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Abstract

In this paper, we study a controllable prompt ad-
versarial attacking problem for text guided image
generation (Text2Image) models in the black-box
scenario, where the goal is to attack specific visual
subjects (e.g., changing a brown dog to white) in
a generated image by slightly, if not imperceptibly,
perturbing the characters of the driven prompt (e.g.,
“brown” to “br0wn”). Our study is motivated by
the limitations of current Text2Image attacking ap-
proaches that still rely on manual trials to create ad-
versarial prompts. To address such limitations, we
develop CharGrad, a character-level gradient based
attacking framework that replaces specific charac-
ters of a prompt with pixel-level similar ones by
interactively learning the perturbation direction for
the prompt and updating the attacking examiner for
the generated image based on a novel proxy per-
turbation representation for characters. We evalu-
ate CharGrad using the texts from two public im-
age captioning datasets. Results demonstrate that
CharGrad outperforms existing text adversarial at-
tacking approaches on attacking various subjects of
generated images by black-box Text2Image models
in a more effective and efficient way with less per-
turbation on the characters of the prompts.

1 Introduction
Text-guided image generation (Text2Image) has been receiv-
ing much attention from both academia and industry fields
due to its powerful capability of generating high-quality im-
ages based on textual descriptions as driven prompts [Ramesh
et al., 2022]. However, such applications usually suffer from
the robustness issue where a prompt with one or several per-
turbed characters could dramatically change the visual con-
tent of the generated image. For example, given a prompt
as “Big Ben in the rain”, replacing the second “B” with the
Cyrillic “B” results in generating an image with mushrooms
in the wild rather than the clock tower at London city [Strup-
pek et al., 2022a]. These vulnerabilities can be utilized by
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Figure 1: Comparison of Text2Image Attacking

some malicious software (e.g., a searching plugin with auto-
complete function) that intentionally modifies prompts from
the users of Text2Image applications, which severally affects
the user experience and the performance of the applications.
Therefore, we are motivated to investigate the vulnerabili-
ties of Text2Image models. Concretely, we aim to answer
whether a Text2Image model can be attacked to generate dif-
ferent visual subjects by slightly, if not imperceptibly, per-
turbing the characters of the driven prompt.

Recently, Struppek et al. [Struppek et al., 2022a] observed
that replacing some characters of a given prompt with their
homoglyphs1 can sometimes change the visual content of the
generated image. However, such manual trials are firstly in-
efficient, and secondly cannot attack the images in an con-
trollable manner as the attacking effect of a homoglyph is
not quantitatively estimated. For example, given the prompt
in Figure 1a, the target is to attack the “brown” attribute of
the “dogs” by changing a character within “brown” to an-
other similar character, such that a generated image from
the Text2Image model contains dogs not in brown color.
As shown in Figure 1a, the manual trials like changing
n→\U(0144) and w→\U(1D25) didn’t work. The generated
images still include a brown dog, or have unexpected visual
subjects modified (e.g., lawn in blue). It is unknown which
character as a replacement for a prompt can generate an image
with only the target subject attacked while the other subjects
the same, i.e., in a controllable way. While an optimal ad-
versarial prompt could be obtained by exhaustively trying the

1https://en.wikipedia.org/wiki/Homoglyph
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replacement for each character in a prompt with all available
Unicode characters around the world, such an approach is not
practical in the real-world setting due to the limited budget
of using Text2Image models (e.g., limited quotes for online
API) and the exponential increase on searching space (e.g.,
nearly 149,186 Unicode characters).

Motivated by the above observations, we develop Char-
Grad, a character-level gradient based attacking framework
for Text2Image models. We show the overall workflow of
CharGrad in Figure 1b with orange arrows. In our solution,
CharGrad initializes an adversarial prompt by replacing the
target characters (e.g., “brown” in Figure 1) in the prompt
with random characters from a large-scale character pool. For
each position of the replacement, CharGrad then samples a
few new characters as alternations to estimate the changing
directions on the generated images and approximate the gra-
dient of the optimal perturbation direction (e.g., the dashed
green arrow within ③ of Figure 1). Such gradient is further
leveraged to retrieve the candidate character from the charac-
ter pool that is matched based on the aligned direction (e.g.,
the blue arrow within ③ of Figure 1). Recently, Ye et al. [Ye
et al., 2022a] proposed LeapAttack, a gradient based attack-
ing framework that generates adversarial texts in the hard-
label classification setting by replacing the words of original
texts with their synonyms. However, their approach is not
applicable to our problem due to two unresolved technical
challenges below.

Character-Level Gradient Estimation. LeapAttack esti-
mates the gradient of the perturbation direction for a text
by modeling the replacement between two words as the dis-
parity of their semantic embeddings that are extracted from
pretrained word encoding models (e.g., BERT [Devlin et al.,
2018]). This is because different words could be encoded
into a uniform semantic space where the disparity of differ-
ent word embeddings are comparable with each other to de-
rive the correct perturbation direction for the text [Tian et al.,
2023]. However, the Unicode characters in our problem have
no explicit semantic meanings as they may come from dif-
ferent languages (e.g., “A” and \U(00C5)) or even different
domains (e.g., “a” and α). While a character-level embed-
ding can be generated by a word or character encoding model
(e.g., CANINE [Clark et al., 2022]), the disparity between
such embeddings does not share a uniform hidden space and
thus fail to represent the optimal gradient of the perturbation
direction for a prompt. Therefore, how to generate compa-
rable character-level embeddings in a uniform hidden space
remains as a challenge.

Lack of Arbitrary Evaluation Criteria for Attacking.
LeapAttack focuses on the attacking problem with binary
classification tasks. Therefore, a target binary classification
model has a universally usable attack evaluation criterion: an
adversarial attack text as input is considered as successful if
the classification result (e.g., “-1”) is different from the re-
sult (e.g., “1”) with the original text. However, there is no
such arbitrary evaluation criteria for our attacking problem
because the outputs of a target Text2Image model are RGB
images rather than the binary prediction. For example, the
color of the dogs in ① of Figure 1b still partially contains

brown hairs. It is difficult to make an automated judgement
if the attacking is successful or not. A possible solution is to
set hard thresholds for the attacked subjects (e.g., the number
of remaining pixels as brown color). But such a one-size-
fit-all metric cannot consistently generate optimal adversarial
prompts due to the complex semantic contexts, nor practical
to real-world attacking scenario when the target subjects be-
come various. Therefore, it is challenging to design arbitrary
evaluation criteria for attacking Text2image models and well
adapt the criteria on various prompts to achieve the optimal
attacking performance.

To address the first challenge, we design a proxy pertur-
bation representation metric to quantitatively estimate the po-
tential attacking effect of different Unicode characters that are
further leveraged to estimate the perturbation direction for the
prompts. To address the second challenge, we develop an it-
erative attack examiner updating strategy that firstly builds
a uniform visual-guided attack examiner and then adap-
tively searches more optimal examination bars for different
prompts during the attacking process. To our best knowl-
edge, CharGrad is the first character-level gradient based at-
tacking framework to solve the controllable prompt adversar-
ial attacking problem for Text2Image models. We evaluate
CharGrad on two public image captioning datasets. The re-
sults show that CharGrad outperforms existing text adversar-
ial attacking approaches on both effectively and efficiently
attacking various subjects of the generated images with less
character-level perturbations.

2 Related Work
2.1 Text Guided Image Generation
In the last few years, diffusion models are widely studied
to generate high-quality images by iteratively corrupting and
recovering the images with random noise [Ho et al., 2020].
Moreover, the generation process of a diffusion model can be
conditioned on the embeddings of natural language prompts
(e.g., CLIP [Radford et al., 2021]). For example, Ramesh et
al. proposed DALL-E 2, a diffusion based Text2Image model
that incorporates projected CLIP prompt embeddings as addi-
tional context tokens to generate semantically consistent im-
ages [Ramesh et al., 2022]. However, only a few research
focuses on attacking Text2Image models by generating ad-
versarial prompts. Recently, Struppek et al. [Struppek et al.,
2022a] manually replaced the characters of a given prompt
with their homoglyphs to generate adversarial prompts that
change the visual content of the generated images. After
that, they further proposed a backdoor attacking algorithm
that poisoned the text encoder module of the Text2Image
model by forcing the correlation between the injected homo-
glyphs and the tokens of different prompt [Struppek et al.,
2022b]. Our study focuses on the vulnerability of Text2Image
models against adversarial attacks, which fools the trained
Text2Image model by perturbing the input prompt during the
testing phase. Unlike poisoning attacks that alter the predic-
tion of a model by misleading the model parameter in training
phase, the adversarial prompt attacking exploit weaknesses of
the model without any change on the content of the model.
Since Text2Image models are mostly provided with limited
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accessible contents (e.g., an online API), we have an even
more challenging task in the black-box attack setting. We
address the studied problem by designing a novel character-
level adversarial prompt attacking framework, which treats
the Text2Image models as black-box and generates more ef-
fective adversarial prompts than human trials.

2.2 Black-Box Adversarial Attacks to NLP Models
The vulnerability of NLP models against adversarial attacks
has been investigated in the black-box setting [Devlin et
al., 2018]. Previous research in this field mainly focuses
on soft-label black-box attacking where the attackers pre-
sume the access to the probability score distribution from
the target model [Jin et al., 2020; Ren et al., 2019]. How-
ever, such assumption usually cannot be held due to the
fact that most real-world models are often securely wrapped
with only the hard label predictions (e.g., Top-1 predic-
tion) exposed. Recently, several initial efforts have been
made to study the hard-label black-box text adversarial at-
tacking problem [Maheshwary et al., 2021; Ye et al., 2022b;
Ye et al., 2022a]. For example, Ye et al. [Ye et al., 2022a]
proposed a gradient based attacking framework that replaces
different words of a given text with their synonyms by esti-
mating the gradients of the perturbation direction based on the
disparity of word embeddings. However, their approach is not
applicable to our problem due to 1) the lack of effective met-
rics to generate comparable character-level embeddings and
2) the lack of arbitrary evaluation criteria for the Text2Image
task to judge the success of an adversarial prompt. The pro-
posed CharGrad framework designs a proxy perturbation rep-
resentation metric and an iterative attack examiner updating
strategy to address the above limitations, respectively.

3 Problem Definition
In this section, we formally present the controllable prompt
adversarial attacking problem with several definitions below.
Definition 1. Prompt (t): A prompt t = {c1, . . . , cN} is a
piece of natural language text that contains a sequential of
characters where N denotes the total number of characters.
Definition 2. Unicode Character (c): A Unicode character
is a unit symbol in the computer system. We define C =
{c1, . . . , cP } as the character pool that contains all available
characters in our paper. More statistic information of C is
provided in the Appendix.
Definition 3. Text2Image Model (M): We define a
Text2Image model M as a black box that takes a prompt t as
the input and generates an image x that is semantically asso-
ciated with t. The process is formally defined as x = M(t).
Definition 4. Attacking Term (w): The attacking target w =
{c1, . . . , cM} is one or several specific words from t, which
correspond to a subject that is an entity (e.g., “dogs” in Figure
1) or an entity’s attribute (e.g., “brown” in Figure 1). M ∈
[1, N) denotes the total number of characters from w.
Definition 5. Adversarial Prompt (ẗ): An adversarial
prompt ẗ = {c̈1, . . . , c̈N} consists of the same sequential of
characters as t except the attacking term where some charac-
ters within the term are replaced with different characters. We
define the perturbed attacking term as ẅ = {c̈1, . . . , c̈M}.

Definition 6. Pixel Difference (D): We firstly retrieve the
image of each Unicode character from fileformat, an online
Unicode collection website that provides normalized gray-
scale images for most Unicode characters. Then we define
the pixel differences between two characters as

D(c1, c2) = 1− Pixel(c1) ∩ Pixel(c2)
Pixel(c1) ∪ Pixel(c2)

(1)

where Pixel(·) denotes the coordination set from the image
of the given character. Similarly, we define the entire pixel
difference between a prompt t and the adversarial prompt ẗ as
D(t, ẗ) =

∑N
i=1 D(ci, c̈i).

Definition 7. Attack Examiner (Φ): To evaluate if an ad-
versarial prompt ẗ can successfully reach the attacking goal,
we define an attacker examiner Φ as a binary discriminator.
It indicates if ẗ can successfully attack the model M by con-
trolling the modification of the generated images within the
subjects corresponding to w. Φ(ẗ,M) = 1 if the attack is
successful. We will further discuss the detail of designing Φ
in Section 4.

Using the definitions above, our controllable prompt adver-
sarial attacking problem is formally defined as:

ẗ∗ = argmin
ẗ

D(t, ẗ), s.t. Φ(ẗ,M) = 1 (2)

where ẗ∗ is the optimal adversarial prompt from CharGrad.

4 The Proposed CharGrad Approach
The proposed CharGrad incorporates three key modules in its
design, which are elaborated below.

4.1 The Initializer Module
The first module is designed to randomly initialize a success-
ful adversarial prompt. That is to randomly perturb w to be
ẅ, such that the adversarial prompt ẗ can result in a successful
attack on M. The Initializer thus serves a role for probing
the sensitive decision regions. While the initial adversarial
prompt may not be the optimal, it provides important guid-
ance for determining the direction of prompt optimization in
the challenging black-box attack setting.

In this module, the success of attack is judged by an initial
attack examiner Φinit.

Definition 8. Initial Attack Examiner (Φinit): Given a
prompt t, an adversarial prompt ẗ, and the target Text2Image
model M, we define the initial attack examiner Φinit as

Φinit(t, ẗ) = 1{S[t\w,M(ẗ)]

S[w,M(ẗ)]
>

S[t\w,M(t)]

S[w,M(t)]
} (3)

where t\w denotes the prompt without the attacking term.
S is a multi-modal alignment metric (e.g., CLIP [Radford
et al., 2021]) that evaluates the consistency between the se-
mantic words (e.g., prompts, attacking term) and the gener-
ated images. Within the indicator function 1{·} of Equation
3, we further define the left part as attack eximination score
(Attscore) that quantitatively indicates the effectiveness of ẗ.
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Figure 2: Replacement of characters in attacking term (“brown”) and
the resulted Attscore. Attack failed (Φinit=0) for the top middle and
right examples, and succeeded (Φinit=1) for the bottom examples.

We show several examples in Figure 2 with their Attscore
for the “brown” subject to illustrate the effect of Φinit. Based
on the above definition, a higher value of Attscore indicates
more effective attack to the target subject and less impact on
the remaining subjects in the prompt. The bottom three ex-
amples in Figure 2 have higher Attscore compared to the orig-
inal example without any replacement. The images in these
three examples include no brown dogs, but two dogs in other
color, indicating that the attacks in these examples are suc-
cessful. However, the other two examples on the top have
low Attscore and do not meet the attack goal.

There is no need to run a sophisticated process to obtain
the initial adversarial prompt ẗ0. In particular, the Initializer
can obtain ẗ0 by randomly replacing each character from the
attacking term of t with another character from the character
pool. Without the consideration on the pixel-level differences
between ẗ0 and t, it is not difficult for ẗ0 to pass Φinit(t, ẗ0)
because the attacking term has been entirely corrupted, e.g.,
“brown”→“βnoωx”, which has most original characters re-
placed with a random different character.

After having ẗ0, the Initializer traces back the perturbation
process for recovering t from ẗ0. The goal is to find a decision
boundary prompt that is formally defined below.
Definition 9. Decision Boundary Prompt (ẗb): A decision
boundary prompt ẗb is an adversarial prompt that successfully
passes Φinit, but will fail if any perturbation of ẗb is removed.

Identifying ẗb is required by the Monte Carlo estimation
that we will use next for optimizing the adversarial prompts
because Monte Carlo estimation requires the prompts to be
positioned at the decision boundary level [Ye et al., 2022a].
Therefore, the Initializer should recover some perturbed char-
acters of ẗ0 back to the original characters in order to reduce
additional perturbations beyond ẗb. Unlike the previous re-
search that determines the words for recovery based on their
semantic correlation with the original words, we consider the
pixel-level differences between the characters due to the lack
of character-level semantic information. In particular, the Ini-
tializer sort all the perturbed characters based on their pixel-

level differences with the corresponding original characters
in the descending order. Then each original character is re-
placed back and the resulting adversarial prompt is examined
by Φinit. The replacement process iterates until the current ad-
versarial prompt doesn’t pass Φinit. Then the last successful
adversarial prompt ẗb is selected. Through the above recov-
ering process, we maintain the least pixel-level differences
between ẗb and t but still keep ẗb as adversarial.

4.2 The Estimator Module

Given a decision boundary prompt ẗb from the Initializer, we
develop the Estimator module to identify the optimal adver-
sarial characters for replacements from the character pool by
sampling limited characters as observations and estimating
the perturbation direction for ẗb. In particular, for each per-
turbed character c̈ from ẗb, we randomly sample K different
characters from the character pool as Pc̈ = {p1, . . . , pK}.
For each pk, we replace c̈ with pk and keep all remain-
ing characters in ẗb the same to generate a new adversarial
prompt ẗk. We evaluate ẗk by Φinit and generate the corre-
sponding Attkscore. Then we create an examination score list
Ac̈ = {a1, . . . , aK} where ak = Attkscore − Attoscore and
Attoscore is the Attscore of t. Therefore, ẗk is a successful ad-
versarial prompt if its ak is positive. Otherwise, ẗk is a failure.

Intuitively, the estimated perturbation direction for ẗb
should be more aligned with the successful adversarial
prompts. Figure 1 shows examples of replacing c̈ in ẗb (i.e.,
\U(0175)) with different pk (e.g., \U(1E85)). The attack-
ing results are in the dashed box of Figure 1 where the solid
green arrows denote positive ak and the red arrow denotes
negative ak. Therefore, the optimal perturbation direction is
expected to be closer with more solid green arrows and less
with the red arrow. However, the main challenge here is how
to quantitatively represent the perturbation direction between
c̈ and pk, given the fact that the characters are non-semantic
discrete symbols.

Since character embeddings do not contain explicit seman-
tic meanings, we compute the proxy representation of a char-
acter perturbation by comparing the representation of prompt
and the attacking term before and after the perturbation.

Definition 10. Proxy Perturbation Representation: Given
a prompt t, the attacking target w and a character perturbation
c → c̈ where c ∈ w, the proxy perturbation representation of
c → c̈ is defined as δ⃗c|c̈ = TF(ẗ) + TF(ẅ)− TF(t)− TF(w)
where TF is a transformer encoding model (e.g., BERT).

This definition indirectly assigns the character with
prompt-level semantics and projects the embedding of differ-
ent characters into a prompt specific uniform hidden space.
For example, if there are two character perturbations c1 → c̈1
and c2 → c̈2 that successfully pass Φinit and a failure pertur-
bation c3 → c̈3, δ⃗c1|c̈1 and δ⃗c2|c̈2 are more likely to be closer
than δ⃗c3|c̈3 . In this way, the perturbation directions between c̈
and pk, k = 1...K become comparable, as each green or red
arrow in Figure 1 can be represented as δ⃗c|c̈ − δ⃗c|pk

.
The Estimator module then estimates the perturbation di-
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rection for replacing c based on the all pk from Pc̈,

∆c =
K∑

k=1

Norm(ak/D(c̈, pk))× (δ⃗c|c̈ − δ⃗c|pk
) (4)

where D(c̈, pk) calculates the pixel difference between c̈ and
pk, Norm(·) normalizes the weights of all characters from Pc̈.

Then, by comparing δ⃗c|· of each character from the char-
acter pool with ∆c based on cosine similarity, the character
with the highest similarity is retrieved to replace the original
character c. The replacement process runs iteratively until the
current adversarial prompt ẗf passes Φinit. After that, we re-
turn ẗf to the Initializer module and obtain a new decision
boundary prompt again. Then, the Estimator module runs to
get another ẗf . We repeat the Initializer and Estimator mod-
ule in the alternative way until the perturbed characters fully
converge or the iteration times reach the predefined threshold.

4.3 The Redistributor Module
Given the final adversarial prompts ẗ from the Initializer and
Estimator module, we develop a Redistributor module to fur-
ther optimize the prompts, as we observe that some adversar-
ial prompts may not optimally attack the target Text2Image
model even if they already passed Φinit. For example, in
Figure 3, replacing the “a” with “o” for the attacking term
“man” directly removes the human head but also has influ-
ence on the “sitting” behavior. In contrast, replacing the “n”
with “p” only corrupts the male face by hiding the male fea-
tures (e.g., Beards) and keeps the remaining visual subjects
matched with the prompt. However, both adversarial prompts
are considered as successful because the Estimator module
always pushes an adversarial prompt to approach the deci-
sion boundary and Φinit cannot examine the issues reported
above. Therefore, the goal of the Redistributor module is to
calculate the pixel-level differences between ẗ and t, and re-
distribute the same amount of pixel perturbation to different
characters, such that a new adversarial prompt can be gener-
ated to achieve a higher Attscore.

The Redistributor would not make ẗ worse, as an existing
successful adversarial prompt ẗ has the Attscore that is the
lower bound for the equal or even less pixel-level differences
as ẗ. In other words, a higher Attscore can be achieved if the
equal or less pixel-level differences are distributed to perturb
different characters of the attacking term.

To perform the pixel re-distribution strategy, we calculate
the pixel-level differences between ẗ and t as X . Given all
available characters from the attacking term (e.g., “man” in
Figure 3), we randomly select a character (e.g., “m”) and
replace the character with another character that shares less
than X pixel-level differences. After that, we update the
remaining pixel-level differences and select another unper-
turbed character for replacement until all characters are per-
turbed or X is not sufficient for a replacement. We then
test the new adversarial prompt ẗd and obtain the correspond-
ing Attscore. If the Attscore is higher than the current lower
bound Attscore, we update Φinit by replacing S[t\w,M(t)]

S[w,M(t)] with
Attscore and start over with the Initializer module. Other-
wise, we drop half number of the new perturbed characters

Figure 3: Different attack examples that pass Φinit.

from ẗd whose δ⃗c|· share the least similarity with the original
perturbed characters from ẗ, so as to maximize the possibil-
ity of removing non-important perturbed characters and keep
the important perturbations. We update X with the returned
pixel-level differences and repeat the re-distribution for un-
perturbed characters until X runs out again. We stop the Re-
distributor if a higher Attscore does not exist after a fixed
number of re-distributions or the updating iterations reach
the pre-defined threshold. We show the overall workflow of
CharGrad in the Appendix.

5 Experimental Evaluation
In this section, we conduct extensive experiments on two im-
age captioning datasets to answer the following questions:
Q1) Can CharGrad achieve a better attacking performance
than the state-of-the-art baselines? Q2) Is CharGrad more
efficient than the state-of-the-art baselines to successfully at-
tack different prompts? Q3) How sensitive is the CharGrad
with different hyper-parameters? Q4) How does each com-
ponent of CharGrad contribute to its overall performance?

5.1 Dataset and Experiment Setup
Dataset. We use the annotations from two public caption-
ing datasets in our experiments: i) COCO2017 [Lin et al.,
2014] is an image object detection dataset that contains cap-
tioning annotations for more than 600,000 images, and ii)
Flickr30k [Young et al., 2014] is an image captioning dataset
that contains 31,000 images with image descriptions. We
follow previous research [Ye et al., 2022a; Jin et al., 2020;
Maheshwary et al., 2021] by taking 1,000 annotations as
prompts from each dataset above to conduct the adversarial
prompt attacking. Given a prompt, we tokenize the prompt
and randomly select a token as the attacking target. We follow
the previous research [Ye et al., 2022a] to generate the Part-
of-speech (POS) taggings for all tokens and filter the tokens
with specific taggings (“ADJ”, “ADV”, “VERB”, “NOUN”)
to improve the quality of the selected tokens.
Experiment Setup. In our experiments, we select Stable Dif-
fusion [Rombach et al., 2022] as the target Text2Image model
that is widely used by previous research [Ye et al., 2022a;
Rando et al., 2022]. We follow the standard parameter set-
tings as shown in Diffusers library and remove the safety
checker module to achieve the best attacking performance.
We set the number of sampled characters from the Estimator
module as K=5 and the number of times applying the Redis-
tributor module as Nre=3. We further evaluate the sensitivity
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of CharGrad against these two hyper-parameters in Section
5.3 below.

5.2 Baselines
We compare the performance of CharGrad with state-of-the-
art prompt or text adversarial attacking models as follows.
HumanTrial [Struppek et al., 2022a]: we simulate the hu-
man trials on generating adversarial prompts by randomly re-
placing the characters from the attacking term with different
characters from the character pool.
GreedyPert [Boucher et al., 2022]: we simulate the human
imperceptible perturbation approach by starting the perturba-
tion of characters from attacking the term with other charac-
ters that share the least pixel-level differences until passing
the attack examiner.
LeapAttack [Ye et al., 2022a]: a gradient based text adver-
sarial attacking framework that gradually replaces the words
of a given text with their synonyms by estimating the gradient
of the perturbation direction for the text based on the dispar-
ity of semantic word embeddings.
TextHoaxer [Ye et al., 2022b]: a gradient based text adver-
sarial attacking framework that samples virtual perturbation
directions from Gaussian distributions and utilizes the gra-
dients of the directions to retrieve the word candidates with
matched word embeddings.
GA-Attack [Maheshwary et al., 2021]: a Genetic Algorithm
(GA) based attacking approach that exhaustively queries the
candidates words with the target model and generates new
candidate set based on the best performed candidates.
ExAttack [Liu et al., 2022]: a text adversarial attacking
framework that exchanges the words based on their contri-
butions to a prompt being correctly and mistakenly classified.

For adapting LeapAttack and TextHoaxer from word-level
attack to character-level attack, we use CANINE [Clark et
al., 2022], a character-level transformer network, to gen-
erate character-level embeddings. Then LeapAttack and
TextHoaxer can be used for the character-level attacks.
We strictly follow the parameters and configurations of all
schemes as documented in their papers.

5.3 Evaluation Results
Prompt Adversarial Attacking Performance (Q1)
To answer Q1, we evaluate the generated adversarial prompts
by CharGrad and all compared baselines on both datasets.
In particular, we average the pixel-level differences (PLD)
between all adversarial prompts and the original prompts to
evaluate how imperceptible the adversarial prompts are. To
make a fair comparison, we follow [Ye et al., 2022a] to adopt
perturbation rate (Pert) as another evaluation metric that av-
erages the rate of perturbed characters to all characters within
the attacking terms. For the generated images, we calcu-
late the per-pixel attacking score (PPAS) across all images
to evaluate the attacking effect of different schemes. The
PPAS for each adversarial prompt is calculated based on the
corresponding Attscore divided by the pixel-level differences.
The evaluation results are shown in Table 1. We observe that
CharGrad significantly outperforms all compared baselines in
terms of Pert and PPAS on both datasets. The results demon-
strate the effectiveness of CharGrad on attacking different

Dataset COCO2017 Flickr30k

Metric PLD Pert PPAS (1e-3) PLD Pert PPAS (1e-3)

HumanTrial 523.35 0.788 0.182 455.41 0.824 0.239

LeapAttack 104.99 0.247 0.879 98.92 0.232 1.148

TextHoaxer 107.32 0.339 0.615 92.13 0.218 0.890

GreedyPert 53.29 0.617 0.372 44.78 0.552 0.399

GA-Attack 148.84 0.249 0.491 153.38 0.290 0.582

ExAttack 202.34 0.498 0.711 237.40 0.535 0.798

CharGrad 71.22 0.171 4.049 79.24 0.115 5.971

Table 1: Prompt Adversarial Attacking Performance

Figure 4: Visualization of Generated Images.

prompts in the character level by perturbing limited number
of characters, which is important for approaching the human
imperceptible perturbations. While the PLD of GreedyPert is
slightly lower than CharGrad because GreedyPert focuses on
human imperceptible perturbations. However, the PPAS and
Pert of GreedyPert are much worse than those of CharGrad,
which demonstrates the necessity of learning the optimal ad-
versarial characters from the character pool rather than only
relying on the human imperceptible characters.

We further demonstrate the attacking performance of Char-
Grad by visualizing a set of generated images by CharGrad
and LeapAttack (the best performed baseline in Table 1). We
show the visualization results in Figure 4. In particular, the
red words in the prompt column represent the attacking terms.
The green words represent one of the remaining subjects that
should be kept the same. Similarly, the red bounding boxes
in the LeapAttack column represent the unsuccessful attack-
ing on the target subjects, while the green bounding boxes
in the CharGrad column denote the successful preservation
of non-target visual subjects. We observe that CharGrad can
consistently generate adversarial prompts that maximize the
attacking capability on the target visual subjects while mini-
mizing the negative impact on non-target visual subjects. We
show more visualization examples in the Appendix.

Prompt Adversarial Attacking Efficiency (Q2)
To answer Q2, we evaluate the efficiency of CharGrad by
investigating the query number of each scheme to the tar-
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Dataset COCO2017 Flickr30k

Nre 0 1 2 3 0 1 2 3

LeapAttack 112 202 355 579 90 148 392 554

TextHoaxer 139 257 410 614 101 217 401 693

GA-Attack 640 702 759 905 589 742 870 993

CharGrad 92 114 157 220 84 121 185 243

Table 2: The number of queries to Text2Image when completing
attacks by applying the Redistributor Nre times

get Text2Image model. In particular, we select LeapAttack,
TextHoaxer and GA-Attack for comparison as they require
dynamical queries to the model to improve the adversarial
prompts. To make fair comparisons, we separately average
the query numbers based on the times of applying the Redis-
tributor module (Nre) and show the results in Table 2. We
observe that the query number of CharGrad is consistently
lower than other compared schemes on both datasets. We
also observe that the gap of the query number between Char-
Grad and other schemes becomes larger as Nre increases.
This is because the attack examiner with a higher Attscore
makes the character perturbation more challenging. The base-
lines thus require more trials as their perturbation direction is
sub-optimal due to the only usage of the pretrained character
embeddings. Therefore, the performance gain of CharGrad
can be attributed to the proxy representation of perturbation δ⃗
from the Estimator module that accurately estimates the per-
turbation directions for the prompts.

Hyper-parameter Sensitivity Study (Q3)
We study the hyper-parameter sensitivity of CharGrad by tun-
ing 1) the number of sampled characters (K) in Pc̈ from the
Estimator module, and 2) the number of times for applying
the Redistributor module (Nre). In particular, we vary K
from 2 to 6 and Nre from 0 to 3. We report the PPAS in
Figure 5. We firstly observe that CharGrad consistently out-
performs LeapAttack with all ranges of K and Nre, which
further demonstrate the effectiveness of CharGrad on gener-
ating high-quality adversarial prompts. We then observe that
the increase of K can improve the PPAS for both schemes
and the improvement on CharGrad is more significant. We
attribute it to our proxy perturbation representation δ⃗ that ac-
curately estimates the gradients of perturbation directions for
different prompts. Moreover, we observe that the increase of
Nre can boost the attacking performance of CharGrad while
having little effect on LeapAttack. This is because reaching a
high Attscore requires the scheme to identify the optimal per-
turbation direction for prompts with a faster gradient, which
is not achievable based on the character-level embeddings of
LeapAttack. Therefore, the generated prompts by LeapAt-
tack are positioned close to the decision boundary to satisfy
the examination and thus fall into a lower PPAS.

Ablation Study (Q4)
Finally, we perform a comprehensive ablation study to eval-
uate the contributions of important components in CharGrad.
We create variants of CharGrad by changing its key com-
ponents: 1) CharGrad-NoOrder: we remove the perturbed
character reordering process from the Initializer module and

Figure 5: Hyper-parameter Sensitivity Study of CharGrad

Dataset COCO2017 Flickr30k

Metric PLD Pert PPAS(1e-3) PLD Pert PPAS(1e-3)

CharGrad-NoOrder 122.58 0.298 2.905 109.23 0.271 4.062

CharGrad-Binary 75.40 0.188 3.769 81.24 0.133 5.290

CharGrad-Random 89.04 0.207 3.485 98.23 0.207 5.144

CharGrad 71.22 0.171 4.049 79.24 0.115 5.971

Table 3: Ablation Study

randomly push the original character back; 2) CharGrad-
Binary: we replace the weighted perturbation direction from
the Estimator module with the binary mean-pooling [Ye et
al., 2022a]; and 3) CharGrad-Random: we replace the pixel
re-distribution strategy from the Redistributor module with a
random re-distribution process regardless of their δ⃗ with the
original perturbed characters. The results are shown in Ta-
ble 3. We observe CharGrad outperforms other variants in
terms of all evaluation metrics. The results demonstrate the
importance and necessity of key components of CharGrad.

6 Conclusion
This paper presents a novel CharGrad framework to address
the controllable prompt adversarial attacking problem for
Text2Image models. CharGrad designs a perturbation rep-
resentation metric to quantitatively estimate the perturbation
directions between Unicode characters and an iterative attack
examiner updating strategy to generate adaptive attack exam-
inations for different prompts. Evaluation results on two cap-
tioning datasets demonstrate more accurate and efficient ad-
versarial attacking performance, and lower pixel-level pertur-
bations for attacking various prompts than state-of-the-arts.

Acknowledgements
This research is partially supported by the National Science
Foundation (NSF) under Grant No. 2202693.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

989



References
[Boucher et al., 2022] Nicholas Boucher, Ilia Shumailov,

Ross Anderson, and Nicolas Papernot. Bad characters:
Imperceptible nlp attacks. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 1987–2004. IEEE, 2022.

[Clark et al., 2022] Jonathan H Clark, Dan Garrette, Iulia
Turc, and John Wieting. Canine: Pre-training an effi-
cient tokenization-free encoder for language representa-
tion. Transactions of the Association for Computational
Linguistics, 10:73–91, 2022.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2018.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851,
2020.

[Jin et al., 2020] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and
Peter Szolovits. Is bert really robust? a strong baseline for
natural language attack on text classification and entail-
ment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 8018–8025, 2020.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, Lubomir Bourdev, Ross Girshick, James Hays,
Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollár. Microsoft coco: Common objects in context,
2014. cite arxiv:1405.0312.

[Liu et al., 2022] Huijun Liu, Jie Yu, Jun Ma, Shasha Li, Bin
Ji, Zibo Yi, Miaomiao Li, Long Peng, and Xiaodong Liu.
Textual adversarial attacks by exchanging text-self words.
International Journal of Intelligent Systems, 2022.

[Maheshwary et al., 2021] Rishabh Maheshwary, Saket Ma-
heshwary, and Vikram Pudi. Generating natural language
attacks in a hard label black box setting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
pages 13525–13533, 2021.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, et al. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, pages 8748–8763. PMLR, 2021.

[Ramesh et al., 2022] Aditya Ramesh, Prafulla Dhariwal,
Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 2022.

[Rando et al., 2022] Javier Rando, Daniel Paleka, David
Lindner, Lennard Heim, and Florian Tramèr. Red-
teaming the stable diffusion safety filter. arXiv preprint
arXiv:2210.04610, 2022.

[Ren et al., 2019] Shuhuai Ren, Yihe Deng, Kun He, and
Wanxiang Che. Generating natural language adversarial
examples through probability weighted word saliency. In

Proceedings of the 57th annual meeting of the association
for computational linguistics, pages 1085–1097, 2019.

[Rombach et al., 2022] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10684–10695, 2022.

[Struppek et al., 2022a] Lukas Struppek, Dominik Hinters-
dorf, and Kristian Kersting. The biased artist: Exploiting
cultural biases via homoglyphs in text-guided image gen-
eration models. arXiv preprint arXiv:2209.08891, 2022.

[Struppek et al., 2022b] Lukas Struppek, Dominik Hinters-
dorf, and Kristian Kersting. Rickrolling the artist: Inject-
ing invisible backdoors into text-guided image generation
models. arXiv preprint arXiv:2211.02408, 2022.

[Tian et al., 2023] Yijun Tian, Kaiwen Dong, Chunhui
Zhang, Chuxu Zhang, and Nitesh V Chawla. Heteroge-
neous graph masked autoencoders. In AAAI, 2023.

[Ye et al., 2022a] Muchao Ye, Jinghui Chen, Chenglin Miao,
Ting Wang, and Fenglong Ma. Leapattack: Hard-label
adversarial attack on text via gradient-based optimization.
In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 2307–
2315, 2022.

[Ye et al., 2022b] Muchao Ye, Chenglin Miao, Ting Wang,
and Fenglong Ma. Texthoaxer: Budgeted hard-label ad-
versarial attacks on text. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages 3877–
3884, 2022.

[Young et al., 2014] Peter Young, Alice Lai, Micah Hodosh,
and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference
over event descriptions. Transactions of the Association
for Computational Linguistics, 2:67–78, 2014.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

990


	Introduction
	Related Work
	Text Guided Image Generation
	Black-Box Adversarial Attacks to NLP Models 

	Problem Definition
	The Proposed CharGrad Approach
	The Initializer Module
	The Estimator Module
	The Redistributor Module

	Experimental Evaluation
	Dataset and Experiment Setup
	Baselines
	Evaluation Results
	Prompt Adversarial Attacking Performance (Q1)
	Prompt Adversarial Attacking Efficiency (Q2)
	Hyper-parameter Sensitivity Study (Q3)
	Ablation Study (Q4)


	Conclusion

