
former/Mixer/Convolutional token-based architectures. Our
two key contributions are: (1) Structure-aware Tokenization
and (2) Structure-aware Mixing, which can be adopted in dif-
ferent families of models with minimal effort. The resulting
family of models, SWAT, outperforms the corresponding base-
lines and shows competitive performance with SOTA models
on multiple benchmarks, with minimal change in parameters
and computations. We hope that SWAT will open-up new
ways of making use of spatial structure as an inductive bias in
token-based models.
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