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Abstract
Recently, Transformer-based architecture has been
introduced into face super-resolution task due to
its advantage in capturing long-range dependen-
cies. However, these approaches tend to inte-
grate global information in a large searching re-
gion, which neglect to focus on the most relevant
information and induce blurry effect by the irrel-
evant textures. Some improved methods simply
constrain self-attention in a local window to sup-
press the useless information. But it also lim-
its the capability of recovering high-frequency de-
tails when flat areas dominate the local search-
ing window. To improve the above issues, we
propose a novel self-refinement mechanism which
could adaptively achieve texture-aware reconstruc-
tion in a coarse-to-fine procedure. Generally, the
primary self-attention is first conducted to recon-
struct the coarse-grained textures and detect the
fine-grained regions required further compensation.
Then, region selection attention is performed to re-
fine the textures on these key regions. Since self-
attention considers the channel information on to-
kens equally, we employ a dual-branch feature inte-
gration module to privilege the important channels
in feature extraction. Furthermore, we design the
wavelet fusion module which integrates shallow-
layer structure and deep-layer detailed feature to
recover realistic face images in frequency domain.
Extensive experiments demonstrate the effective-
ness on a variety of datasets. The code is released at
https://github.com/Guanxin-Li/LAA-Transformer.

1 Introduction
Face Super-resolution (FSR) is a specific super-resolution
problem which needs to consider the unique textures on the
face, such as eyes, mouth, nose, etc. The reconstruction of
these structures are critical to distinguishing identity infor-
mation. In recent years, FSR technology has been widely
used and has attracted much attention. With the development
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of Convolutional Neural Networks (CNN), many researchers
have designed various CNN networks [Huang et al., 2017;
Zhang et al., 2018a; Zhang et al., 2018c; Shi and Zhao, 2019;
Li et al., 2021] to improve FSR performance. Moreover,
face priors, such as facial landmarks and heatmaps, were
also incorporated into some methods [Chen et al., 2018;
Bulat and Tzimiropoulos, 2018] in order to improve global
face contour recovery.

The CNN-based network has limited receptive field since
convolution is a local operation. Due to the symmetry of the
face, we also need to establish long-term dependencies in the
FSR task in order to reconstruct the complex details on facial
components. Different from CNN, Transformer [Vaswani et
al., 2017] proposes a self-attention mechanism to establish
global dependencies. In the field of computer vision, the pi-
oneering work ViT [Dosovitskiy et al., 2021] separates the
image into patches of equal size and then calculates the self-
attention between the patches in the whole image, yielding
better results compared to CNN in the classification task. Fol-
lowing this, various vision Transformers [Wang et al., 2021;
Chu et al., 2021; Yuan et al., 2021; Liu et al., 2021] were pro-
posed to address different visual tasks. Subsequently, Trans-
formers were also introduced into the SR task. Generally, re-
cent Transformers mainly conduct self-attention in the global
searching region or pre-defined local window. However, it
may encounter practical difficulties when deals with FSR.
For the self-attention performed on global image region, the
reconstructed texture details are calculated by the combina-
tion of all input tokens, which fails to focus the attention on
the most relevant ones. The integration of irrelevant textures
could cause blurry artifacts on the reconstructed results. For
self-attention conducted on local window, it may fail to pro-
duce high-frequency details on complex facial components
(e.g., eyes) if flat textures dominate the pre-defined rectangu-
lar window.

To solve these problems, we propose an efficient self-
refinement mechanism for Transformer, called Region Selec-
tion Attention (RSA), which first produces the coarse atten-
tion map for conducting self-attention and then learns fine-
grained attention map from the coarse one for further refine-
ment. In the coarse-grained self-attention, the attention map
is calculated on the down-sampled scale, which is effective
for reconstructing flat facial regions and has the advantage
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of saving computational cost. To enhance the features of key
patches in the coarse attention map, we adaptively divide sev-
eral regions with the strongest attention as refined searching
field to calculate fine-grained self-attention. In this way, we
could further restore the detailed features to compensate the
reconstructed coarse textures on the key regions. The advan-
tages of the proposed RSA can be summarized in two aspects.
First, it conducts a content-aware feature reconstruction that
treats the coarse structure and detailed texture in different
manners. Second, it could explore fine-grained self-attention
in the receptive field with irregular shape, which is more ro-
bust compared to the traditional rectangular regions.

Another drawback in self-attention is that the operation
takes the channel information of tokens equally without con-
sidering the importance. To privilege the important channels
in feature extraction, we propose Feature Integration Module
(FIM) which consists of alternating channel attention module
and depth-wise convolution in dual-branch. It could promote
a further step to achieve cross-spatial and cross-channel inte-
gration simultaneously in Transformer.

Furthermore, we design the Wavelet Fusion Module
(WFM) which could modulate the global facial structure in-
formation and local detailed texture in frequency-domain. As
we know, the shallow layer in the deep network contains the
structural information (e.g., facial contour) while the deep
layer has the advantage of extracting complex local details
(e.g., eyelids). Different from previous methods which con-
duct simple concatenation or summation in the temporal do-
main, the proposed WFM achieves reconstruction by explor-
ing the frequency property. We employ Wavelet Transforma-
tion (WT) to separate low-frequency and middle-frequency
parts from shallow-layer features, while obtaining the high-
frequency parts from deep-layer features. The modulation of
frequency-specific feature maps is then conducted in WFM
for better restoration.

Overall, our main contributions are summarized as follows:

• We propose an efficient self-refinement Transformer-
based architecture for FSR task. It could adaptively
conduct texture-aware reconstruction in a coarse-to-fine
manner.

• The Feature Integration Module (FIM) is employed to
consider cross-channel difference in Transformer, which
promotes the integration of spatial-wise and channel-
wise information for feature extraction.

• We design the Wavelet Fusion Module (WFM) to
achieve the modulation of shallow-layer and deep-layer
features through frequency decomposition and recombi-
nation.

• Our method achieves state-of-the-art quantitative met-
rics and visualizations. It obtains the advantages of more
than 0.32dB for PSNR values on the Helen datasets.

2 Related Works
2.1 Face Super-Resolution
In recent years, deep learning has achieved great develop-
ments in the field of computer vision. The FSR task has

attracted many researchers because of its wide application
prospects. GLN [Tuzel et al., 2016] designs the Global Up-
sampling Network to reconstruct the overall face and the Lo-
cal Refinement Network to enhance the local details of the
face. Attention-FH [Cao et al., 2017] utilizes the context de-
pendencies between facial components to recursively restore
the details. RCAN [Zhang et al., 2018c] presents a very deep
residual channel attention network, which significantly en-
hances the learning capacity of CNN. FSRNet [Chen et al.,
2018] adds facial geometry priors such as facial landmarks,
heatmaps and parsing maps to the network and achieves
excellent results. SPARNet [Chen et al., 2020] proposes
a network built from Face Attention Units that can effi-
ciently capture key features in very low-resolution face im-
ages. DIC [Ma et al., 2020] adopts a novel iterative col-
laboration network to gradually obtain accurate facial land-
marks and super-resolution images. IGAN [Li et al., 2021]
considers SR as the information-growth process and recov-
ers HR images by exploring information differences in im-
ages of different resolutions. SRDD [Maeda, 2022] proposes
a high-resolution (HR) dictionary that can be learned explic-
itly, which reduces the information that the network needs
to process in the HR space. HGSRCNN [Tian et al., 2022]
adopts a heterogeneous structure to enhance the internal and
external correlations of channels in parallel, which promotes
the recovery of images.

2.2 Vision Transformer
The Transformer is originally used for sequence processing in
natural language tasks. The proposal of ViT [Dosovitskiy et
al., 2021] proves that Transformer can achieve state-of-the-
art performance in the image classification task. By recur-
sively aggregating tokens of neighboring items, T2T [Yuan
et al., 2021] greatly decreases tokens length for practical ap-
plication. [Wu et al., 2021] builds a Pyramid Pooling Trans-
former to achieve better performance in various downstream
vision tasks such as semantic segmentation and object detec-
tion. Swin Transformer [Liu et al., 2021] decomposes the
image into non-overlapping windows, calculates multi-head
self-attention (MHSA) within the window, and introduces
a shifted window mechanism to establish the cross-window
connection. Recently, various vision Transformers [Wang et
al., 2021; Chu et al., 2021] are proposed to address different
visual tasks. Meanwhile, Transformers are also applied in the
field of super-resolution. [Liang et al., 2021] builds SwinIR
based on Swin Transformer and achieves excellent results in
SR tasks. VSR [Cao et al., 2021] turns MHSA into a spatial-
temporal convolutional self-attention to achieve state-of-the-
art performance in video super-resolution tasks. [Shi et al.,
2022] proposes a pyramid encoder/decoder Transformer ar-
chitecture to extract and restore feature textures in different
spaces through a hierarchical structure.

3 Method
3.1 Overview
As shown in Figure 1(a), we describe three core stages of the
proposed network: Feature Extraction Stage, Feature Trans-
formation Stage, and Feature Recovery Stage. Let IL ∈
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Figure 1: An illustration of the proposed face super-resolution architecture. (a) Three main stages of the network: Feature Extraction
Stage, Feature Transformation Stage, and Feature Recovery Stage. (b) The Region Search Attention (RSA) Block consists of Layer Nor-
malization (LN), Region Selection Attention (RSA), multi-layer perceptron (MLP), and residual connections. (c) The Wavelet Fusion Mod-
ules (WFM) can fuse three general features (LL, LH , and HL) from the Feature Extraction Stage and one high-frequency feature (HH)
from the Feature Recovery Stage.

R3×H×W be an input low-resolution RGB image, where H
and W represent the height and width, respectively. We first
expand the channel of input image IL to C as:

F 0
es = HEF (I

L), (1)
where HEF (·) consists of a 3 × 3 convolution and a
LeakyReLU activation. The convolutional layer expands the
feature to a higher dimensional feature space, which is bene-
ficial for recovering details in different feature channels.
Feature Extraction Stage. We extract features through a hi-
erarchical feature pyramid structure containing 4 steps. Each
step consists of 2 Region Selection Attention (RSA) Blocks,
a down-sampling operation, a Wavelet Transformation (WT),
and a 3× 3 convolution. In particular, the 4-th step only con-
tains 2 RSA Blocks. We get the output features F i

es of i-th
step as:

F i
es =

{
Down(HRB(F

i−1
es )), i = 1, 2, 3,

HRB(F
i−1
es ), i = 4,

(2)

where HRB(·) denotes 2 consecutive RSA Blocks, and
Down(·) is the down-sampling operation. For the down-
sampling operation, we apply a 4×4 convolutional layer with
stride 2 to double the channel number and reduce the height
and width to 1/2 of their original size, respectively. In each
step, the features are also decomposed into frequency-domain
features by Wavelet Transformation (WT). Our proposed WT
is composed of a low-pass filter and a high-pass filter. The
features sequentially pass through the combination of two fil-
ters, which can be converted into frequency-domain features:

LL, LH , HL, and HH (see Sec. 3.3 for details). In the i-
th step, for the output F̂ i

es of 2 RSA Blocks, we extract the
low-frequency and middle-frequency features to present the
global facial structure information:

LLi, LHi, HLi = HWT (F̂
i
es),

LLi = Conv3×3(LL
i),

LHi = Conv3×3(LH
i),

HLi = Conv3×3(HLi),

(3)

where HWT (·) denotes WT and Conv3×3(·) is a 3 × 3 con-
volutional layer.
Feature Transformation Stage. At this stage, the output of
the previous step F 4

es is fed into 2 RSA Blocks and concate-
nated with itself as:

Fts = Concat[HRB(F
4
es), F

4
es], (4)

where Concat[·] denotes concatenation operation.
Feature Recovery Stage. This stage also contains 4 steps to
gradually restore high-resolution images. Each step consists
of 2 RSA Blocks, and a Wavelet Fusion Module (WFM). The
1-st step doesn’t contain the WFM. WFM can integrate the
general facial features extracted from the Feature Extraction
Stage and the corresponding high-frequency features in the
Feature Recovery Stage through Wavelet Inverse Transforma-
tion (WIT).

We will describe the WFM in detail in Sec 3.4. More
specifically, the output of j-th step can be formulated as:
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Figure 2: The architecture of our proposed Region Selection Attention (RSA). It consists of Feature Integration Module (FIM), Coarse Self-
Attention (CSA), key regions selection, key regions self-attention, and a depth-wise convolution.

F j
rs =


HRB(Fts), j = 1,

HRB(HWFM (F j−1
rs , LLi,

LHi, HLi)), j = 2, 3, 4,

(5)

where i = 5−j, and HWFM (·) represents the WFM. Finally,
the features F 4

rs ∈ R2C×H×W are refined by a 3×3 convolu-
tion and a LeakyReLU activation to obtain the residual image
IR ∈ R3×H×W . The final recovered image Î can be obtained
by Î = IL + IR.

3.2 Efficient Region Search Attention (RSA) Block
As shown in Figure 1(b), we replace the traditional multi-
head self-attention (MHSA) with our proposed Region Se-
lection Attention (RSA). Given the input as Fs, our proposed
RSA Block can be formulated as:

Fs
′ = RSA(LN(Fs)) + Fs,

F̂s = MLP (LN(Fs
′)) + Fs

′,
(6)

where LN(·) is Layer Normalization and RSA(·) is RSA,
which selects multiple regions with rich high-frequency in-
formation and computes their self-attention.

RSA is a data-driven approach to adaptively implement
texture-aware reconstruction in a coarse-to-fine procedure.
Specifically, we get a global coarse attention map via Coarse
Self-Attention (CSA). This coarse attention map can reflect
the high-frequency information density of each region of the
image. Under the guidance of the coarse attention map, we
can find the largest k attention values in this feature map, rep-
resenting the most important k regions in the original fea-
tures. These regions are extracted from the original features
and calculated MHSA to refine the results. Key regions with

rich high-frequency information are thus reconstructed by the
refinement procedure.

As illustrated in Figure 2, given the input Finput ∈
RC′×H′×W ′

, Finput is first downsampled into a smaller fea-
ture map Fcoarse as:

Fcoarse = Downsample(Finput), (7)

where Downsample(·) uses a convolutional layer with ker-
nel size of λ × λ and stride λ. Then the features are fed
into the Feature Integration Module (FIM) to privilege the
channel-wise importance. This can be formulated as:

F̂input = HFIM (Finput), F̂coarse = HFIM (Fcoarse) (8)

Then we transpose the coarse feature F̂coarse ∈
RC′×H′

λ ×W ′
λ into Fc ∈ Rnc×C′

, where nc = H′

λ × W ′

λ . We
feed it into MHSA with M heads as:

Qc = FcWq,Kc = FcWk, Vc = FcWv,

AM (h) = Softmax(
Q

(h)
c K

(h)T
c√

Dh

), h = 1, . . . ,M,

SA(h) = AM (h)V (h)
c ,

Outputc = Concat(SA(1), . . . , SA(M))Wo,

(9)

where Wq , Wk, Wv , Wo are learnable parameters, and Dh =

C ′/M is the number of dimensions for one head. SA(h),
AM (h), Q(h)

c , K(h)
c and V

(h)
c represent the output of self-

attention, attention map, query embedding, key embedding,
and value embedding from the h-th attention head, respec-
tively. Then we select the key regions according to the coarse
attention map. It is can be defined as:
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AM = Concat(AM (1), . . . , AM (M)),

Index = GetIndex(Topk(Sum(AM))),
(10)

where AM ∈ RM×nc×nc means coarse attention map and
Sum(·) represents accumulation along the penultimate di-
mension of AM , which turns region-to-region attention into
region-to-global attention. Topk(·) means to get the largest
k elements and GetIndex(·) denotes getting the indices of
elements in feature F̂input. Here we let k = ⌊

√
H′W ′

λ ⌋ to
balance the computational cost and effect. Thus we get the
indices of the key regions in F̂input. Next, we extract these
regions to calculate the MHSA and add them back to F̂input

by indices. The output of this process can be obtained by:

Fregions = SelectByIndex(F̂input, Index),

Outputf = AddByIndex(Finput,

MHSA(Fregions), Index),

(11)

where SelectByIndex(·) means to select the regions in
F̂input according to Index and AddByIndex(·) denotes
adding Fregions after MHSA to Finput according to Index.
Finally, we upsample Outputc and add it to Outputf , which
is then fed into a depth-wise convolutional layer. It could be
formulated as:

Output = DWConv(Outputf + Upsample(Outputc)),
(12)

where Upsample(·) denotes the up-sampling operation,
which is a 4 × 4 transposed convolution with stride 2.
DWConv(·) means 3× 3 depth-wise convolution.
Feature Integration Module (FIM). As shown in Figure 3,
our proposed FIM consists of depth-wise convolutions, chan-
nel attention module, and residual connection. Depth-wise
convolution can effectively model the spatial information of
features. The channel attention module allows the network to
focus on channels which should be paid more attention. We
change the combination of the depth-wise convolution and
the channel attention for better interaction. Moreover, we uti-
lize the residual connections to merge dual branches and the
original input. This design complements the features with
rich cross-spatial and cross-channel information.

In FIM, the kernel size of depth-wise convolution is 3× 3,
and Adaptive AvgPool means global average pooling opera-
tion.

3.3 Wavelet Transformation (WT) and Wavelet
Inverse Transformation (WIT)

Our proposed Wavelet Transformation (WT) and Wavelet In-
verse Transformation (WIT) consist of a convolutional block
and a transposed convolution block, respectively. To decom-
pose features into several frequency components, we adopt
a high-efficiency wavelet transformation, namely the Haar
wavelet.

L =
1√
2
[1 1]

T
, H =

1√
2
[−1 1]

T
, (13)

where L and H represent low-pass and high-pass filters, re-
spectively. Low-pass filters can capture general information
like global contour, and facial structure. In contrast, a high-
pass filter extracts local details such as texture, eyes, facial
components, etc.

With the combination of two filters, we can achieve four
kernels of Haar wavelet:

LLT =
1

2

[
1 1
1 1

]
, LHT =

1

2

[
−1 1
−1 1

]
,

HLT =
1

2

[
−1 −1
1 1

]
, HHT =

1

2

[
1 −1
−1 1

] (14)

The above four kernels could be utilized to decompose the
feature map into frequency-domain components: LL, LH ,
HL, and HH . Given an arbitrary feature map F , the WT can
be defined as:

LL = ConvLLT (F ),

LH = ConvLHT (F ),

HL = ConvHLT (F ),

HH = ConvHHT (F ),

(15)

where ConvLLT (·), ConvLHT (·), ConvHLT (·),
ConvHHT (·) represent group convolution with stride 2
and weights LLT , LHT , HLT and HHT , respectively.

We use WIT to integrate the general information (LL, LH ,
and HL) and the high-frequency details HH to reconstruct
the face image. The WIT can be defined as:

F̂ = DeconvLLT (LL) +DeconvLHT (LH)+

DeconvHLT (HL) +DeconvHHT (HH),
(16)

where DeconvLLT (·), DeconvLHT (·), DeconvHLT (·),
DeconvHHT (·) represent four separate transposed convolu-
tions with the weights as Eq. 14.

The WT operation achieves the modulation of shallow-
layer and deep-layer feature maps from the perspective of the
frequency domain. We employ skip connections to perform
WIT in the Feature Recovery Stage, which can stabilize the
generation of detailed information.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1039



Bicubic RCAN DIC SPARNet IGAN SwinIR SRDD HGSRCNN Ours HR

Figure 4: Visual comparisons for 8× FSR. Our method can produce more accurate details. In contrast, other methods generate undiscernible
artifacts in complex regions. Zoom in for the best view.

3.4 Wavelet Fusion Module (WFM)
In this section, we describe our proposed Wavelet Fusion
Module (WFM). As shown in Figure 1(c), for the feature Frs,
it is split evenly into two features Frs L and Frs R as:

Frs L, Frs R = Split(Frs) (17)

Then, Frs L and Frs R are fed into a Wavelet Inverse
Transformation (WIT) and an up-sampling block, respec-
tively, which are defined as:

F̂rs L = HWIT (Frs L, LL,LH,HL),

F̂rs R = Upsample(Frs R),
(18)

where HWIT (·) and Upsample(·) separately represents the
WIT and a 4× 4 transposed convolution with stride 2. Deep-
layer feature Frs L and the corresponding shallow-layer fea-
tures LL, LH , HL are modulated to refine the detail in the
WIT.

Then we feed the combination of two features into a con-
volutional layer to get the output of this module, which can
be formulated as:

F̂rs = Conv1×1(Concat[F̂rs L, F̂rs R]), (19)

where Concat[·] denotes concatenation operation.
Conv1×1(·) is an 1 × 1 convolution, which reduces the
channel number of the features to half.

4 Experiments
4.1 Datasets
The CelebA [Liu et al., 2015] and the Helen [Le et al., 2012]
are two publicly available face image datasets. First, we use
MTCNN [Zhang et al., 2016] to crop the face region. After
excluding images with a resolution smaller than 128 × 128,
the image is resized to 128×128. So we obtained about 178k
images from CelebA, of which 177k images were used as
HR training images. Using bicubic interpolation, the HR im-
ages are downsampled to 16 × 16 to generate LR images. In
the testing phase, we extract the remaining 1000 images from
the cropped CelebA dataset and randomly extract 100 images
from the cropped Helen dataset. For evaluation, we employ
the following metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity (SSIM) [Wang et al., 2004] computed
on the Y channel of the image YCbCr space, and Learned Per-
ceptual Image Patch Similarity (LPIPS) [Zhang et al., 2018b].

4.2 Implementation Details
Before the Feature Extraction Stage, we first extend the num-
ber of feature channels to 32. In the Feature Extraction Stage,
the channel number of feature map is 2i−1 × 32 and the at-
tention head number of RSA Block is 2i−1 in the i-th step.
In the Feature Transformation Stage, the number of feature
channels is set to 256. The number of attention heads is set to
16. In the Feature Recovery Stage at the j-th step, the chan-
nel number of feature map is 25−j×32 and the attention head
number of RSA Block is 24−j . When the height × width of
the feature map is less than or equal to 32 × 32, we only
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Method Helen CelebA
PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 24.25 0.6798 0.5236 24.10 0.6605 0.5267
RCAN [Zhang et al., 2018c] 27.94 0.8196 0.1927 28.08 0.8149 0.1825

DIC [Ma et al., 2020] 26.61 0.7755 0.2292 27.38 0.7911 0.1950
SPARNet [Chen et al., 2020] 27.62 0.8094 0.2012 27.83 0.8067 0.1874

IGAN [Li et al., 2021] 27.97 0.8213 0.1845 28.15 0.8171 0.1767
SwinIR [Liang et al., 2021] 28.04 0.8219 0.1905 28.27 0.8192 0.1808

SRDD [Maeda, 2022] 27.64 0.8093 0.2184 27.88 0.8071 0.2058
HGSRCNN [Tian et al., 2022] 27.93 0.8192 0.1885 28.20 0.8175 0.1793

Ours 28.36 0.8318 0.1626 28.58 0.8297 0.1542

Table 1: Quantitative comparison on Helen and CelebA test set for
8× FSR. The best and second-best performances are denoted by the
red and blue.

employ CSA in the RSA with λ = 1. Otherwise, we apply
the full RSA and λ = 4. The AdamW optimizer is used to
train our model with β1 = 0.9, β2 = 0.99, and weight decay
is set to 0.02. The learning rate is initially set to 4 × 10−4

and dropped by half every 20 epochs. Meanwhile, L1 loss is
used for training. The batchsize is set to 32. Our model is
implemented in PyTorch and trained for 100 epochs using 2
NVIDIA GeForce RTX 3090 GPUs.

4.3 Comparisons with State-of-the-Art Methods
We compare the proposed FSR method with several state-of-
the-art methods: RCAN [Zhang et al., 2018c], DIC [Ma et
al., 2020], SPARNet [Chen et al., 2020], IGAN [Li et al.,
2021], SwinIR [Liang et al., 2021], SRDD [Maeda, 2022],
and HGSRCNN [Tian et al., 2022]. Our quantitative results
for Helen and CelebA dataset are shown in Table 1. The re-
sults demonstrate that our method achieves the best PSNR,
SSIM, and LPIPS performance on both datasets, outperform-
ing other state-of-the-art approaches by a significant margin.
Specifically, for the PSNR value, our method outperforms the
best other methods by 0.32dB and 0.31dB on the Helen and
CelebA datasets, respectively. Qualitative results are shown
in Figure 4. Our method can recover more realistic details in
the blurry region, and the reconstructed result is closer to the
real image. The pupils and nose of the face are restored more
clearly. Other methods tend to produce blurring artifacts in
regions with complex textures.

4.4 Ablation Study
Effectiveness of the Region Selection Attention (RSA). The
core part of RSA is the region selection strategy. Relying on
this design, our RSA can effectively focus on regions with
long-range dependencies and rich high-frequency informa-
tion. To demonstrate the effectiveness of this strategy, we re-
move the part that selects regions to compute key regions self-
attention and only retain the Coarse Self-Attention (CSA).
As shown in Table 2, our RSA improves the PSNR value by
0.12dB on the Helen test set. The above experiments demon-
strate the effectiveness of the proposed RSA.
Effectiveness of the Feature Integration Module (FIM).
Our proposed FIM is used to enhance cross-channel aware-
ness and cross-spatial awareness of features. To verify the
effectiveness of FIM, we use learnable position parameters,
depth-wise convolution or single-branch FIM to replace full
FIM. As can be seen from Table 3, compared to learnable

Methods RSA CSA
PSNR 28.36 28.24

SSIM 0.8318 0.8297

Table 2: Comparison of Region Selection Attention (RSA) and
Coarse Self-Attention (CSA).

Methods PSNR SSIM
learnable position parameters 28.25 0.8296

DW-Conv 28.25 0.8300
FIM only first branch 28.29 0.8301

FIM only second branch 28.28 0.8293
FIM 28.36 0.8318

Table 3: Comparison of learnable position parameters, the depth-
wise convolution(DW-Conv), and different branches of FIM.

Methods PSNR SSIM
concatenation 28.31 0.8306

WFM w/o splitting 28.32 0.8310
WFM 28.36 0.8318

Table 4: Quantitative comparisons of WFM. WFM without splitting
means that the entire feature participates in WIT.

position parameters and depth-wise convolution, our first-
branch-only FIM and second-branch-only FIM improve the
PSNR values by 0.04dB and 0.03dB, respectively. The
full FIM achieved a significant PSNR value improvement of
0.11dB, which illustrates the superiority of our proposed in-
novative FIM.
Effectiveness of the Wavelet Fusion Module (WFM).
WFM is used in the Feature Recovery Stage to recombine
the frequency-domain features. In WFM, we retain half of
the features that do not participate in the WIT. Preserved fea-
tures help stabilize feature recovery. Therefore, we designed
two ablation experiments: In the first one, we simply replaced
WFM with a concatenation operation. In the second one, we
let all the features in the WFM participate in the WIT with-
out splitting. Table 4 demonstrates that our proposed WFM
achieves 0.05dB and 0.04dB improvements, respectively. Ex-
periments prove that the designed WFM is efficient.

5 Conclusion

In this paper, we propose a self-refinement Transformer
for FSR. It could conduct the coarse-grained self-attention
and further compensate for the details by fine-grained self-
attention on key regions. To consider the importance of
channel information in Transformer, we also employ the
FIM to achieve cross-spatial and cross-channel integration si-
multaneously. Furthermore, WFM is designed to modulate
the shallow and deep feature maps in frequency domain for
restoration. Extensive experiments demonstrate the effective-
ness of the proposed method.
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