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Abstract
Video question answering aims at answering a
question about the video content by reasoning the
alignment semantics within them. However, since
relying heavily on human instructions, i.e., an-
notations or priors, current contrastive learning-
based VideoQA methods remains challenging to
perform fine-grained visual-linguistic alignments.
In this work, we innovatively resort to game the-
ory, which can simulate complicated relationships
among multiple players with specific interaction
strategies, e.g., video, question, and answer as
ternary players, to achieve fine-grained alignment
for VideoQA task. Specifically, we carefully de-
sign a VideoQA-specific interaction strategy to
tailor the characteristics of VideoQA, which can
mathematically generate the fine-grained visual-
linguistic alignment label without label-intensive
efforts. Our TG-VQA outperforms existing state-
of-the-art by a large margin (more than 5%) on
long-term and short-term VideoQA datasets, ver-
ifying its effectiveness and generalization ability.
Thanks to the guidance of game-theoretic interac-
tion, our model impressively convergences well on
limited data (104 videos), surpassing most of those
pre-trained on large-scale data (107 videos).

1 Introduction
Video question answering(VideoQA) [Wu et al., 2017; Sun
et al., 2021] aims to automatically infer the correct answer
given a video and a related textual question. Such a multi-
modal vision-language task has potential application in a
broad range of applications such as vision language navi-
gation in embodied AI [Gu et al., 2022], video content re-
trieval by users’ questions [Jin et al., 2022; 2023]. Tremen-
dous progress has been made recently in VideoQA, thanks to
advances in vision language pre-training and development in
model architecture. However, for a VideoQA task, due to the
intrinsic property of the visual data, we typically learn from
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Figure 1: (a). Contrastive-based VideoQA models only learn a
coarse-grained global alignment before the answer decoder. (b). To
achieve fine-grained alignment, we model video, question, and an-
swer as ternary game players and use a VideoQA-specific interaction
to generate the label guidance for improvement.

datasets with the long sequence frames, which consist of var-
ious visual appearances and rich motion information.

The visual data’s long sequence property introduces many
challenges for multi-modal reasoning in the wild, as a deep
learning model has to simultaneously cope with multi-modal
representation learning, visual-linguistic alignment, and an-
swer prediction [Li et al., 2022e; 2022b]. The naive method
would require high-quality annotated data and are typically
data-hungry, and remains challenging to achieve accurate
visual-linguistic alignment.

Early works on VideoQA focus on developing specific ar-
chitectures [Jiang and Han, 2020; Li et al., 2021; Qian et
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al., 2022] to align the visual representation and the linguis-
tic question, which require sophisticated and heuristic de-
sign. More recent efforts[Lei et al., 2021; Yang et al., 2022a]
aims to learn a VideoQA model with contrastive learning by
leveraging the power of large-scale dataset, which rarely ex-
plore the fine-grained visual-linguistic alignment (shown in
Figure 1(a)). This severely limits its modeling capacity and
generalization ability in answer prediction. Thus, we raise
a question: can we achieve the accurate and robust fine-
grained alignment in a data-efficient manner for VideoQA?

To answer this question, we need to tackle the acquisition
of the accurate annotation of fine-grained alignment between
question semantics and video clips. However, it is prohibitive
to collect the manual annotation due to the mega-scale of the
video amount. A promising idea is to automatically generate
the alignment annotation without labor-intensive effort.

Toward this goal, we focus on incorporating visual-
linguistic alignment into the contrastive learning framework
and propose an annotation generator of the fine-grained align-
ment (FAG) based on the multi-player game theory [Mak-
ing, 2009]. Specifically, we introduce the interaction strat-
egy for annotation generator construction, where the (video,
question, answer) are treated as ternary game players, and the
multi-player game theory could mathematically simulate the
pairwise annotation between video clips and question seman-
tics (illustrated in Figure1(b)).

In this work, we first carefully design an interaction strat-
egy to tailor the characteristics of VideoQA. Intuitively, if
there exists a strong semantic correspondence between the
video player and the question player, and these two play-
ers both have a large contribution to the answer, the coali-
tion between them will be strengthened in our framework.
Equipped with the annotation generator, we are able to model
the fine-grained visual-linguistic alignment with additional
supervision signals. To further improve the alignment ef-
ficiency, we also explore the multi-modal token reduction
strategy for VideoQA. We thoroughly investigate different re-
duction methods and develop a clustering-based token merge
module in the end. Our total framework is named Ternary
Game VideoQA (TG-VQA).

We conduct extensive experiments to validate our model
on three VideoQA datasets, including MSVD-QA, MSRVTT-
QA, and ActivityNet-QA. The empirical results and ablative
studies show our method consistently achieves significant im-
provements(more than 5%) on all benchmarks. The annota-
tion generator built from the ternary game also significantly
improves the model convergence and data efficiency, which
makes our TG-VQA competitive or superior compared with
most pre-trained models learned from millions of video data.
The main contributions are as follows:

• To the best of our knowledge, we are the first to bring
game theory into VideoQA. Utilizing game theory’s
ability to simulate the video-question token relations,
our game theory-based annotation generator helps the
VideoQA task achieve fine-grained alignment.

• Our alignment label generator is built from the ternary
game. For the characteristics of the VideoQA task,
the ternary Game models video, question, and answer

as ternary game players. The ternary game values
the video-question pair’s alignment possibility and their
contribution to the answer.

• We achieve new SoTA results on short-term and long-
term VideoQA datasets, verifying the generalization
ability. Without the pretraining stage, our TG-VQA also
outperforms most VideoQA pre-trained models.

2 Related Works

2.1 Video Question Answering

The video question answering (VideoQA) task [Zhong et al.,
2022] requires models to analyze the complex semantic cor-
relation between the video and the question. The VideoQA
task has two main-stream models: (1). Hierarchical cross-
attention-based models. (2). Contrastive learning-based mod-
els. Hierarchical cross-attention models [Xu et al., 2017;
Li et al., 2019; 2022c; Peng et al., 2022; Cai et al., 2021;
Fan et al., 2019; Li et al., 2023a] design Spatio-temporal at-
tention structures to fusion the video and text features. Sev-
eral recent models establish the effective alignment stage [Li
et al., 2021; Xiao et al., 2021] for VideoQA. [Jiang and Han,
2020] constructs the video clips and text entities into hetero-
geneous graphs to achieve fine-grained alignment. [Li et al.,
2022e] establish the video-question alignment using invariant
grounding. [Qian et al., 2022] uses a locator to align the ques-
tion with video segments. However, these alignment strate-
gies cannot apply in contrastive learning frameworks due to
their hierarchical attention structure.

Contrastive learning-based VideoQA models [Lei et al.,
2021; Kim et al., 2020; Piergiovanni et al., 2022] use con-
trastive loss for cross-modality explicit alignment and fu-
sion. However, lacking fine-grained alignment annotations,
they suffer from slow convergence, requiring massive video
data [Bain et al., 2021; Yang et al., 2022a; Huang et al., 2021;
Li et al., 2020] for pretraining. Therefore, we establish a
ternary game-based contrastive learning VideoQA model, us-
ing game-theoretic interaction [Kita, 1999] to generate the
fine-grained alignment annotations.

2.2 Game Theoretic Interaction

The game-theoretic interaction [Making, 2009; Ferguson,
2020] consists of a set of players with a revenue function. The
revenue function maps each team of players to a real number
which indicates the payoff obtained by all players working
together to complete the task. The core of game-theoretic in-
teraction is to allocate different payoffs to game individuals
fairly and reasonably. There are several interaction strategies
including core interaction [Jeukenne et al., 1977], shapley in-
teraction [Sun et al., 2020] and banzhaf interaction [Marichal
and Mathonet, 2011]. The game-theoretic interaction has
multiple applications in different fields [Aflalo et al., 2022;
Datta et al., 2016]. Recently, LOUPE [Li et al., 2022d] uses
two-player interaction as a vision-language pre-training task.
In this paper, we design a new framework of ternary game
interaction strategy for the VideoQA task.
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Figure 2: The overall framework of our TG-VQA. Left) We first use a dual-stream transformer-based encoder to extract the feature
representation for the visual token and question token. We then introduce a token merge network to reduce the redundancy of the token and
improve the efficiency for visual-linguistic alignment learning. Next, we use the answer prediction network to generate the answer for the
input video-question pair. Moreover, we develop the fine-grained alignment network to explicitly align the visual token and question token at
a fine-grained level. Right) The fine-grained alignment network consists of a alignment label generator, which is built from the ternary game
interaction (video, question, answer ternary), and an alignment prediction module. We take the similarity matrix produced by the generator as
the teacher and distill the fine-grained alignment knowledge from the ternary game interaction to the student. This extra supervision signals
improve the consistency between the visual representation and linguistic representation and benefit the multi-modal reasoning in answer
prediction. Notice that structures with green background and gray dotted line are auxiliary components, only used in the training process.

3 Preliminary of VideoQA and Game Theory
In this section, we first introduce the problem setting of video
question answering in Sec.3.1, then briefly present the back-
ground for the multi-player game theory (Sec.3.2), which is
utilized in our proposed alignment label generator.

3.1 Problem Setting of VideoQA
Given a video clip V and a text-form query Q, the VideoQA
task aims to predict the correct answer â from the answer
space A. For the close-set type of question, A is a fix-size
answering option list. For open-ended and multi-choice kinds
of questions, A comprises the group of pre-defined answers
and a list of candidate answering options. Generally, We for-
mulate the VideoQA task as follows.

â = argmax
a∈A

Fθ(a|Q,V) (1)

where θ represents the trainable parameters group, Fθ repre-
sents the modeling function.

3.2 Introduction of Game Theory
Toward the goal of achieving fine-grained alignment between
video and question, we propose to leverage multi-player
game theory to construct an alignment label generator. We
aim to obtain the semantic relationship between visual to-
kens and question tokens, and their contribution to the an-
swer. And the game theory targets generating an appropriate
coalition construction strategy for multiple players. Thus, we
propose to introduce game theory to align the label generation
by considering the (video, question, and answer) as players.

Specifically, the multi-player game theory typically con-
sists of (a) a set of players Γ = (P,R) consists a set of play-
ers P = {1, 2, ..., n}, and (b) a revenue function R(P). R

maps each team of players to a real score, which indicates the
payoff obtained by all players working together to complete
the task. The key step of the game theory is to measure how
much gain is obtained, and how to allocate the gain fairly.

In the multi-player game process, there are various dif-
ferent interaction strategies available, such as Core interac-
tion [Jeukenne et al., 1977], Shapley interaction [Sun et al.,
2020], Banzhaf interaction [Marichal and Mathonet, 2011].
Here we choose the Banzhaf interaction due to its balance of
computational complexity and precision. Formally, given a
coalition {i, j} ∈ P , the Banzhaf interaction B({i, j}) for
the player {i, j} is defined as:

B({i, j}) =
∑

C∈P {i,j}

p(C)[R(C ∪ {i, j}) +R(C) (2)

−R(C ∪ {i})−R(C ∪ {j})],

where P {i, j} represents removing {i, j} from P , C stands
for coalition. p(C) is 1

2n−2 , possibility for C being sampled.
Intuitively, B({i, j}) reflects the tendency of interactions

inside {i, j}. The higher value of B({i, j}) indicates that
player i and player j cooperate closely with each other. For
VideoQA, we take the matrix B as the alignment label annota-
tion by changing the player definition and using a VideoQA-
specific interaction strategy. We will start with a detailed de-
scription of our model architecture below.

4 Method
Our model consists of four main submodules: (1) a back-
bone network for generating feature representations of the
video and question (Sec.4.1). (2) a token merge network for
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Figure 3: We propose the token merge network to reduce the to-
ken redundancy. Specifically, we apply a 1D convolutional layer for
temporal content encoding, a DPC-KNN for sparse token genera-
tion, and an attention layer for semantic fusion.

reducing the visual and question token number (Sec.4.1). (3)
a fine-grained alignment network for establishing the fine-
grained visual-linguistic alignment in VideoQA (Sec.4.2).
(4) an VideoQA answer prediction network for generat-
ing the answer for VideoQA (Sec.4.3). We finally detail
the training objectives and the inference pipeline in Sec.4.4.
The overview of our proposed Ternary Game VideoQA (TG-
VQA) model is illustrated in Figure2.

4.1 Backbone and Token Merge Network
Backbone. We adopt the ViT [Dosovitskiy et al., 2020] and
BERT as the backbone for generating visual representation
and textural representation, respectively. Formally, we de-
note the representation of a video clip as a set of visual tokens
V = {vi|vi ∈ RCv}Nv

i=1, where vi is one frame feature vec-
tor with Cv channel and Nv is the total frame number. For the
linguistic representation of question and answer, we first pad
them into a fixed length Nl sequence and extract their tex-
tual feature via a transformer encoder initialized with BERT
parameters. We formulate the generated question representa-
tion as a set of question tokens: Q = {qj |qj ∈ RCl}Nl

j=1,
where qj is a question token with Cl channel. Similarly, we
are able to generate the representation of the answer A with
a text encoder, which is used to construct an alignment label
generator.

Token Merge Network. To reduce the redundancy of vi-
sual tokens and question tokens, we develop a token merge
network and investigate different merge strategies. Typ-
ically, the token merge network consists of (a) temporal
context encoding module, (b) sparse token generation mod-
ule and (c) semantic fusion module, which is illustrated in
Figure 3. We will focus on the visual token in the re-
mainder of this paragraph for notation clarity. Given a se-
quence of visual tokens V, we first utilize the 1-D convo-
lution layer to encode temporal context efficiently and de-
note the enhanced visual tokens as Ṽ. Then, we conduct
the sparse token generation for the Ṽ to reduce the num-
ber of tokens. Specifically, we investigate several different
reduction strategies, like the random initialized sparse to-
ken(or called query) and clustering-based sparse token gen-
eration. We empirically find that the Density Peaks Clus-
tering based KNN (DPC-KNN) [Rodriguez and Laio, 2014;
Li et al., 2023b] is superior for generating sparse and rep-
resentative tokens, the ablative studies are shown in Sec.5.3.

we refer the reader to supplementary material for more de-
tails of the clustering method. Finally, we apply the cross-
attention between the sparse tokens generated from the clus-
tering technique and enhanced visual tokens Ṽ, to further in-
corporate the semantic context information into the sparse to-
kens. We denote the spare visual tokens generated from the
token merge network as Vs ∈ RCv×Nvs , where Nvs is the
number of sparse visual tokens and we have Nvs < Nv .
Similarly, we are able to produce the spare textual tokens
Qs ∈ RCl×Nls from the token merge network. Equipped
with spare visual and question tokens, we not only reduce the
redundancy in the input data but also improve the fine-grained
visual-linguistic alignment efficiency (Sec. 4.2).

4.2 Fine-grained Alignment Network
Different from the current contrastive learning-based meth-
ods, which adopt the coarse-grained visual-linguistic align-
ment in model optimization, we develop a fine-grained align-
ment network that serves as an auxiliary network only exist-
ing in the training process, to explicitly supervise the model
with an automatically generated alignment label.

The main idea is to introduce an alignment label genera-
tor to provide a supervision signal for learning a VideoQA
model. We rethink the relationship among each item(video,
question, and answer) and find that the alignment between vi-
sual tokens and question tokens actually reflects the semantic
correspondence. Tokens sharing similar semantic meanings
tend to simultaneously contribute to the final answer predic-
tion. Thus, we propose to leverage the multi-player game
theory to help find tokens with high semantic similarity. The
fine-grained alignment network is composed of (a) an align-
ment label generator constructed with ternary game theory,
and (b) an alignment prediction module.

Alignment Label Generator. Given the spare visual to-
kens Vs and sparse question tokens Qs, we consider video,
question and the answer A as game players, which means
N = Vs∪Qs∪A. Intuitively, if a visual token has strong se-
mantic correspondence with a question token, then they tend
to cooperate with each other and contribute to the final an-
swer. We now present the ternary game interaction strategy
used in our work. For simplicity, we apply Banzhaf [Marichal
and Mathonet, 2011] interaction for the ternary game. Con-
cretely, a task-specific revenue function is required for in-
teraction, and we need to consider the fine-grained visual-
linguistic alignments as well as the token pair’s contribution
to the final answer. Thus, the revenue function R should sat-
isfy the following criteria(we omit the subscript s of Vs,Qs

for clarity in the following paragraph):

• R(vi,qj) benefits from the semantic similarity between
video and question.

• R(vi,qj) benefits from the semantic similarity between
the target answer representation A and the prediction
from video-question pair.

Thus, our proposed revenue function is formulated as:

R(vi,qj ,A) = ϕ(vi,qj) + ϕ(A,G(vi,qj)). (3)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1047



# Model Initialization Pretrain Data MSRVTT-QA MSVD-QA

Pretrained
1 VideoCLIP [Luo et al., 2022] S3D+BERT HowTo100M 33.8 31.8
2 ClipBERT [Lei et al., 2021] ResNet+BERT HowTo100M 37.4 -
3 CoMVT [Seo et al., 2021] S3D+BERT HowTo100M 39.5 42.6
4 VQA-T [Yang et al., 2022a] S3D+BERT HowToVQA69M 41.5 46.3
5 ALPRO [Li et al., 2022a] ResNet+BERT Web2M+CC3M 42.1 45.9
6 Co-Tok [Piergiovanni et al., 2022] K600+T5 How100M 45.7 48.6
7 FrozenBiLM [Yang et al., 2022b] CLIP+GPT3 WebVid10M 47.0 54.8

Non-Pretrained
8 HCRN [Le et al., 2020] ResNet+LSTM None 35.6 35.5
9 MHN [Peng et al., 2022] ResNet+LSTM None 38.6 40.4
10 IGV [Li et al., 2022e] ResNet+BERT None 38.3 40.8
11 VQA-T [Yang et al., 2022a] S3D+BERT None 39.6 41.2
12 CLIP-QA [Radford et al., 2021] CLIP+BERT None 39.0 38.5
13 CLIP4clip [Luo et al., 2022] CLIP+BERT None 40.9 39.3
14 TG-VQA (ours) S3D+BERT None 42.7 45.5
15 TG-VQA (ours) CLIP+BERT None 46.3 52.5

Table 1: Experiments for the MSRVTT-QA and MSVD-QA datasets. We surpass the non-pretrained VideoQA models by a wide margin.
Without the large-scale pretraining dataset, our interaction model also surpasses most of the pretrained VideoQA models.

# Model Initialization Pretrain Acc.

Pretrained
1 VQA-T S3D+BERT 69M 38.9
2 LF-VILA Swin+BERT 8M 39.9
3 FrozenBiLM CLIP+GPT3 10M 43.2
4 DeST Swin+BERT 14M 46.8

Non-Pretrained
5 LocAns C3D+BERT - 36.1
6 VQA-T S3D+BERT - 36.8
7 TG-VQA (ours) CLIP+BERT - 48.3

Table 2: Experiments of ActivityNet-QA (long-term). Our method
surpasses all pretrained and non-pretrained VideoQA models.

where ϕ is a distance measurement for the semantic similar-
ity, G is a linear layer to project the concatenation of vi and
qj into the answer representation space.

Then we apply R to Eq.3.2 for the Banzhaf interaction.
However, we find brute-force computation of Eq.3.2 is time-
consuming. To speed up the interaction calculation process,
we propose a deep learning-based idea by using a tiny convo-
lutional network to predict the revenue function. Specifically,
so we first calculate 1000 samples’ guidance matrix. We can
use these matrices as data samples to learn a tiny model with
short epochs. We take such a model as the alignment label
generator to generate the guidance matrix (V,Q).

Alignment Prediction Module. We adopt the contrastive
learning-based framework to optimize the VideoQA model
similar to [Lei et al., 2021]. Differently, we introduce the
explicit supervision signal for fine-grained visual-linguistic
alignment. We first generate the alignment prediction
R(Vs,Qs)) between visual tokens and linguistic tokens by
computing their similarity. Then, we regard the guidance

matrix generated from the alignment label generator as the
teacher and the alignment prediction as the student. The
model is optimized by minimizing the Kullback-Leibler di-
vergence between teacher and student. Ternary game loss is

LTG = EVs,Qs
[KL(R(Vs,Qs),R(Vs,Qs))] (4)

with such a distillation process, the model is expected to learn
the multi-modal representation with rich semantic informa-
tion and fine-grained visual-linguistic alignment.

4.3 Answer Prediction Network
Due to the established visual-linguistic fine-grained align-
ment benefit from the FAN, we are able to adopt a simpli-
fied answer prediction network, without the need for sophis-
ticated multi-modal fusion/reasoning stages like many previ-
ous VideoQA models.

Specifically, given the sparse visual tokens Vs and sparse
textual tokens Qs generated from the token merge network,
we first predict the token-level fusion weight by applying
the non-linear projection(typically using linear layer + sig-
moid function) on each token of Vs and Qs. We then ob-
tain the global representation for each modality by conduct-
ing weighted sum in Vs and Qs, respectively. We denote the
generated global feature vectors as vo and qo. Next, we con-
catenate those two vectors followed by an MLP to predict the
answer logits. We use cross-entropy loss between logits and
ground truth answer to supervise the whole framework.

4.4 Training and Inference
Combining the LTG from the ternary game module and the
cross-entropy loss from the vqa prediction module, the over-
all loss of our model is the weighted sum of both parts:

L = Lvqa + αLTG. (5)

α is the trade-off hyper-parameter for the ternary game. As
shown in Figure. 2, the structures with green backgrounds
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Model Acc. Alignment Strategy Acc. TM Strategy Acc.

Baseline 39.0 Coarse-grained - 39.0 % - 44.5

Baseline+FAN 43.1 Fine-grained Fully-connect 43.1
!

Temporal 43.7
Baseline+FAN+TM 46.3 Ternary Game 44.5 DPC-KNN 46.3

Table 3: (I). Ablation for our fine-grained alignment network (FAN) and the token merge module (TM). Both modules have benefits. (II).
The ablation for the alignment strategy. Both fine-grained alignment methods surpass the coarse-grained baseline. Our ternary game strategy
outperforms the intuitively fully-connected strategy. (III). Ablation for the cluster strategy in the token merge module.
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Figure 4: (a). The ablation study for hyperparameter α, the weight of LTG. Our TG-VQA performs best when α = 0.5. (b). The ablation
study for epoch performance between different VideoQA models. With our ternary game module, the model converges faster. (c). The
performance analysis for the question category. Our ternary game module significantly improves “what” and “how” question correctness.

and Dotted lines are auxiliary components, which only ap-
pear in training. During the inference process, TG-VQA only
activates the answer prediction network.

5 Experiments
5.1 Datasets
We select multiple VideoQA datasets to comprehensively
evaluate the effectiveness of our method on different-length
videos. Following the VQA-T [Yang et al., 2022a] setting, we
choose two short video datasets (MSVD-QA, MSRVTT-QA)
and one long video dataset (ActivityNet-QA) as our evalua-
tion benchmarks. MSVD-QA [Xu et al., 2017] comprises
1,970 short clips and 50,505 question-answer pairs. The
clip’s average length is 10 seconds and the questions are di-
vided into five question categories: what, who, how, when,
and where. All of them are open-ended. MSRVTT-QA [Xu
et al., 2017] comprises 10K videos and 243K question-
answer pairs. The question types are similar to what is in-
cluded in the MSVD-QA dataset. However, the scenario of
the video is more complex, with a longer duration of 10-30
seconds. ActivityNet-QA [Yu et al., 2019] is a Human an-
notated and large scale VideoQA dataset. The dataset con-
sists of 58,000 QA pairs on 5,800 complex long web videos
derived from the popular ActivityNet dataset. The average
video length of ActivityNet-QA is 180 seconds, which is
much longer than MSRVTT-QA and MSVD-QA.

5.2 Experimental Results
We select the most recent pretrained and non-pretrained
VideoQA models for comparison. Table. 1 shows the exper-
imental results on the MSRVTT-QA dataset and MSVD-QA

dataset. Compared with the non-pretrained VideoQA mod-
els, our method achieves sustainable improvements, 5.4%
on MSRVTT-QA and 11.3% on MSVD-QA. Without mil-
lions of video-text pretraining data, our method also surpasses
most of the pretrained VideoQA models. Table. 2 shows
the experimental results on the long-term VideoQA dataset,
ActivityNet-QA. Our model achieves 48.3%, surpassing all
pretrained and non-pretrained VideoQA models.

5.3 Ablation Studies
We first explore each module’s contribution to the overall
TG-VQA performance. In Table.3 (I), Both our fine-grained
alignment network (FAN) and token merge module (TM)
benefit TG-VQA performance. More ablations are as follows.
Effectiveness of Alignment Strategies. Table.3(II) ex-
plores the benefits of various alignment strategies for the
VideoQA task. Comparing line1 and line2, fine-grained
alignment in VideoQA yields 4.1% benefits from coarse-
grained alignment. For fine-grained alignment strategies, our
ternary game alignment outperforms the intuitive alignment.
Effectiveness of Token Merge Module. Our token merge
module clusters the video and question tokens aiming to re-
duce the token amount for later interaction. In Table. 3 (III),
we make several attempts at the clustering strategies. “Tem-
poral” represents clustering the tokens by temporal or se-
quence order. “DPC-KNN” represents our clustering strat-
egy. Compared with line 1 using Banzhaf interaction with
no merge module, the temporal cluster has a negative impact
on the model performance due to the Lack of semantic corre-
lation. Meanwhile, our DPC-KNN clustering strategy adap-
tively merges tokens under the guidance of semantic similar-
ity, surpassing other clustering strategies.
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Figure 5: The case visualization. We visualize the most possible alignment pairs between video centers and question text centers. The arrow
curves are the visualization of different video-question pairs’ contributions to the answer.

Impact of Encoders’ Initial Parameters. We list
all VideoQA initial parameter combinations in Table. 1
row 3. Non-pretrained VideoQA models tend to use ResNet,
S3D [Xie et al., 2018] or CLIP as video encoder param-
eters while using BERT as text encoder parameters. Pre-
trained models also adapt huge language models as the en-
coder, including GPT and T5 [Raffel et al., 2020]. For a
fair comparison, we apply the most common CLIP+BERT
and S3D+BERT combinations. Shown in Table. 1, our TG-
VQA model with S3D+BERT initialization surpasses other
non-Pretrained VideoQA models with S3D+BERT. Using
CLIP+BERT initialization, our TG-VQA model outperforms
others by 5.4% in MSRVTT-QA and 11.7% in MSVD-QA.
Due to FrozenBiLM’s large computation from GPT3 and We-
bVid10M, we don’t compare with FrozenBiLM.

Hyper Parameters in Train Objective. In order to explore
the effect of the ternary game loss LTG’s hyperparameter on
the performance of the model, we train our TG-VQA on the
MSRVTT-QA dataset with hyperparameter α from 0.1 to 1.5.
Shown in Figure4 (a), the model performance fluctuates in
range [45.1, 46.3]. When α = 0.5, our model performs best.

Epoch Analysis. To illustrate our ternary game’s ability
to accelerate the model’s convergence process with limited
data, we visualize the epoch performance for our TG-VQA
model and the CLIP4clip (non-pretrained VideoQA model
without the ternary game) on MSRVTT. In Figure4 (b), both
CLIP4clip and TG-VQA apply the same encoder initializa-
tion. With the fine-grained alignment network, our TG-VQA
converges faster and better than CLIP4clip. We also visu-
alize the epoch curve of the Co-Tok (a pretrained VideoQA
model). With limited data, our TG-VQA surpasses Co-Tok
on epoch 3, demonstrating our data efficiency.

Question Category Performance Analysis. We visualize
the model’s performance on the Top-4 question categories on
the MSRVTT-QA dataset. As shown in Figure4 (b), with
the addition of our ternary game module, the model signif-
icantly improves “what” and “how” question types perfor-

mance, which attributes to the fine-grained alignment brought
by the ternary game module.
5.4 Case Visualization
Figure 5 is the case visualization from the ActivityNet-QA
dataset. For visualizing the cluster results, we cluster the
video clips into two centers and the question tokens into three
centers. Both cases show semantic similarity within the same
centers. For visualizing the alignment results, Figure 5 shows
the top-1 alignment pairs between the video center and the
question center. The alignment results conform to the seman-
tic consistency. For visualizing the contribution to the predic-
tion answer, both cases illustrate that when a video-question
pair is unlikely to be the answer, its contribution score is
rather low (0.1). The second case illustrates that when multi-
ple video-question pairs are similar to the answer, their con-
tribution scores also tend to be the same. The visualization of
two cases demonstrates the interpretability of our model.

6 Conclusion
In this paper, we study the fine-grained alignment in the
VideoQA task. We innovatively model the VideoQA task as
a ternary game process between video, question, and answer.
We design a VideoQA-specific interaction strategy to simu-
late the alignment relationship. Experiments show the effec-
tiveness, generalization, and data efficiency of our model.
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