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Abstract

Weak feature representation problem has influ-
enced the performance of few-shot classification
task for a long time. To alleviate this problem,
recent researchers build connections between sup-
port and query instances through embedding patch
features to generate discriminative representations.
However, we observe that there exists semantic
mismatches (foreground/ background) among these
local patches, because the location and size of the
target object are not fixed. What is worse, these
mismatches result in unreliable similarity confi-
dences, and complex dense connection exacerbates
the problem. According to this, we propose a novel
Clustered-patch Element Connection (CEC) layer
to correct the mismatch problem. The CEC layer
leverages Patch Cluster and Element Connection
operations to collect and establish reliable connec-
tions with high similarity patch features, respec-
tively. Moreover, we propose a CECNet, includ-
ing CEC layer based attention module and dis-
tance metric. The former is utilized to generate a
more discriminative representation benefiting from
the global clustered-patch features, and the latter
is introduced to reliably measure the similarity be-
tween pair-features. Extensive experiments demon-
strate that our CECNet outperforms the state-of-
the-art methods on classification benchmark. Fur-
thermore, our CEC approach can be extended into
few-shot segmentation and detection tasks, which
achieves competitive performances.

1

In contrast to general deep learning task [Krizhevsky er al.,
20121, Few-Shot Learning (FSL) aims to learn a transferable
classifier with amount seen images (base class) and few la-
beled unseen images (novel class). Due to the lack of effec-
tive features from unseen classes, a robust feature embedding
model is indispensable. Recent researchers[Hou et al., 2019;
Rizve et al., 2021; Xu et al., 2021a] manage to design an em-
bedding network for generating more discriminative features.
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Figure 1: Comparison between traditional Cross Attention and
our Clustered-patch Element Connection. The proposed Clustered-
patch Element Connection, which utilizes the global info C? inte-
grated from support feature P to perform element connection with
query @ leading to a confident and clear connection, is able to gen-
erate a more clear and precise relation map than Cross Attention.
The detailed Patch Cluster operation is illustrated in Fig.2. The vi-
sualization comparisons are referred to Fig.4(a).

Specifically, cross attention based methods [Hou et al.,
2019; Xu et al., 2021a; Xu et al., 2021b] focus on reduc-
ing the background noise and highlighting the target region to
generate more discriminative representations. The core idea
of these methods is to divide extracted features into patches
and connect all local patch features. However, as shown in
Fig.1, we observe that the target object may be located ran-
domly with different scales among the query images. Hence,
these methods suffer two main problems: inconsistent seman-
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tic in feature space, and unreliable and redundant connec-
tions. To tackle these problems, we propose a Clustered-patch
Element Connection (CEC) layer which consists of Patch
Cluster and Element Connection operations. In detail, given
inputs features P (support) and @ (query), CEC layer firstly
obtains the global clustered-patch CP features by Patch Clus-
ter operation as illustrated in Fig.2, then performs Element
Connection on @) by using C?, and finally produces a more
discriminative representation (). Patch Cluster aims to collect
the objects in source feature P that are similar to the reference
patch in @, which adaptively alignments the P into C'*’ to ob-
tain a consistent semantic feature for each patch of Q). Then,
with the global clustered-patch features, CEC layer generates
more reliable and concise connections than cross attention.

According to CEC layer, we find the key of generating ac-
curate relation map is to obtain appropriate clustered-patch
features. In this paper, four solutions are introduced to per-
form Patch Cluster, including MatMul, Cosine, GCN and
Transformer. Different from the naive MatMul and Cosine
modes, we propose the meta-GCN and Transformer based
Patch Cluster operations to obtain a more robust clustered-
patch by implementing additional feature refinement. The
insight of meta-GCN is constructing a dynamic correlation-
based adjacent for each current input pair-features, other than
the static GCN [Kipf and Welling, 2017] using a fixed ad-
jacent. Besides, the transformer structure obtains global in-
formation via modeling a spatio-temporal correlation among
instances, which generates a more accurate relation map.

Along with the description of CEC mechanism, we propose
three CEC-based modules: (I) The Clustered-patch Element
Connection Module (CECM) distinguishes the background
and the object for each image pair (support and query) at the
feature level adaptively, which gives a more precise highlights
at the regions of target object; (II) The Self-CECM enhances
the semantic feature of target object in a self-attention manner
to make the representation more robust; (III) The Clustered-
patch Element Connection Distance (CECD) is a CEC-based
distance metric which measures the similarity between pair-
features via the obtained reliable relation map.

For few-shot classification task, we introduce a novel
Clustered-patch Element Connection Network (CECNet) as
illustrated in Fig.3, which learns a generalize-well embed-
ding benefiting from auxiliary tasks, generates a discrimi-
native representation via CECM and Self-CECM, and mea-
sures a reliable similarity map via CECD. Furthermore, we
derive a novel CEC-based embedding module named CEC
Embedding (CECE), which can be applied into few-shot se-
mantic segmentation (FSSS) and few-shot object detection
(FSOD) tasks. We simply stack the proposed CECE after the
backbone network of the existing FSSS and FSOD methods,
which achieves consistent improvements around 1% — 3%.

To summarize, our main contributions are:

e We propose a Clustered-patch Element Connection
(CEC) layer to strengthen the target regions of query features
by element-wisely connecting them with the global clustered-
patch features. Four different CEC modes are introduced, in-
cluding MatMul, Cosine, GCN and Transformer.

e We derive three CEC-based modules: CECM and Self-
CECM modules are utilized to produce more discriminative
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representations, and CECD is able to measure a reliable sim-
ilarity map.

e With CEC-based modules and auxiliary tasks, a novel
CECNet model is designed for few-shot classification. CEC-
Net improves state-of-the-arts on few-shot classification
benchmark, and the experiments demonstrate that our method
is effective in FSL.

e Furthermore, our CECE (i.e. CEC-based embedding
module) can be extended into few-shot segmentation and
detection tasks, which achieves performance improvements
around 1% — 3% on the corresponding benchmarks.

2 Related Work

Few-Shot Learning The FSL algorithms aim to recognize
novel categories with few labeled images, and a category-
disjoint base set with abundant images is provided for pre-
training. The classic FSL tasks include few-shot classifica-
tion [Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017,
Hou er al., 2019; Tian et al., 2020], semantic segmentation
[Zhang et al., 2020b; Siam er al., 2019; Malik et al., 2021]
and object detection [Kang er al., 2019; Wang er al., 2020;
Qiao et al., 2021]. More introductions are presented in AP-
PENDIX. In a word, the existing FSL methods lack a uni-
form function to control the connections among the patches
between support and query instances semantically.

Other Related Works are introduced in APPENDIX, such
as Auxiliary Task for FSL [Hou er al., 2019; Rizve et al.,
2021], Graph Convolutional Network (GCN) [Bruna er al.,
2013], and Transformer [Vaswani et al., 2017].

3 Problem Definition

3.1 Few-Shot Classification

A classic few-shot classification problem is specified as a
N-way K-shot task, which means solving a N-class clas-
sification problem with only K labeled instances provided
per class. In the recent investigations[Hou et al., 2019;
Snell et al., 20171, the source dataset is divided into three
category-disjoint parts: training set Xy4in, validation set
Xyar and test set Xyeq:. Moreover, the episodic training
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mechanism is widely adopted. An episode consists of two
sets (randomly sampling in N categories): support and query.
Let S = {(zf,y7)};=; (ns = N x K) denote the support
set, and Q = {(z¢,y)};%, denote the query set. Note that
ns and n, are the size of corresponding sets. Especially,
S = {S8',8?%,...,S%}, where S* denotes the support set of
the k*" category in S. Specifically, let (P, Q) € R""X¢ de-
note the support and query features, which are extracted from
support subset and query instance (S*, 7). Note that ¢, h, w
are channel number, height, width of features, respectively.

3.2 Cross Attention

The traditional Cross Attention [Hou er al., 2019] proves that
highlighting target regions could generate more discrimina-
tive representations, leading to accuracy improvements for
FSL. The key is to generate an fine-grained relation map
R® € RM to represent the target regions in Q € RMw>e,
Then, a spatial-wise feature attention can be obtained through
R & Q, where © is the Element-wise Product. The tradi-
tional Cross Attention produces relation map R? for @ by:

RQ‘h< (|g|z)T>’

where h is a CNN-based layer to refine the correlation ma-

trix ﬁ(ﬁf € Rwxhw - According to Eq.1, the Cross

Attention produces relation map by Local-to-Local fully con-
nection among local feature patches of P and (). In detail,
(P;,Qj) € RY¥€ represent a pair of support feature patch and
query feature patch among (P, Q) € R"*¢ . As shown in
Fig.1, the target object may be located unregularly among the
query images at different scale, which results in inconsistent
semantic in feature space, i.e feature patches P; and ); may
be semantically inconsistent. This semantically inconsistent
problem causes low confident correlation between patches,
and the complex Local-to-Local fully connection further ac-
cumulates this inaccurate bias, which affect the quality of the
generated relation map.

To establish concise and clear connections among global
and local features, we propose a Clustered-patch Element
Connection layer (CEC), which consists of two key opera-
tions: Patch Cluster and Element Connection.

P
I1P]]2

ey

4 Clustered-patch Element Connection
4.1 Patch Cluster

As illustrated in Fig.2, Patch Cluster operation obtains a set
C?, named Clustered-patch, via collecting those objects in
support feature set P, which are similar to the reference patch
in (). We define a generic Patch Cluster operation fp¢ as:

Here P is the input source feature, () is the input reference
feature, and C? € R"’*¢ is the output Clustered-patch. A
pairwise function g computes an affinity matrix representing
relationship between () and P. The clustered patches can be
refined by function ¢. In detail, we divide the source image
into w x h patches. Here, w and h are the same as the size
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of the features in P, which is convenient for element con-
nection operation. A Clustered-patch CP? € R"**¢ collects
w X h clusters. Each cluster collects the patch-features in
P =[Py, Py, ..., Py] € R?X¢ that are similar to the corre-
sponding patch-feature in the reference patch-features in Q.
Therefore, C? is semantically similar to Q).

To implement the Patch Cluster operation, we give four
solutions including MatMul, Cosine, GCN and Transformer.

MatMul A simplest way to obtain the clustered patches
is treating MatMul operation as the pairwise function g (in
Eq.(2)) and not implementing any further embedding refine-
ment. Formally,

o (QPT) P, 3)

where o is softmax function.

Cosine A simple extension of the MatMul version is to
compute cosine similarity in feature space. Formally,

== (77)

C? =0 P
<|Q||2

GCN GCN [Kipf and Welling, 2017] updates the input
features P via utilizing a pre-defined adjacent matrix A €
RMXPw and a learnable weight matrix W € R¢*¢. For-
mally, the updated features GP € R"™*¢ can be expressed
as: GP = §(APW), where §(-) is the nonlinear activation
function (Sigmoid(-) or ReLU(-)). However, the adjacent
matrix A used in GCN is fixed for all inputs after training,
which is not able to recognize the new categories in few-shot
task. Comparing Eq.(2) and the definition of GCN, we ob-
serve that the affinity matrix g (Q, P) can be considered as
the adjacent matrix A, because they all try to describe the
relationship between features P and (). Hence, we derive a
meta-GCN through replacing the static adjacent matrix with
the dynamic affinity matrix. Formally, the meta-GCN based
Patch Cluster operation is derived as follows:

oo o (7).
CP=f|o| PW|.
{ <|Q|2

Transformer The Transformer[Vaswani ez al., 2017] based
Patch Cluster operation is defined as follows:

P
1P|z

@

P

IEE ®

CP? = FFN{o[(W,Q)(WyP")|W, P}, (6)

where, F'F'N is the Feed-Forward Network in transformer,
Wy, Wi, W, are learnable weights (e.g. convolution layers).

4.2 Element Connection

According to the global semantic features C? obtained from
Patch Cluster operation, element Connection operation gen-

erates the relation map R® for ) by simply computing the
patch-wise cosine similarity between Q and C?. Finally, we
obtain a rectified discriminative representation by the Ele-
ment Connection operation frc:

Q=Iee(@.C") = (o (B?) +1) 0@,

Q cr ) e
€ R"™,
IQllz ~ [IC7||2

where, ® is Patch-wise Dot Product, ® is Element-wise Prod-
uct. The n'" position of R is RY = where -

@)

where, R = ( ®

_Qn . _Cn
[Qnll2  TICRII2”
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is Dot Product. The visualizations of the CEC-based relation
map R are shown at the last column in Fig.4(b). Overall,
the Clustered-patch Element Connection (CEC) layer is able
to highlight the regions of () that are semantically similar to
P. Formally, CEC layer fopc is expressed as:

Q = ferc(Q, P) = fec (Q, frc(Q, P)). ®)

4.3 Discussion

Compared with traditional Cross Attention, the key point of
our Clustered-patch Element Connection is to perform the
Global-to-Local element connection between the Clustered-
patch CP (global) and query () (local). It is able to generate
a more clear and precise relation map, as shown in Fig. 4(a)
visualizations. As demonstrated in Tab. 2, our CEC-based
approach achieves 4% accuracy improvement than the tradi-
tional Cross Attention based CAN [Hou et al., 2019].
Generally, the advantages of our Clustered-patch Element
Connection are: (I) The relation map generated by Element
Connection is more confident than Cross Attention, because
the global Clustered-patch feature C? is more stable and rep-
resentative than the local feature P. (II) Element Connection
(1-to-1 patch-connection) has more clear connection relation-
ship than Cross Attention (1-to-hw patch-connection).
Moreover, the respective advantages of different solutions
for realizing Patch Cluster are: (I) These four solutions can be
divided into two groups: fixed (i.e. MatMul and Cosine) and
learnable (i.e. GCN and Transformer) solutions. The fixed
solutions can be used to perform patch clustering without ad-
ditional learnable parameters, while the learnable solutions
are data-driven to refine the affinity matrix or clustered-patch.
(IT) According to experimental results in Tab. 2, the learnable
solutions are better than the fixed ones when they are applied
as a embedding layer for feature enhancing (i.e. CECM de-
fined in Eq. 9), which indicates that the learnable solutions
can generate better embedding features. In contrast, accord-
ing to Tab. 3, the fixed solutions are better than the learnable
ones when they are applied as the distance metric for measur-
ing similarity (i.e. CECD defined in Eq. 11), which indicates
fixed solutions can obtain more reliable similarity scores.

5 CEC Network for Few-Shot Classification
5.1 CEC Module and Self-CEC Module

According to the CEC layer mentioned above, we propose
two derivative modules: the CEC Module (CECM) and the
Self-CEC Module (self-CECM). The CECM is able to high-
light the mutual similar regions via learning the semantic rele-
vance between pair feature. Specifically, CECM transfers the
input pair-features (P, Q) € R"™*¢ into more discrimina-
tive representations (P, Q) € R"™*¢, Formally, its function
foecnm 1s expressed as:

(Q,P) = fepem(Q, P),
Q= fepc(Q,P), P= fopc(P,Q).

The Self-CECM enhances the semantic feature of tar-
get object via self-connection, which turns the input @ into

€))

where,
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Q € R ¢, Formally, Self-CECM function fscpc s is ex-
pressed as:

Q = fscpem(Q) = ferc(Q,Q). (10)
The CECM exploit the relation between P and Q via Q =
fcec(Q, P), while Self-CECM exploit the relation between
the input itself via Q = fopc(Q,Q), ie. Self-CECM ex-
plores the relation between the patches of input image. Be-
cause we assume that patch-features of the target are mutually
similar, Self-CECM can enhance the target region by cluster-
ing the similar regions.

5.2 CECNet Framework

Then, we give the overall Clustered-patch Element Con-
nection Network (CECNet). The framework is shown in
Fig.3, which integrates CECM, Metric Classifier and Fine-
tune Classifier for few-shot classification task, and Rotation
Classifier and Global Classifier for the auxiliary tasks. The
network involves three stages: Base Training, Novel Fine-
tuning and Novel Inference.

Base Training As illustrated in Fig.3, every image z? in
query set @ = {(zf,yJ)};2, is rotated with [0°, 90°, 180°,
270°] and outputs a rotated Q = {(z7, 7)}7*7*. The sup-
port subset S* and the rotated query instance Z¢ are processed
by the embedding fy and produces the prototype feature
Pk = ﬁ foesk fo(x?) and query feature @ = fp(29) €
Rexhxw respectively. Then each pair-features (P, Q) are
processed via CECM to enhance the mutually similar regions
and generates more discriminative features (]5’C s Qk) for the
subsequent classification. Note that the inputs and outputs of
CECM will be reshaped to satisfied its format. Finally, CEC-
Net is optimized via multi-task loss contributing from metric
classifier and auxiliary tasks.

Novel Fine-tuning The Fine-tune Classifier consists of Self-
CECM and a linear layer as shown in Fig.3. In fine-tuning
phase, the pre-trained embedding fy is frozen, and the Fine-
tune Classifier is optimized with cross-entropy loss.

Novel Inference In inductive inference, the overall predic-
tion of CECNetis Y = Y + Y, where Y, and Y are the
results of Metric and Fine-tune Classifiers respectively.

5.3 Metric Classifier

As illustrated in Eq. 7, the proposed CEC layer is able to gen-
erate a reliable relation map R?. The relation map R® can

also be utilized as a similarity map, and the mean of R is
the similarity score. Therefore, we obtain the CECD distance
metric dopop which is expressed as:

) c Rhw

9
Q2

With the proposed CECD distance metric, the Metric Clas-
sifier make predictions by measuring the similarity between
the query and the N support classes. Following [Hou et al.,
2019], the patch-wise classification strategy is used to pro-
duce precise feature representations. In detail, each patch-
wise feature QF at n'" spatial position of Q*, is recognized
as N classes. And the probability of predicting QX as k'"

cP

derop(Q,P) = ( ol

an
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Figure 3: The proposed CECNet framework. The CECM is able to highlight the mutually similar regions, the CECD is utilized to measure
similarity of pair-features. And Self-CECM enhances the semantic feature of target object via self-connection.

class is:
i/(y _ k|Qk) — L(Rﬁ)
vazl exp (R%) (12)
where, R*=dcpcp(QF, P*) e R™,

where, the similarity map R* is obtained by the CECD dis-
tance metric formulated in Eq. 11, and the similarity score
REF is the n" position of R*.

5.4 Fine-tune Classifier

The Fine-tune Classifier consists of Self-CECM and a linear
layer. It predicts the query feature () into N categories by a
linear layer W . And its loss is computed as:

Lr = PCE (WF(Q), fo)

Mg hXw

_ Z Z Nlog (O’ (WF(én)z)) )

i=1 n=1

13)

where, PCE is patch-wise cross-entropy, and N/ is the
ground truth of ¥ with N categories of few-shot task.

5.5 Objective functions in Base Training

Metric Loss The metric classification loss with the ground-
truth few-shot label 49 is:

ng hXw

Lar==3"3 log¥(y = 51(Qn).).

i=1 n=1

14)

Auxiliary Loss The loss of Global Classifier is Lg
PCE(Wq(Q), D7), where D! is the global category of
z] with D classes of train set, and W is a fully-
connected layer. Similarly, the loss of Rotation Classifier is

Lr = PCE(Wg(Q), B?), where B is the rotation category
of z! with four classes, and W, is a fully-connected layer.
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Multi-Task Loss Then, inspired by [Jinxiang and Sigian,
2022], the overall loss is defined as:

1 1
L= §LM + _Z: (()\ +w;) L+ logm) s (15)
j=G,R
where w = 51> and o is a learnable variable. The hyper-
parameter A is utilized to balance the few-shot and auxiliary
tasks, of which the influence is studied in Tab. 4.

6 Experiments on Few-Shot Classification

Datasets The two popular FSL classification benchmark
datasets are minilmageNet and fieredlmageNet, where de-
tailed introductions are presented in APPENDIX.

Experimental Setup We report the mean accuracy by test-
ing 2000 episodes randomly sampled from meta-test set. Ac-
cording to Tab. 4, the hyperparameter A is set to 1.0 and 2.0
for ResNet-12 and WRN-28, respectively. Other implemen-
tation details can be found in our public code.

6.1 Comparison with State-of-the-arts

As shown in Tab.1, we compare with the state-of-the-art few-
shot methods on minilmageNet and tieredImageNet datasets.
It shows that our CECNet outperforms the existing SOTAs,
which demonstrates the effectiveness and strength of our
CEC based methods. Different from existing metric-based
methods [Zhang er al., 2020a; Yang ef al., 2022; Jiangtao
et al., 2022] extracting support and query features indepen-
dently, our CECNet enhances the semantic feature regions of
mutually similar objects and obtains more discriminative rep-
resentations. Comparing to the metric-based Meta-DeepBDC
[Jiangtao er al., 2022], CECNet achieves 1.98% higher accu-
racy on 1-shot. Some metric-based methods [Xu ez al., 2021a;
Hou et al., 2019] apply cross attention, while our CECNet
still surpasses DANet [Xu et al., 2021a] with an accuracy
improvement up to 2.36% under WRN-28 backbone, which
demonstrates the strength of our Clustered-patch Element
Connection.
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minilmageNet tieredlmageNet
Model Backbone 1-shot 5-shot 1-shot 5-shot
ProtoNet [Snell et al., 2017] Conv4 49.42 £0.78 68.20 £ 0.66 | 53.31 £ 0.89 72.69 +£0.74
"Our CECNet | Conv4 ~ | 54.45 £0.47 70.57 +0.38 | 56.59 & 0.50 72.86 + 0.42
CAN [Hou et al., 2019] ResNet-12 | 63.85 £ 0.48 79.44 +0.34 | 69.89 £ 0.51 84.23 +£0.37
DeepEMD [Zhang et al., 2020a] ResNet-12 | 6591 £0.82 82.41 £0.56 | 71.16 £ 0.87 86.03 + 0.58
IENet [Rizve et al., 2021] ResNet-12 | 66.82 +0.80 84.35 £0.51 | 71.87 £0.89 86.82 +0.58
DANet [Xu et al., 2021al ResNet-12 | 67.76 £ 0.46 82.71 +£0.31 | 71.89 £0.52 85.96 £+ 0.35
MCL [Yang et al., 2022] ResNet-12 | 67.36 = 0.20 83.63 £0.20 | 71.76 £0.20 86.01 &+ 0.20
Meta-DeepBDC [Jiangtao et al., 2022] | ResNet-12 | 67.34 + 043 84.46 +£0.28 | 72.34 + 0.49 87.31 +0.32
"Our CECNet |1 ResNet-12 | 69.32 = 0.46 84.65 + 0.32 | 73.14 £ 0.50 86.88 = 0.36
PSST [Zhengyu et al., 2021] WRN-28 | 64.16 + 0.44 80.64 £ 0.32 - -
DANet [Xu et al., 2021al WRN-28 | 67.84 £0.46 82.74 £0.31 | 72.18 £ 0.52 86.26 + 0.35
"OurCECNet | WRN-28 | 70.20 - 0.46 85.00 & 0.30 | 73.84 + 0.50 87.36 + 0.34

Table 1: Comparing to existing approaches on 5-way FSL classification task on minilmageNet and tieredlmageNet. Our CECNet adopts the
proposed CECM(T) attention module, CECD(C) distance metric, and Self-CECM.

Model Attention | Distance Param minilmageNet Model Attention | Distance Param minilmageNet
Module | Metric I-shot 5-shot Module Metric 1-shot 5-shot
ProtoG - . 7.75M | 61.87 78.87 ProtoG - cosine 7.75M | 61.87 78.87
CAN | CAM | ™€ | 775M | 63.85 7944  ~~ " 7777 [ CECD(M) | 7.75M | 67.50 ~ 82.00
CECM(M) 7.75M | 67.69 §81.84 CECNet ) CECD(C) | 7.75M | 67.89 82.02
CECNet CECM(C) cosine 7.775M | 67.65 81.79 CECD(G) | 8.00M | 67.79 81.74
CECM(G) 8.00M | 67.80 82.15 CECD(T) | 10.25M | 67.44 81.17
CECM(T) 10.25M | 67.91 82.40 CECD(M) | 10.25M | 67.64 81.24
CECD(C) | 10.25M | 68.27 82.59
Table 2: The 5-way classification results studying the influence of CECNet | CECM(T) CECDEG% 11.25M | 66.52 78.55
CECM with ResNet-12. In line with the setting of CAN, cosine CECD(T) | 12.75M | 64.37 78.32

distance metric is applied, and Rotation and Fine-tune classifica-
tions are not applied. The CECM(M/C/G/T) denote different modes
of Patch Cluster such as MatMul, Cosine, GCN and Transformer.
Based on ProtoNet, ProtoG adds auxiliary global classification task.

6.2 Ablation Study

Influence of CECM As shown in Tab.2, comparing CEC-
Net to ProtoG, it shows consistent improvements on 1/5-shot
classifications, because our CECM enhances the mutually
similar regions and produces more discriminative represen-
tations. Comparing with CAN adopting cross attention mod-
ule CAM, our CECNet achieves obvious improvements up to
4.06% on 1-shot task. The results of CECM(M), CECM(C),
CECM(G) and CECM(T) show that CECM is not sensitive to
alternative modes such as MatMul, Cosine, GCN and Trans-
former, which indicates the generic Patch Cluster behavior is
the key insight for the improvements.

Influence of CECD As shown in Tab.3 without attention
module, comparing CECNet to ProtoG, it shows consistent
improvements, because our CECD distance metric can obtain
a more reliable similarity map. Besides, the results show that
the best combination is CECM(T) + CECD(C).

Influence of Multi-Task Loss In Tab.4 with the integration
of auxiliary tasks, our CECNet obtains large improvements,
which indicates that learning a good embedding is helpful.

Influence of CECM+CECD As shown in Tab.5, compar-
ing to ProtoG (no-attention + cosine), our methods adopt-
ing CECM(T) + cosine and no-attention + CECD(C) achieve
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Table 3: The 5-way classification results studying the influence of
CECD with ResNet-12. The setting is consistent with Tab.2, except
for distance metric. The CECD(M/C/G/T) denote different modes
such as MatMul, Cosine, GCN and Transformer.

CAN  CECNet

t Query Embedding

PP

Support  Query

L A
* | e

Figure 4: (a) The class activation maps on 5-way 1-shot classifica-
tion, where Embedding belongs to CECNet. (b) The visualizations
of our CEC-based relation map R<.

obvious improvements, which demonstrates the effective-
ness of the proposed CECM and CECD. The combination of
CECM(T) + CECD(C) obtains further performance gains.

Influence of Self-CECM  As illustrated in Tab.6, the base-
line is the Metric Classifier of CECNet, and the competitor
is Fine-tune Classifier with only Linear layer. By comparing
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A\ Loss weights ResNet-12 WRN-28 Metric |Fine-tune Classifier minilmageNet
Metric Global Rotation| 1-shot 5-shot|1-shot 5-shot classifier | Self-CECM Linear 1-shot 5-shot

- 0.5 - - 62.45 79.50|61.98 76.64 v - - 70.20 £ 0.46 84.59 + 0.30

- 0.5 - 1.0 65.54 79.55|63.47 77.62 - - v 169.20 £ 0.47 84.40 £+ 0.30

- 0.5 1.0 - 68.27 82.59|67.13 81.95 - v v’ 169.36 & 0.46 84.78 + 0.30

- 0.5 1.0 1.0 68.86 83.67 | 69.49 83.71 v v v 170.20 £ 0.46 85.00 + 0.30
0.5 0.5 wa WR 69.05 83.86|69.33 83.55

1.0/ 05 we wp 69.32 84.21169.66 84.09 Table 6: The 5-way results of CECNet studying the influence of
151 05 we Wg 69.15 84.03 | 69.86 84.30 Self-CECM, under WRN-28 applying multi-task loss with A = 2.0.
2.0 0.5 wa WR 69.18 83.29|70.20 84.59

Table 4: The 5-way classification results on minilmageNet studying
the influence of multi-task loss applied in CECNet.

Attention | Distance minilmageNet

Param

Module

Metric

1-shot

5-shot

7.715M
10.25M
7.75M
10.25M

65.59 £ 0.47 80.94 £ 0.33
68.27 £ 0.46 83.43 £0.32
68.79 £ 0.46 83.39 £ 0.32
69.32 + 0.46 84.21 £ 0.32

cosine

cosine
CECD(C)
CECD(C)

CECi\/I(T)

CECi\/[(T)

Table 5: The 5-way results studying the influence of CECM+CECD,
under ResNet-12 applying multi-task loss with A = 1.0.

Self-CECM-+Linear to Linear, it shows consistent improve-
ments, which demonstrates the usefulness of Self-CECM. By
comparing Metric+Fine-tune to Metric Classifier, it shows an
improvement on 5-shot classification.

6.3 Visualization Analysis

Fig.4(a) shows the class activation maps [Bolei et al., 2016]
of our CECNet and CAN [Hou et al., 2019]. Comparing
CECNet to its Embedding, CECNet can highlight the target
object which is unseen in the pre-training stage. Comparing
to CAN, CECNet is more accurate and has larger receptive
fields. The essential is that our Clustered-patch Element Con-
nection utilizes the global info to implement element connec-
tion leading to a more confident correlation and a more clear
connection. Fig.4(b) shows the visualizations of the CEC-
based relation map R® generated by CECNet via Eq.7. Our
CEC approach produces a high-quality relation map with a
more complete region for the target.

7 Applications on FSSS and FSOD Tasks

In this section, we first introduce a novel CEC-based embed-
ding module named CEC Embedding (CECE). Then, we ex-
tend the proposed CECE into few-shot semantic segmenta-
tion (FSSS) and object detection (FSOD) tasks. The exper-
imental results in Tab.7 and Tab.8 show that our CECE can
achieve performance improvements around 1% — 3%, and
more extensive results are presented in APPENDIX.

CEC Embedding fcgpcp is expressed as:
Q' = force(Q) = forc(Q, WE). (16)

where, {Q,Q'} € R"*¢ are the input and output features
respectively, and Wy € R"<*¢ are learnable weights (py-
torch code is Wg = nn.Embedding(n.,c), and n. repre-
sents the number of semantic groups, and the empirical set-
ting is n. = 5). The proposed CECE can enhance the target

Model PASCAL-5* | COCO-20*
1-shot 5-shot|1-shot 5-shot
PPNet [Liu et al., 2020] 51.5 620 | 257 36.2
RePRI [Malik et al., 2021]1| 59.3 64.8 | 36.6 452
RePRI+CECE(M) 604 66.5 | 38.3 46.9
RePRI+CECE(T) 60.5 662 | 38.1 46.7

Table 7: Comparison on PASCAL-5* and COCO-20" few-shot se-
mantic segmentation benchmarks using mloU with ResNet-50. The
CECE(M/T) denote different modes of MatMul and Transformer.

Model PASCAL COCO
1-shot 5-shot|1-shot 5-shot
DeFRCN [Qiao et al., 20211| 52.5 60.7 | 6.5 15.3
MFDC [Wu et al., 2022] 56.1 622 | 10.8 164
MFDC+CECE(M) 594 634|115 17.2
MFDC+CECE(T) 587 649 | 112 169

Table 8: Comparison on PASCAL Novel Split 3 (nAP50) and COCO
(nmAP) few-shot object detection benchmarks with ResNet-101.

regions of input features that are semantically similar to W,
where W g contains the semantic information of base cate-
gories after trained on the base dataset.

CECE Applications As an embedding module, our CECE
can be stacked after the backbone network. To verify the ef-
fectiveness of the proposed CECE, we insert it into the FSSS
method RePRI [Malik et al., 2021] and FSOD method MFDC
[Wu et al., 2022], via stacking CECE after their backbones.
As illustrated in Tab.7 and Tab.8, our CECE can make con-
sistent improvements upon RePRI and MFDC methods.

8 Conclusion

We propose a novel Clustered-patch Element Connection
network (CECNet) for few-shot classification. Firstly, we
design a Clustered-patch Element Connection (CEC) layer,
which strengthens the target regions of query features by
element-wisely connecting them with the clustered-patch fea-
tures. Then three useful CEC-based modules are derived:
CECM and Self-CECM generate more discriminative fea-
tures, and CECD distance metric obtains a reliable similarity
map. Extensive experiments prove that our method is effec-
tive, and achieves the state-of-the-arts on few-shot classifica-
tion benchmark. Furthermore, our CEC approach can be ex-
tended into few-shot segmentation and detection tasks, which
achieves competitive improvements.
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