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Abstract
The sRGB white balance methods aim to correct
the nonlinear color cast of sRGB images without
accessing raw values. Although existing methods
have achieved increasingly better results, their gen-
eralization to sRGB images from multiple cameras
is still under explored. In this paper, we propose
the network named WBFlow that not only performs
superior white balance for sRGB images but also
generalizes well to multiple cameras. Specifically,
we take advantage of neural flow to ensure the re-
versibility of WBFlow, which enables lossless ren-
dering of color cast sRGB images back to pseudo
raw features for linear white balancing and thus
achieves superior performance. Furthermore, in-
spired by camera transformation approaches, we
have designed a camera transformation (CT) in
pseudo raw feature space to generalize WBFlow
for different cameras via few shot learning. By
utilizing a few sRGB images from an untrained
camera, our WBFlow can perform well on this
camera by learning the camera specific parameters
of CT. Extensive experiments show that WBFlow
achieves superior camera generalization and accu-
racy on three public datasets as well as our rendered
multiple camera sRGB dataset. Our code is avail-
able at https://github.com/ChunxiaoLe/WBFlow.

1 Introduction
The color cast in sRGB images is caused by improper color
temperature settings in the white balance (WB) module and
then exacerbated by non-linear color renderings in image sig-
nal processor (ISP) [Afifi et al., 2019a]. The sRGB White
balance (sRGB-WB) methods aim to correct such color cast
without accessing raw values. It is an emerging direction
and has an essential impact on some high-level computer vi-
sion tasks, such as object recognition and image segmentation
[Afifi and Brown, 2019].

To perform accurate sRGB-WB, an ideal way is to reverse
color-cast sRGB images to unprocessed raw values for linear
correcting and then re-render them to obtain white-balanced
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Figure 1: Existing sRGB-WB methods are not effective in general-
izing well to multiple cameras: KNN-WB [Afifi et al., 2019a] has
a negative WB performance on the untrained camera, as in obvious
greenish output in the second row of (b). Although Deep WB [Afifi
and Brown, 2020a] suppresses this color bias, it performs worse on
the trained camera, as in the output with dark colors in the first row
of (c). Comparatively, our WBFlow shows superior performance on
both trained and untrained cameras. As shown in (d), it generates
the outputs with similar color histograms to GTs in (e).

sRGB images [Afifi and Brown, 2020a]. However, this pro-
cess is challenging for sRGB-WB methods because the es-
sential reversibility is difficult to achieve without raw val-
ues [Chakrabarti et al., 2014]. In fact, instead of the ideal
WB process, recent sRGB-WB methods [Afifi et al., 2019a;
Afifi et al., 2019b; Afifi and Brown, 2020b] directly utilize
irreversible polynomial kernel functions [Hong et al., 2001]
to train the mappings between color-cast sRGB images and
ground truths (GTs). These trained mappings are not ap-
propriate on untrained cameras due to the inherent color dif-
ferences among sRGB images from different cameras [Afifi,
2021]. This seriously limits cross-camera generalization in
real-world applications. In Figure 1(b), the representative
sRGB-WB method, KNN-WB [Afifi et al., 2019a], results
in a noticeable greenish cast on the untrained camera.

Few endeavors have been made to address this problem.
The only method, Deep WB [Afifi and Brown, 2020a], pro-
poses modeling the ideal WB process end-to-end via U-Net
[Ronneberger et al., 2015]. It further generalizes to differ-
ent cameras by jointly training multi-camera sRGB images.
However, due to the lossy structure of U-Net and the vanilla
training strategy, Deep WB becomes irreversible and sup-
presses camera specificity. Thus, in Figure 1(c), although
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Deep WB improves generalization to the untrained camera,
it has a degraded performance on the trained camera.

In this paper, we propose an sRGB-WB network called
WBFlow that achieves superior performance on both trained
and untrained cameras. Unlike existing irreversible sRGB-
WB methods, we take advantage of neural flows [Kingma
and Dhariwal, 2018] to enable the reversibility of WBFlow.
Specifically, we design Reversible Non-linear Rendering
Transformation (RNRT) that simulates ISP color renderings
by additive coupling layers [Kingma and Dhariwal, 2018].
Due to the inherent reversibility of additive coupling lay-
ers, RNRT can losslessly render color-cast sRGB images
back to their pseudo-raw features via forward propagation.
Then, to correct the color cast of pseudo-raw features, we
present Reversible Linear Correction Transformation (RLCT)
that simulates white balance and color transformation ma-
trices as reversible 1 × 1 convolutions [Kingma and Dhari-
wal, 2018]. RLCT helps RNRT lossless back-propagation
to generate white-balanced sRGB images by separating and
correcting the color information from pseudo-raw features.
Further, inspired by the fact that inter-camera transformation
can be achieved by learning the mapping between raw values
from different cameras [Banić et al., 2017], we generalize
WBFlow to multiple cameras via inserting a camera trans-
formation (CT) layer in pseudo-raw space. Specifically, by
utilizing a few sRGB images from an untrained camera, we
update the weightings of CT to enhance the camera speci-
ficity of pseudo-raw features, which cooperates with RNRT
and RLCT to generate white-balanced sRGB images. Our
contributions are as follows:

(1) We propose WBFlow that generalizes well to multiple
cameras via reversible neural flows and few-shot learning.

(2) We propose RNRT and RLCT to simulate nonlinear
color renderings and linear color transformations to enable
the reversibility of WBFlow.

(3) We propose CT that generalizes WBFlow to untrained
cameras by updating its weights via few-shot learning.

(4) Extensive experiments show that WBFlow achieves su-
perior multi-camera generalization on three public datasets
and our rendered multi-camera sRGB dataset.

2 Related Works
White Balance Methods for Raw Images. The white bal-
ance methods for raw images fall into computational color
constancy (CCC) research. Most CCC methods [Gijsenij and
Gevers, 2007; Foster, 2011; Hu et al., 2017; Lo et al., 2021;
Song et al., 2021; Xu et al., 2021; Tang et al., 2022;
Zhang et al., 2022] achieve the goal of correcting the color
cast in raw images by estimating illumination colors. They
make up the WB module of camera ISPs. However, none of
these methods can be applied to sRGB images [Afifi et al.,
2019a], since the linear color cast of raw images is broken
due to non-linear ISP renderings. Different from CCC meth-
ods, our WBFlow focuses on correcting the non-linear color
cast of sRGB images.

White Balance Methods for sRGB Images. Recent
sRGB-WB methods corrected the color cast in sRGB images
by optimizing non-linear mappings (exemplar-based method)

[Afifi et al., 2019a; Afifi et al., 2019b; Afifi and Brown,
2020b; Afifi and Brown, 2019; Afifi et al., 2020] or model-
ing ideal WB process (DNN-based method) [Afifi and Brown,
2020a]. In detail, exemplar-based methods combined trained
non-linear mappings to correct inputs. Since these mappings
are irreversible, the specificities of trained cameras are mixed
and applied to encode white-balanced sRGB images during
testing, making them biased towards trained cameras rather
than test ones. Inevitably, the performances of exemplar-
based methods are inferior on untrained cameras (Figure
1(b)). To solve this problem, the DNN-based method, Deep
WB, proposed rendering inputs back to pseudo-raw features
by U-Net encoder, then correcting pseudo-raw features and
re-rendering them to white-balanced sRGB images by U-Net
decoder. It also allowed WB manipulation in sRGB images
by setting two additional decoders to render inputs with 2850
Kelvin(K) and 7500K. However, due to lossy pooling lay-
ers, Deep WB is irreversible, making the content of pseudo-
raw features less complete than actual raw values and fur-
ther restricting WB accuracy. Further, the joint training strat-
egy suppressed the specificities of different cameras [Huang
et al., 2020], and hence together with irreversible structure,
limited the improvement of multi-camera generalization (Fig-
ure 1(c)). Our WBFlow belongs to DNN-based methods and
achieves superior generalization to multiple cameras via re-
versible neural flows and few-shot learning.

3 White Balance for sRGB Image via
Reversible Flows and Few-shot Learning

In this section, we introduce WBFlow that aims to achieve
superior generalization on multiple cameras. We start with
formulating the ideal WB process for sRGB images. Then,
we introduce details of WBFlow and how it generalizes to
multiple cameras via few-shot learning.

3.1 Ideal White Balance Process for sRGB Images
An sRGB image Inct that is captured by camera n and rendered
by color temperature ct can be formed as [Afifi et al., 2019a]:

Inct = fn(TnWctI
n
raw), (1)

where Inraw is a raw image from camera n, Wct is a WB mod-
ule with color temperature ct, Tn is a color transformation
matrix for camera n, fn(·) is a non-linear rendering function,
including color enhancement, tone manipulation, and gamma
encoding et al.. Corresponding correct sRGB image Inwb, i.e.
GT, is obtained by manually setting Wct according to ac-
tual illumination color. Here, we denote this ideal setting as
Wideal. Therefore, the relationship between Inwb and Inct can
be modeled as:

Inwb = fn(TnWidealW
−1
ct T−1

n f−1
n (Inct)). (2)

From Equation 2, the ideal WB process is reversible to ren-
der color-cast sRGB image toward its white-balanced version
while preserving complete content. Specifically, Inct is first
reversed back to its color-cast linear values via f−1

n (·); then,
Tn transforms color-cast linear values into raw values and
then WidealW

−1
ct white balance them; finally, fn(·) and Tn

render white-balanced raw values to obtain Inwb.
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Figure 2: Illustration of our WBFlow. We propose RNRT and RLCT to ensure the reversibility of WBFlow and thus improve WB accuracy.
CT is then applied in pseudo-raw space to generalize WBFlow for multiple cameras via few-shot learning.

As discussed in Section 1 and 2, existing sRGB-WB meth-
ods [Afifi et al., 2019a; Afifi et al., 2020; Afifi and Brown,
2020b; Afifi et al., 2021; Afifi and Brown, 2020a] are irre-
versible and thus fail to satisfy Equation 2, which limits their
generalization to multiple cameras. In this paper, we propose
an sRGB-WB network named WBFlow that satisfies the re-
versibility of Equation 2 and generalizes well to cameras via
few-shot learning. Details will be introduced as follows.

3.2 White Balance for sRGB Images via
Reversible Transformations

To achieve accurate white balance on multiple cameras, our
primary goal is to appropriately model the ideal WB process.
According to Equation 2, this process has two types of mod-
ules: nonlinear color rendering function (fn(·)) and linear
color transformations (Wct, Wideal, Tn). Deep WB [Afifi
and Brown, 2020a] models these two kinds of modules via
identical irreversible structures, which only improves multi-
camera generalization to some extent. To solve this problem,
different from Deep WB, we model two kinds of modules by
individual reversible functions:

Înwb = F−1(M(F(Inct))), (3)

where F(·) is a reversible non-linear function that losslessly
renders color-cast sRGB image Inct back to pseudo-raw fea-
tures, M(·) is a reversible linear function that corrects the
color cast of pseudo-raw features and preserves the content
information, F−1(·) is the inverse of F(·) that re-renders
white-balanced pseudo-raw features to corresponding sRGB
image Înwb. Theoretically, due to F(·) andM(·), Equation 3
satisfies the reversibility of Equation 2 to generate accurate
white-balanced sRGB images on different cameras. Follow-
ing are the implementation details.

Reversible Non-linear Rendering Transformation
As discussed, the reversible non-linear function F(·) aims to
obtain pseudo-raw features with lossless content. Deep WB

[Afifi and Brown, 2020a] cannot satisfy it because of lossy
pooling layers. Here, considering color renderings included
in F(·) are independent [Ramanath et al., 2005], we model
them by a sequence of reversible bijective sub-functions:
F = F1 ◦ F2 ◦ · · · ◦ FK . This way, the relationship between
color-cast sRGB image Inct and intermediate feature znct,k is:

Inct
F1←−→ znct,1

F2←−→ znct,2 · · ·
FK←−→ znct,K , (4)

where znct,K = znct is pseudo-raw feature.
In practice, we adopt additive coupling layers [Kingma

and Dhariwal, 2018] to model {Fk}, which are effective in
simulating nonlinear reversible transformations [Kingma and
Dhariwal, 2018; An et al., 2021]. In our WBFlow, the for-
ward computation of the additive coupling layer is:

zn,act,k, z
n,b
ct,k = Split(znct,k),

ẑn,act,k = Conv(zn,act,k) + zn,bct,k,

znct,k+1 = Concat(ẑn,act,k, z
n,b
ct,k),

(5)

where Split(·) splits znct,k into two parts along channel di-
mension to obtain zn,act,k and zn,bct,k. Conv(·) renders colors of
zn,act,k with 3 × 3 convolutions and relu functions. Concat(·)
concatenates ẑn,act,k and zn,bct,k to form rendered feature znct,k+1.
The reverse computation of the additive coupling layer is
easily derived from Equation 5. We can superimpose addi-
tive coupling layers to establish the reversible mapping be-
tween input color-cast sRGB image and pseudo-raw feature
as Equation 4. However, as in Equation 5, the additive cou-
pling layer leaves some channels of intermediate feature un-
changed due to Split(·). To solve this problem, following
[Kingma and Dhariwal, 2018], we use reversible 1×1 convo-
lution that integrates all channels by fixing the channel num-
bers of input and output as the same. We also adopt Actnorm
[Kingma and Dhariwal, 2018] to normalize features, an alter-
native to BatchNorm that accelerates the training times.
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Figure 3: Pseudo-raw features with lossless content in (c) is obtained
from color-cast input in (a) via forward RNRT. Restored input in (b)
is re-rendered from pseudo-raw features in (c) via reverse RNRT.
White-balanced pseudo-raw features in (f) are obtained by RLCT
and then re-rendered back to the white-balanced sRGB image in (e)
via reverse RNRT.

The proposed RNRT is shown in Figure 2, consisting of
additive coupling layers, reversible 1 × 1 convolutions, and
Actnorms. All components of RNRT are reversible, mak-
ing content lossless during in forward and backward propa-
gations. As shown in Figure 3(c), we can obtain pseudo-raw
features with lossless content from color-cast input in Figure
3(a) via forward RNRT. Simultaneously, in Figure 3(b), the
input can be restored accurately from pseudo-raw features in
Figure 3(c) via reverse RNRT.

Reversible Linear Correction Transformation
In Equation 2 and 3, the reversible linear function M(·) is
linear and reversible due to the WB module and color trans-
formation matrix. To properly implement it while preserv-
ing lossless content information, inspired by [Huang and
Belongie, 2017], we propose RLCT that separates color
and content information from pseudo-raw features and cor-
rects the color information by reversible 1 × 1 convolutions
[Kingma and Dhariwal, 2018]. The formation is:

znwb = Tσ(σz)(
znct − µz

σz
) + Tµ(µz), (6)

where channel mean and variance, µz and σz , represents the
color information of pseudo-raw feature znct,k [Stricker and
Orengo, 1995]. They also help to keep content information
by normalizing znct, i.e., (znct − µz)/σz . For individual color
information, we correct it by respectively forwarding µz and
σz into linear mappings Tσ(·) and Tµ(·), both of which con-
sist of three reversible 1×1 convolutions [Kingma and Dhari-
wal, 2018]. This way, in Figure 3(f), the pseudo-raw features
are white-balanced by re-scaling lossless content with learned
channel mean Tσ(σz) and variance Tµ(µz). Further, in Figure
3(e), the white-balanced sRGB image is successfully gener-
ated from white-balanced pseudo-raw features in Figure 3(f)
via reverse propagation of RNRT. It has an almost identical
color histogram as GT in Figure 3(d).

As introduced above, RNRT and RLCT are reversible and
thus cooperate to ensure complete reversibility, which satis-
fies the requirement of Equation 2. Thus, our WBFlow can
significantly improve the floor of WB accuracy on multiple
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Figure 4: Comparison between Deep WB and WBFlow: (a) multi-
camera training loss and (b) generalizations on a new camera (Pana-
sonicGX1) (n is the number of training cameras).

cameras. As shown in Figure 4(a), with the same multi-
camera training strategy of Deep WB, our WBFlow con-
verges with a much lower l1 loss on multiple cameras.

3.3 Camera Generalization via Few-shot Learning
According to Equation 2, the actual raw features should be
specific to various cameras. However, existing methods sup-
pressed such specificities due to combined trained mappings
[Afifi et al., 2019a; Afifi and Brown, 2020b] or joint multi-
camera training strategy [Afifi and Brown, 2020a]. Inevitably,
this will result in a limited multi-camera generalization. To
enhance the camera specificity of pseudo-raw feature, we in-
troduce few-shot learning into WBFlow, which is based on
the fact that inter-camera transformation can be achieved by
learning the mapping between raw color values from two
cameras [Gao et al., 2017]. In Figure 2, we set the camera
transformation named CT after RNRT. For camera n, Equa-
tion 6 can be re-written as:

ẑnwb = wn
cam ∗

{
Tσ(σz)(

znct − µz

σz
) + Tµ(µz)

}
, (7)

where ∗ is the group convolution operator, wn
cam is a set of

weights learned from the camera labels by two reversible
neural flow combinations. This strategy ensures that the
learned weights are unique to the different cameras. To adapt
WBFlow to camera n, we fix the pre-trained parameter of
RNRT, then train the new weights in Equation 7 by minimiz-
ing the l1 loss with a few samples. This way, the specificity of
pseudo-raw features to camera n is enhanced, thus improving
the generalization effect. In Figure 4(b), the ∆E2000 values
of WBFlow on the new camera, PanasonicGX1, are always
lower than these of Deep WB, regardless of the number of
training cameras. More details of few-shot learning settings
will be introduced in Section 4.

4 Experiments
In this section, we compare the effectiveness of WBFlow with
state-of-the-art sRGB-WB methods in terms of multi-camera
generalization, inference time, and few-shot learning. In ad-
dition, ablation experiments are designed to evaluate the ef-
fectiveness of each part in WBFlow.

4.1 Datasets
Public Datasets. Following [Afifi and Brown, 2020a], we
randomly selected 12000 sRGB images from the first fold of
Set1 [Afifi et al., 2019a; Cheng et al., 2014] to train WBFlow.
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∆E2000 ↓ Mean Angle Error (MAE) ↓Methods Mean Q1 Q2 Q3 Mean (°) Q1 (°) Q2 (°) Q3 (°)
Inference
Time (s) ↓

Set1–Test (trained cameras)

KNN-WB[Afifi et al., 2019a] 3.58 2.07 3.09 4.55 3.06 1.74 2.54 3.76 0.78
MixedWB[Afifi et al., 2021] 4.55 3.00 4.15 5.63 4.07 2.64 3.68 5.16 1.43
Deep WB[Afifi and Brown, 2020a] 3.77 2.16 3.30 4.86 3.12 1.88 2.70 3.84 1.10
Our WBFlow 3.13 1.92 2.79 3.94 2.67 1.73 2.39 3.24 1.09

Set2 (untrained cameras)

KNN-WB[Afifi et al., 2019a] 5.60 3.43 4.90 7.06 4.48 2.26 3.64 5.95 0.82
MixedWB[Afifi et al., 2021] 6.05 3.45 4.92 7.20 4.92 2.69 4.10 6.37 1.55
Deep WB[Afifi and Brown, 2020a] 4.90 3.13 4.35 6.08 3.75 2.02 3.08 4.72 1.09
Our WBFlow 4.64 3.16 4.07 5.56 3.51 1.93 2.92 4.47 1.08

Rendered Cube Dataset (untrained cameras)

KNN-WB[Afifi et al., 2019a] 5.68 3.22 4.61 6.70 4.12 1.96 3.17 5.04 0.81
MixedWB[Afifi et al., 2021] 5.03 2.07 3.12 7.19 4.20 1.39 2.18 5.54 1.52
Deep WB[Afifi and Brown, 2020a] 4.59 2.68 3.81 5.53 3.45 1.87 2.82 4.26 1.08
Our WBFlow 4.28 2.71 3.77 5.21 3.34 1.94 2.82 4.11 1.07

Table 1: Quantitative results of our WBFlow and state-of-the-art sRGB-WB methods on three public datasets. The top results are in bold.

We used the remaining two folds (Set1-Test), Set2 [Afifi et
al., 2019a] and rendered cube dataset [Afifi et al., 2019a;
Banić et al., 2017] for evaluation.
Rendered Multi-camera sRGB Dataset. We collected a
multi-camera sRGB dataset to evaluate the multi-camera gen-
eralization effect. Specifically, we selected and compiled
184 groups of raw images from the NUS dataset [Cheng et
al., 2014]. In each group, the raw images are consistent in
the scenes and different in the cameras: Canon1DsMkIII,
Canon600D, FujifilmXM1, NikonD5200, OlympusEPL6,
PanasonicGX1, SamsungNX2000, and SonyA57. To obtain
color-cast sRGB versions of these images, following [Afifi et
al., 2019a], we rendered them by Adobe Camera Raw with
five common color temperatures (2850 K, 3800 K, 5500 K,
6500 K, and 7500 K) and camera standard photo finishing.
We obtain GTs by manually selecting the correct color tem-
perature from the middle gray patches in the color checker
of each raw image. The rest of the operations remain un-
changed. Our multi-camera sRGB dataset contains 7360
sRGB images with 184 scenes, five color temperatures, and
eight cameras.

4.2 Implementation Details
Loss Function. Following [Afifi and Brown, 2020a], we
apply l1 loss to train WBFlow:

argmin
F,M

∑
ct

∑
n

∥∥F−1(M(F(Inct)))− Inwb

∥∥
1
. (8)

Training and Testing Detail. We implemented WBFlow
on Pytorch with CUDA support and used the Adam [Kingma
and Ba, 2014] with β1 = 0.9 and learning rate 10−4 to
optimize it. For the experiments with all training images,
we trained WBFlow for 340000 iterations with batch size 4.
While for few-shot experiments, we trained CT for 15000 it-
erations. We used color jittering, average blur, geometric ro-
tation, and flipping to augment data. During testing, follow-
ing [Afifi and Brown, 2020a], we resized all input images to

a maximum dimension of 656 pixels and set a color mapping
procedure to compute the final white-balanced sRGB images.

Error Metric. We used the same error metrics as existing
sRGB-WB methods [Afifi and Brown, 2020a; Afifi et al.,
2019a]: mean angle error (MAE) and ∆E2000 [Sharma et
al., 2005]. We reported the mean, first quantile (Q1), second
quantile (Q2), and third quantile (Q3) for evaluation. A lower
error metric denotes a better sRGB-WB performance.

4.3 Multi-camera Generalization Evaluation
Table 1 shows the quantitative results of our WBFlow and
state-of-the-art sRGB-WB methods on Set1-Test (trained
cameras), Set2 (untrained cameras), and rendered cube
dataset (untrained cameras). The results of MixedWB on
Set1-Test and Set2 are computed by its code, and others
are collected from [Afifi et al., 2021] and [Afifi and Brown,
2020a].

Quantitate Comparison. From Table 1, due to the irre-
versible and biased mapping, the exemplar-based methods,
KNN-WB and MixedWB, generalized badly to untrained
cameras. For example, their mean values of ∆E2000 on Set2
and rendered cube dataset are 56.42% and 36.97% higher
than those in Set1-Test. Deep WB alleviated this by mod-
eling the ideal WB process by U-Net. However, since U-
Net is irreversible, Deep WB performed inferiorly on trained
cameras. That is, although Deep WB reduced the perfor-
mance of KNN-WB in the mean of ∆E2000 about 12.50%
and 19.19% in Set2 and rendered cube dataset, its mean of
∆E2000 is 5.31% worse than KNN-WB in Set1-test. In con-
trast, in Set1-test, our WBFlow outperformed the KNN-WB
(ranking second) and the Deep WB (most related method) by
about 12.57% and 16.98% in the mean of ∆E2000, respec-
tively. Simultaneously, in Set2 and rendered cube dataset, our
WBFlow still outperformed all methods in most metrics, e.g.,
it greatly improved the accuracy of Deep WB in the mean of
∆E2000 and MAE about 5.31% and 6.40%. Similar results
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Figure 5: Qualitative comparison (sRGB images and their color histograms) for multi-camera generalization.

OlympusEPL6 (△E2000↓) PanasonicGX1 (△E2000↓) SamsungNX2000 (△E2000↓) SonyA57 (△E2000↓)Methods Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Deep WB 7.12 5.43 6.94 8.46 6.69 5.50 6.48 7.69 6.87 5.49 6.71 7.76 6.53 4.99 6.28 7.87
WBFlow K=0 6.19 4.39 5.73 7.72 5.72 4.23 5.55 6.65 6.04 4.30 5.30 7.03 5.51 3.82 5.38 6.83
WBFlow K=5 6.13 4.33 5.68 7.75 5.65 4.12 5.24 6.90 6.02 4.23 5.26 7.37 5.50 3.79 5.12 6.76
WBFlow K=10 6.00 4.37 5.37 7.18 5.62 4.10 5.21 6.93 6.00 4.23 5.26 7.34 5.48 3.72 5.10 6.81
WBFlow K=20 5.97 4.25 5.39 7.36 5.61 4.08 5.08 6.92 5.95 4.13 5.16 6.97 5.45 3.70 5.07 6.62

Table 2: Few shot evaluation of WBFlow on rendered multi-camera sRGB dataset (Deep WB:[Afifi and Brown, 2020a]).

appear in Set2. These results verify the effectiveness of our
WBFlow in multi-camera generalization.

Inference Time Comparison. From Table 1, our WBFlow
achieves superior WB performance on all datasets with al-
most the same inference time as Deep WB (the most related
method). Compared with KNN-WB with the fastest inference
time, our WBFlow outperforms it by about 12.57%, 17.14%
and 24.65% for the mean of ∆E2000 in three datasets.

Qualitative Comparison. To qualitatively compare the
multi-camera generalization, we show the generated white-
balanced sRGB images and their color histograms of KNN-
WB, Deep WB, and WBFlow on eight cameras in Figure 5.
From it, WBFlow achieves the most similar colors as GTs on
all cameras, consistent with the quantitate comparison.

4.4 Few Shot Evaluation
To validate few-shot capacity, we compared the performances
of WBFlow with the most related method, Deep WB[Afifi
and Brown, 2020a], on four untrained cameras. We retrained
Deep WB and WBFlow by randomly selecting 5000 sRGB
images from the first fold of Set1 and used four untrained
cameras in the last 84 groups of our rendered multi-camera
sRGB dataset for evaluation: OlympusEPL6, PanasonicGX1,
SamsungNX2000, and SonyA57. Training details are fol-
lowed by [Afifi and Brown, 2020a]. For few-shot experi-
ments, we randomly selected K images (0, 5, 10, 20) for
untrained cameras from the first 100 groups of our rendered
multi-camera sRGB dataset to train the parameters of CT,
which are 5.82% of our WBFlow’s. To avoid randomness
and disturbance, we repeated experiments 1000 times with
randomly selected images and then computed the ∆E2000
average in Table 2.
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Figure 6: Ablation comparisons of WBFlow for sRGB images from
eight cameras (fixed scenes and fixed color temperatures): (a) dif-
ferent variants of WBFlow and (b) different flow numbers of RNRT.

From Table 2, WBFlow significantly outperforms Deep
WB even with no shots (K=0) due to the reversible struc-
ture. For example, the average ∆E2000 values of WBFlow
are smaller than these of Deep WB by about 17.44%, 23.09%,
21.68%, and 23.45% in Q2 on four untrained cameras. This
superiority was enhanced when we updated CT with K=5,
10, 20 to enhance the camera specificity. Especially, the few-
shot learning effectively improves Q3 of average ∆E2000 on
four untrained cameras. This indicates that our WBFlow with
few-shot learning is superior in handling untrained cameras.

4.5 Ablation Analysis
To verify the effectiveness of each part in WBFlow, we con-
ducted an ablation analysis on our rendered multi-camera
sRGB dataset. Since Deep WB is the most related method,
we report the average ∆E2000 of Deep WB and three vari-
ants of our WBFlow in Figure 6(a). Training and testing set-
tings are the same as few-shot experiments. Further, we com-
pared the influences of flow numbers for RNRT in Figure 6(b)
and the camera specificity verification for CT in Figure 7.

Variants Comparison. From Figure 6(a), the average
∆E2000 values of RNRT on eight cameras are much worse
than Deep WB, which shows that only modeling color render-
ings hardly improves the multi-cameras generalization. This
phenomenon is significantly mitigated when we integrate
RNRT and RLCT. Specifically, compared with only RNRT,
RNRT&RLCT work together to reduce the average ∆E2000
values by about 50% on eight cameras. RNRT&RLCT also
considerably outperforms Deep WB by 13% on eight cam-
eras. This is because both RNRT and RLCT are reversible
to effectively model the ideal WB process. When we add
CT, the multi-camera generalization is further improved, as
in the smallest average ∆E2000 of RNRT&RLCT&CT on
eight cameras.

Flows Numbers Influence for RNRT. To explore the op-
timal flow numbers of RNRT, in Figure 6(b), we compared
the average ∆E2000 of RNRT with 4, 8, 12, and 16 flows on
eight cameras. It can be seen that the complexity of the RNRT
becomes greater as the number of streams increases to better
simulate ISP nonlinear renderings. The average ∆E2000 of
RNRT is minimized at a number of 16, which means that 16
is the optimal flow number.
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Figure 7: Channel average and variance values distributions of
white-balanced pseudo-raw features for sRGB images from eight
cameras when WBFlow w/ and w/o CT: (a) and (c) are the distribu-
tions w/o CT, (b) and (d) are the distributions w/ CT.

Camera Specificity Verification. Since channel average
and variance can represent the color information of pseudo-
raw features [Stricker and Orengo, 1995], we compute them
for white-balanced pseudo-raw features without and with CT
on eight cameras to verify the camera specificity in Figure 7.
With CT, the difference between mean/variance for all white
balance pseudo-raw feature channels becomes significantly
larger on eight cameras. This verifies that CT can signifi-
cantly enhance the camera specificity of pseudo-raw features,
thus improving multi-camera generalization.

5 Conclusion
In this paper, we propose an sRGB-WB network named
WBFlow, which performs superior white balance for sRGB
images and generalizes well to multiple cameras. Unlike ex-
isting irreversible sRGB-WB methods that fail to model the
ideal WB process, WBFlow successfully models this process
through reversible RNRT and RLCT. Furthermore, we gen-
eralize WBFlow to multiple cameras by enhancing the cam-
era characteristic of pseudo-raw features via few-shot learn-
ing. Extensive experiments indicate the superiority of our
WBFlow in multi-camera generalization and few-shot sRGB-
WB tasks. Ablation analysis shows the effectiveness of each
part of WBFlow and their optimal combinations.
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