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Abstract
3D grasp synthesis generates grasping poses given
an input object. Existing works tackle the prob-
lem by learning a direct mapping from objects
to the distributions of grasping poses. However,
because the physical contact is sensitive to small
changes in pose, the high-nonlinear mapping be-
tween 3D object representation to valid poses is
considerably non-smooth, leading to poor genera-
tion efficiency and restricted generality. To tackle
the challenge, we introduce an intermediate vari-
able for grasp contact areas to constrain the grasp
generation; in other words, we factorize the map-
ping into two sequential stages by assuming that
grasping poses are fully constrained given contact
maps: 1) we first learn contact map distributions to
generate the potential contact maps for grasps; 2)
then learn a mapping from the contact maps to the
grasping poses. Further, we propose a penetration-
aware optimization with the generated contacts as a
consistency constraint for grasp refinement. Exten-
sive validations on two public datasets show that
our method outperforms state-of-the-art methods
regarding grasp generation on various metrics.

1 Introduction
3D grasp synthesis studies the problem of generating grasp-
ing poses given an input object. It has wide applications rang-
ing from animation, human-computer interaction to robotic
grasping. Though it has been researched for many years,
only a limited number of works about 3D grasp generation
using deep learning have been proposed due to the lack of
large grasping data [Corona et al., 2020; Taheri et al., 2020;
Jiang et al., 2021; Karunratanakul et al., 2020; Zhang et al.,
2021; Taheri et al., 2021]. Recently, a dataset for human
grasping objects with annotations of full body meshes and
objects meshes have been collected by a multi-view capture
rig, and a coarse-to-fine hand pose generation network based
on a conditional autoencoder (CVAE) is proposed [Taheri et
al., 2020]. In [Karunratanakul et al., 2020], a new implicit
representation is proposed for hand and object interactions,
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Figure 1: Interpolated contact maps and grasps between different
generated contacts (TypeA and TypeB) by our method. Note that
the grasping poses (e.g. finger positions denoted in the yellow circle
and arrow) change with transitions between two types of contacts
and a small change in a valid contact map produces another valid
grasp. The intermediate contact maps reduce the non-smooth high-
nonlinear pose generation problem to a map generation problem in
a low-dimension and smooth manifold, benefiting generation effi-
ciency and generality.

and a similar CVAE method is used for static grasps genera-
tion. Taheri et al. [Taheri et al., 2021] take a step further to
learn dynamic grasping sequences including the whole body
motion given an object, instead of static grasping poses.

Existing methods treat the generation as a black box map-
ping from an object to its grasp pose distribution. However,
this formulation has its defects. On one hand, the mapping
from the 3D object space to the pose space represented by
rotations is highly non-linear. On the other hand, physical
contact is sensitive to small changes in pose, e.g., less than
a millimeter change in the pose of a fingertip normal to the
surface of an object can make the difference between the ob-
ject being held or dropped on the floor [Grady et al., 2021].
Therefore, the mapping between 3D object representation to
valid poses is non-smooth, as a small change in the pose could
make a valid pose invalid. These defects raise a challenge for
the network to learn the sparse mapping and generalize to un-
seen valid poses in the highly non-linear space.

In robotics, contact areas between agents and objects are
found to be important [Deng et al., 2021; Roy and Todor-
ovic, 2016; Zhu et al., 2015] because localizing the position
of possible grasps can greatly help the planning of actions for
robotic hands [Mo et al., 2021; Wu et al., 2021; Mandikal
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Figure 2: The framework of our method. It consists of three stages: ContactCVAE, GraspNet and Penetration-aware Partial Optimization.
ContactCVAE takes an object point cloud O as input and generates a contact map C′. GraspNet estimates a grasp parameterized by θ from
the contact map C′. Finally, penetration-aware partial (PAP) optimization refines θ to get the final grasp.

and Grauman, 2021; Mandikal and Grauman, 2022]. For ex-
ample, [Mo et al., 2021] and [Wu et al., 2021] first estimate
the contact points for parallel-jaw grippers and plan paths to
grasp the target objects. The common assumption in the lit-
erature is that the contact area is a point and the contact point
generation is treated as a per-point (or pixel voxel) detection
problem, i.e. classifying each 3D object point to be a con-
tact or not, which cannot be applied to dexterous hand grasps
demonstrating much more complex contact. For dexterous
robotic hand grasping, recent work [Mandikal and Grauman,
2021] finds that leveraging contact areas from human grasp
can improve the grasping success rate in a reinforcement
learning framework. However, it assumes an object only af-
fords one grasp, which contradicts the real case and limits its
application.

To tackle the limitations, we propose to leverage contact
maps to constrain the grasp synthesis. Specifically, we fac-
torize the learning task into two sequential stages, rather than
taking a black-box hand pose generative network that directly
maps an object to the possible grasping poses in previous
work. In the first stage, we generate multiple hypotheses of
the grasping contact areas, represented by binary 3D segmen-
tation maps. In the second stage, we learn a mapping from the
contact to the grasping pose by assuming the grasping pose is
fully constrained given a contact map.

The intermediate segmentation contact maps align with the
smooth manifold of the object surface: for example, a small
change in a valid contact map would likely produce another
valid solution (as illustrated in Figure 1), then the correspond-
ing pose can be deterministically established by the follow-
ing GraspNet and PAP optimization. This manner reduces
the challenging pose generation to an easier map generation
problem in a low-dimension and smooth manifold, benefiting
generation efficiency and generality.

The other benefit of the intermediate contact representation
is enabling the optimization from the contacts. Different from
the optimization for the full grasps from scratch [Brahmbhatt
et al., 2019b; Xing et al., 2022], we propose a penetration-
aware partial (PAP) optimization with the intermediate con-
tacts. It detects partial poses causing penetration and lever-
ages the generated contact maps as a consistency constraint
for the refinement of the partial poses. The PAP optimization
constrains gradients from wrong partial poses to affect these
poses requiring adjustment only, which results in better grasp
quality than a global optimization method.

In summary, our key contributions are: 1) we tackle the
high non-linearity problem of the 3D generation problem by
introducing the contact map constraint and factorizing the
generation in two stages: contact map generation and map-

ping from contact maps to grasps; 2) we propose a PAP op-
timization with the intermediate contacts for the grasp re-
finement; 3) benefiting from the two decomposed learning
stages and partial optimization, our method outperforms ex-
isting methods both quantitatively and qualitatively.

2 Related Works
Human grasp generation is a challenging task due to the
higher degrees of freedom of human hands and the require-
ment of the generated hands to interact with objects in a phys-
ically reasonable manner. Most methods use models such as
MANO [Romero et al., 2017] to parameterize hand poses,
aiming to directly learn a latent conditional distribution of the
hand parameters given objects via large datasets. The distri-
bution is usually learned by generative network models such
as Conditional Variational Auto-Encoder [Sohn et al., 2015],
or Adversarial Generative Networks [Arjovsky et al., 2017].
To get finer poses, many existing works adopt a coarse-to-fine
strategy by learning the residuals of the grasping poses in the
refinement stage. [Corona et al., 2020] uses a generative ad-
versarial network to obtain an initial grasp, and then an extra
network to refine it. [Taheri et al., 2020] follows a similar
strategy but uses a CVAE model to output an initial grasp.

In recent works, contact maps are exploited to improve
robotic grasping, hand object reconstruction, and 3D grasp
synthesis. [Brahmbhatt et al., 2019b] introduces a loss for
robotic grasping optimization using contact maps captured
from thermal cameras [Brahmbhatt et al., 2019a; Brahmb-
hatt et al., 2020] to filter and rank random grasps sampled
by GraspIt! [Miller and Allen, 2004]. It concludes that syn-
thesized grasping poses optimized directly from the contact
demonstrate superior quality to other approaches which kine-
matically re-target observed human grasps to the target hand
model. In the reconstruction of the hand-object interaction,
[Grady et al., 2021] propose a differentiable contact optimiza-
tion to refine the hand pose reconstructed from an image. In
the 3D grasp synthesis, [Jiang et al., 2021] also exploits con-
tact maps but they only use them to refine generated grasps
during inference. Our work differs from these works using
contact maps in three aspects: 1) these works use contact
maps as a loss for the grasp optimization or post-processing
for further grasp refinement while our work exploits the con-
tact maps as an intermediate constraint for the learning of the
grasp distribution; 2) in contrast to the learning-based works
with contact maps which treat objects-to-grasps as a black
box, our work factorizes the grasp synthesis into objects-to-
contact maps and contact maps-to-grasps; 3) moreover, these
works refine the whole grasps with global optimization meth-
ods using contact maps while our penetration-aware partial
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Figure 3: The architecture of ContactCVAE. (a) In the training stage, it takes both an object point cloud and a contact map as input to
reconstruct the contact map; (b) In the testing stage, by sampling from the latent distribution, it generates grasp contacts with an object point
cloud as the conditional input only. ⊗ means concatenation.

optimization detects the partial poses causing the penetration
and leverages the contact map constraint to optimize the par-
tial poses only rather than the whole poses.

3 Method
Figure 2 shows our method pipeline. It generates maps
for contact areas by a network naming ContactCVAE, maps
the contact maps to grasping poses by the other network
naming GraspNet, and refines the generated grasp by a
penetration-aware optimization module. In the work, we
adopt MANO [Romero et al., 2017] to represent grasps. The
MANO model M parameterizes the hand mesh M = (V, F )
(V ∈ R778×3, F ∈ R1538 denotes the mesh vertices and
faces) by the shape parameters β ∈ R10 and pose parame-
ters θ ∈ R51, i.e. M = M(θ, β). In the work, we use the
mean shape and use M = M(θ) for brevity.

In the first stage, ContactCVAE aims to learn a contact map
distribution represented by a latent vector z given an input ob-
ject using a conditional variational autoencoder. The network
takes an object point cloud O ∈ RN×3 and the contact map
C ∈ RN×1 as the input and learns to make the output contact
map C

′ ∈ RN×1 as close to the input contact map as possi-
ble. N is the number of points in O. Each point in the point
cloud is represented by its normalized 3D positions. Each
point in the contact map takes a value in [0, 1] representing
the contact score. During inference, given an object, a contact
map C

′
can be generated by sampling from z. In the second

stage, GraspNet learns a mapping from the contact map C
′

to the hand mesh M constrained by the map. The pose θ′ of
the predicted mesh M ′ from GraspNet is refined with PAP
optimization in the third stage.

3.1 ContactCVAE
Figure 3 demonstrates the architecture of the ContactCVAE
network, which is a generative model based on CVAE [Sohn
et al., 2015]. It consists of two blocks: a Condition-Encoder
and a Generator.
Condition-Encoder. The Condition-Encoder Eθc is built on
PointNet [Qi et al., 2017]. It takes a point cloud as input to
extract local features fl ∈ RN×64 and global featuresfg ∈

R1×1024. fg are then duplicated N times to make a feature
map fg ∈ RN×1024 for matching the shape of fl. These
two features are then concatenated as flg for the conditional
inputs for the generator below.
Generator. The generator Gϕg follows an encoder-decoder
architecture. As shown on the top of Figure 3, the encoder,
Eθe : (C,O) ↣ z, is based on PointNet [Qi et al., 2017]
architecture which takes both an object point cloud O and a
contact map C as inputs and outputs the latent code z ∈ R64.
The encoder is only employed in training and is discarded
in inference. The latent code z represents a sample of the
learned distribution Q(z|µ, σ2) and is used to generate the
contact map, where µ, σ2 denotes the mean and variance of
the distribution. We then duplicate the latent code z N times
to make the latent feature fz for all the points. The decoder
Dθd :(f i

z, f
i
lg) ↣ C ′i is a classifier for a point i which merges

three different features (global f i
g , local f i

l and latent f i
z) to

classify whether the point belongs to a contact map or not.
The decoder Dθd uses the MLP architecture and the weights
are shared for all points.
Testing Stage. During inference, as shown in the bottom
of Figure 3, we only employ the Conditional-Encoder and
decoder Dθd . A latent code z is randomly sampled from a
Gaussian distribution and forms the latent feature fz . At the
same time, the Condition-Encoder takes an object point cloud
to output the global and local features. With these features
(fz, fg, fl), Dθd outputs the grasp contact C ′ for the object.
Contact Loss. The goal of training the model is to optimize
θe, θd in order to reconstruct the contact map well. We sim-
plify the goal as a binary classification task. Thus, we adopt
the binary cross-entropy loss for the model over all the points,
named as Lc1. However, some samples have small contact re-
gions and it is hard for the model to learn those samples well
by simply adopting the BCE loss. To address this problem,
we additionally introduce the dice loss [Milletari et al., 2016]
to train the model. It can assist the model in paying attention
to small target regions. In our work, we adopt the dice loss
for the same purpose and name as Lc2. the formulation of the
two loss is defined as:

Lc1 = −
∑N

i=0[yilog(ŷi) + (1− yi)log(1− ŷi)], (1)
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Figure 4: The architecture of GraspNet. It takes the concatenation of the generated (reconstructed) object contact C′ and the point cloud O
as input to predict the grasp mesh parameterized by MANO.

Lc2 = 1− 2
∑N

i=0 yiŷi∑N
i=0 yi+

∑N
i=0 ŷi

, (2)

where ŷi and yi represent the predicted contact and ground
truth of a point i, respectively.

Following the training of CVAE [Sohn et al., 2015], we use
the KL-Divergence loss regularizing the latent distribution to
be close to a standard Gaussian distribution. The loss term is
named as Lkl. The overall loss function of the ContactCVAE
network, Lcontact, is represented as:

Lcontact = γ0Lc1 + γ1Lc2 + γ2Lkl, (3)

where the γ0 = 0.5, γ1 = 0.5 and γ2 = 1e− 3 are constants
for balancing the loss terms.

3.2 GraspNet
With the assumption of hands full constrained by a contact
map, we adopt a mapping function to get the grasping pose
from the generated contact from the first stage. As shown
in Figure 4, the model takes an object point cloud O and its
generated (or reconstructed) contact C ′ as the input to predict
the hand mesh for the grasping pose, which is represented
by the MANO model [Romero et al., 2017]. Specifically,
we employ a PointNet [Qi et al., 2017] to extract the feature
and then use an MLP with four hidden layers to regress the
MANO parameters. Given the parameters, the MANO model
forms a differentiable layer that outputs the hand mesh M .

During the training period, we use both ground truth and
reconstructed contact maps to train the GraspNet. During in-
ference, we only use the generated contact map to predict the
grasp mesh. Both reconstructed and generated contact maps
are from the ContactCVAE model in the first stage.
Reconstruction Loss. We simply adopt the reconstruction
loss (L2 distance) for the predicted vertices, named as Lv .
The loss on MANO parameters is divided into two parts.
We use the L1 loss for the translation parameter and the
geodesic loss [Mahendran et al., 2017] for the pose pa-
rameter, named as Lt and Lp respectively. The final re-
construction error can be represented as LR = λvLv +
λtLt + λpLp, where λv=35, λt=0.1 and λp=0.1 are con-
stants balancing the losses. We also use the penetration loss
Lptr = 1

|Oh
in|

∑
o∈Oh

in
mini ∥o− Vi∥2 which punishes pene-

trations between the hand and object. Oh
in denotes the object

point subset that is inside the hand.
Consistency Loss. Similar to the previous work [Jiang et
al., 2021], we introduce the contact consistency loss Lcst =
∥C ′ − C ′′∥2. Based on the distance between the object and
the grasp mesh M , the contact map C ′′ can be inferred by
normalizing the distance between O and their nearest hand

prior vertice. If the grasp mesh M is predicted correctly from
the GraspNet, the input contact map C ′ should be consistent
with the contact map C ′′.

The overall loss of GraspNet, Lgrasp, is the weighted sum
of all the above loss terms:

Lgrasp = LR + λptrLptr + λcstLcst, (4)

where λptr=5 and λcst=0.05 denote the corresponding loss
weights.

Figure 5: Left: illustration of our penetration-aware partial (PAP)
optimization and the refined pose θ∗p . Penetration is detected in the
index finger and therefore partial poses θ′p on the index finger are to
be optimized. Right: the refined pose of global optimization.

3.3 Penetration-Aware Partial Optimization
Though GraspNet gives plausible grasps for most cases,
physically feasible grasps are sensitive to small errors in
poses. For example, small penetration of a fingertip to the
surface of an object can make the object drop to the floor.
Hence, we propose the penetration-aware partial (PAP) opti-
mization with generated contact maps to provide further con-
straints for small-scale partial pose refinement. PAP aims to
detect the penetration and refine the partial poses causing it
while keeping other partial poses of good quality unchanged.
To this end, the full hand mesh is divided into six parts: five
fingers and the palm. If penetration is detected in the palm
area, all the poses are adjusted. If penetration is detected in a
finger part and no penetration happens in the palm area, only
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Dataset Methods Ptr (↓) SD (↓) CR (↑) Div (↑) GSR (↑)
Dep Vol Mean Var

GrabNet [Taheri et al., 2020] 0.61 8.31 1.78 ±2.71 98.25 7.93 27.60
GraspField [Karunratanakul et al., 2020] 0.56 6.05 2.07 ±2.81 89.40 - -

Obman GraspTTA [Jiang et al., 2021] 0.45 5.14 1.62 ±2.18 99.05 8.07 47.88
Ours 0.44 3.94 1.60 ±2.28 100.00 10.14 61.37

GT 0.01 1.70 1.66 ±2.44 100.00 7.86 87.12

GrabNet [Taheri et al., 2020] 0.92 16.74 1.04 ±1.60 97.42 5.92 16.89
ContactPose GraspTTA [Jiang et al., 2021] 0.79 6.01 1.52 ±1.41 97.67 7.32 42.31

Ours 0.36 4.15 1.40 ±1.98 98.85 7.91 58.97

GT 0.51 5.91 1.06 ±1.13 99.65 7.03 41.78

Table 1: Quantitative comparison with state-of-arts on Obman and ContactPose test set.

the partial poses of the finger are adjusted. The loss for the
PAP optimization is formulated as:

Lopt(θ
′
p) =ω0Lcst(C

′′, C ′) + ω1Lptr(M(θ′p), O)+

+ω2Lh(θp, θ
′
p). (5)

Lcst, similar to the contact consistency loss defined above, is
the difference between the generated contact map C ′ and the
contact map C ′′. C ′′ is obtained by normalizing the distance
between the O and their nearest point in M(θ′p). Lptr penal-
izes the penetration between the hand M(θ′p) and object O
as similar in [Jiang et al., 2021] and [Karunratanakul et al.,
2020], defined above. Lh = ∥θp − θ′p∥ regularizes the pose
hypothesis θ′p to stay close to the generated pose θp. We set
ω0=0.1, ω1=2 and ω2=0.2.

Figure 5 (Left) shows an example of our partial optimiza-
tion for the poses θp of the finger. During the optimization,
as the loss mainly results from local wrong partial poses, the
global optimization shown on the right side of Figure 5 has
two issues 1) the gradient from local wrong partial poses af-
fects other good poses, 2) the gradient cannot take full effect
on the refinement for the wrong partial poses, which together
results in many failures of small scale refinement. In contrast,
our PAP only optimizes the poses causing the errors to get rid
of these issues.

4 Experiment
4.1 Implementation Details
We sample N = 2048 points on an object mesh as the input
object point cloud. Our method is trained using a batch size
of 32 examples, and an Adam optimizer with a constant learn-
ing rate of 1e-4. The training dataset is randomly augmented
with [−1, 1]cm translation and rotation at three (XYZ) di-
mensions. All the experiments were implemented in PyTorch,
in which our models ran 130 epochs in a single RTX 3090
GPU with 24GB memory. In the Obman dataset [Hasson et
al., 2019], all the ground truth contact map is derived by nor-
malizing the distance between the ground truth of the hand
and the object. For the inference refinement (both PAP and
global optimization), the Adam optimizer with a learning rate
of 2.0 × 10−4 is used. In the refinement process, each input
is optimized for 200 steps.

4.2 Datasets
Obman. We first validate our framework on the Obman
dataset [Hasson et al., 2019], which is a large-scale syn-
thetic dataset, including 3D hand interacting with objects.
The hands are generated by a physical-based optimization
engine GraspIt! [Miller and Allen, 2004], and are parame-
terized by the MANO model [Romero et al., 2017]. The
dataset contains 8 categories of everyday objects selected
from ShapeNet [Chang et al., 2015] with a total of 2772
meshes. The model trained on this dataset will benefit from
the diversified object models. The object contact map is de-
rived as [Taheri et al., 2020] by thresholding the normalized
distance between the object points and their nearest hand ver-
tices. Points with the distance smaller than a threshold are
marked as contact points.

ContactPose. The ContactPose dataset [Brahmbhatt et al.,
2020] is a real dataset for studying hand-object interaction,
which captures both ground-truth thermal contact maps and
hand-object poses. Though the dataset contains only 25
household objects and 2306 grasp contacts, it captures more
real interactions. For example, the contact in ContactPose
spreads across large sections of the hand, as opposed to that
at the fingertips for most cases in Obman. We manually split
the dataset into a training and test group according to the ob-
ject type. Specifically, we use 4 objects (cup, toothpaste, sta-
pler, and flashlight) with 336 grasp contacts as a test set, and
the rest for training the model. ContactPose uses the thermal
camera-based method to capture the contact region.

4.3 Evaluation Metrics
A good generated pose should be physically stable and
should be in contact with the object without penetration. In
this work, we adopt three metrics to evaluate the quality
of generated grasp poses: (1) Penetration (Ptr) The pen-
etration is measured by the depth (Dep, cm) and the vol-
ume (Vol, cm3) between the objects and generated hand
meshes. The depth is the maximum or mean of the dis-
tances from the hand mesh vertices to the surface of the ob-
ject if penetration occurs. Following [Jiang et al., 2021;
Karunratanakul et al., 2020], the volume is measured by vox-
elizing the hand-object mesh with voxel size 0.5cm. (2) Sim-
ulation Displacement (SD) The simulation displacement is
adopted to measure the stability of the generated grasp. We
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Figure 6: Scatter plots about metrics of Ptr-Vol vs. SD for the GT
and sampled grasps of the ContactPose test set. Dots in the green
box denote the positive samples grasping objects successfully during
the simulation.

report the average (Mean, cm) and variance (Var, cm) of the
simulation displacement as measured by a physics-based sim-
ulator following the same settings as [Jiang et al., 2021;
Karunratanakul et al., 2020]. The displacement is the Eu-
clidean distance between the object centers before and after
applying a grasp on the object. Though used in the exist-
ing work, the results of previous work [Karunratanakul et al.,
2020] indicate that a high penetration might correspond to a
low simulation value and therefore we suggest readers use
it for a rough reference only. (3) Contact Rate (CR, %) A
physically plausible hand-object interaction requires contact
between the hand and the object. We define a sample as pos-
itive if the hand-object contact exists, which means that there
exists at least a point on the hand surface is on or inside the
surface of the object. The contact rate is the percentage of
those positive samples over all the test samples.

In addition to the metrics used in the hand generation work,
we introduce two more metrics to evaluate the quality of the
grasping pose distributions. (4) Grasp Success Rate (GSR,
%) The grasp success rate aims to evaluate the rate of grasp
success. Specifically, we define the positive sample as the
one with Ptr-Vol< 5cm3 and SD-Mean < 2cm. The success
rate is the percentage of those positive samples over all the
test samples. (5) Diversity (Div, cm) It is also significant to
evaluate the diversity for the generation task. In this work,
we use MAE to measure the diversity of generated results.
Specifically, we measure the divergence between each gener-
ated sample and all other samples and then average them. The
formulation of the metrics mentioned above can be found in
the supplementary material (Section B).

4.4 Comparison with State-of-Arts
To illustrate the advantages of the proposed method, we com-
pared our method with three state-of-art methods: Grab-
Net [Taheri et al., 2020], GraspField [Karunratanakul et al.,
2020] and GraspTTA [Jiang et al., 2021]. We train the state-
of-art methods on ContactPose using their public code, as

they do not provide the results or metrics on this dataset.
As for Obman, only the results of GraspField are quoted
from [Jiang et al., 2021].

The results on Obman and ContactPose dataset in Table 1
show that our proposed method achieves the best perfor-
mance on all the metrics. Specifically, our method yields
the best penetration depth (0.44cm and 0.36cm) and vol-
ume (3.94cm3 and 4.15cm3). More importantly, our method
achieves the best performance on diversity (10.14cm and
7.91cm) and GSR (61.37% and 58.97%), indicating the ro-
bustness and variety of the results generated from our method.

Note that due to the limitation of simulation, grasps with
large penetration in many cases can still hold objects while
a reasonable grasp pose should embody both low pene-
tration and simulation displacement. Thus the GSR is a
more comprehensive metric considering both of them. To
verify this, Figure 6 plots penetration volume and simula-
tion displacement of the GT grasps, sampled grasps from
GraspTTA [Jiang et al., 2021] and our method for the objects
in the testing set of ContactPose. We can see that grasps in the
red box of Figure 6 exhibiting larger penetration volume still
demonstrate good grasp stability (small simulation displace-
ment). Considering both metrics, the generated grasps from
our method are closer to the origin, indicating the results have
better stability with smaller penetration (see the comparisons
of the green box).

Methods Ptr(↓) SD (↓) CR (↑) Div (↑) GSR (↑)
Dep Vol Mean Var

Param2Mesh 1.02 17.18 1.14 ±1.80 88.81 6.31 21.19
Ours w/o PAP 0.60 7.31 1.08 ±1.18 98.85 7.40 35.71

Ours global opt 0.58 6.67 1.58 ±1.79 96.23 7.56 39.27
Ours 0.36 4.15 1.40 ±1.98 98.85 7.91 58.97

Ours w/o PAP (GT) 0.56 6.73 0.98 ±0.97 100.00 6.79 39.94
Ours (GT) 0.40 3.98 1.06 ±1.13 99.65 7.03 65.37

Table 2: Self comparison on ContactPose test set.

4.5 Ablation Study
To verify the effectiveness of our proposed factorization and
PAP optimization, we construct three variants of our method
and a baseline, comparing their performances on ContactPose
test set. The results are shown in Table 2. Param2Mesh: A
baseline for grasp generations learning an end-to-end grasp
generation model. It learns the latent distribution of MANO
parameter directly. Specifically, we use the same architec-
ture of our ContactCVAE to make a fair comparison but re-
place the encoder Eθewith fully connected layers to take the
MANO parameters as inputs. Given a 3D object point cloud
and a random sample for the distribution, the decoder Dθd
generates MANO parameters directly, which is similar to the
previous work [Taheri et al., 2020]. Ours w/o PAP: A vari-
ant of our method removing the PAP optimization at the third
stage. Ours global opt: A variant of our method simply
adopting global refinement at the third stage. Ours (GT)
skips ContactCVAE stage, training and testing GraspNet with
GT contact maps directly, and Ours w/o PAP (GT) without
the PAP optimization.
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Figure 7: Visualization of the distribution of the generated grasp
poses in the test objects (toothpaste and stapler) using t-SNE.

Effectiveness of Factorization. By comparing between
Param2Mesh and Ours w/o PAP, we can see that our method
achieves significant improvement on all metrics, indicating
the effectiveness of the two-stage factorization. Especially,
the penetration volume, depth and GSR are improved by
57%, 38% and 68% respectively. In addition, the improve-
ment on diversity (Div) indicates that our method generates
more diverse samples. To further demonstrate the diversity
and generalization performance of our method, we select two
test objects (toothpaste and stapler) of ContactPose and vi-
sualize the distribution of generated grasp poses for each of
them. As shown in Figure 7, we generate 200 grasp poses
with small Ptr-Vol (< 5cm3) and SD (< 2cm) for each ob-
ject, and adopt the t-SNE technique to visualize the distribu-
tion of the pose parameters θ. The sample distribution of our
method is closer to the distribution of ground truth grasps, in-
dicating better generalization performance. More results are
shown in the supplementary material.

Effectiveness of PAP Optimization. By comparing be-
tween Ours and Ours (global opt), we can see that our PAP
optimization strategy achieves better performance than global
refinement over all the metrics, which presents the effective-
ness of our PAP optimization.

Quality of Generated Contact Maps. When compared
with Our (GT) and Our w/o PAP (GT), the metrics for pen-
etration of our methods (Ours and Our w/o PAP) are worse
but the margin of corresponding improvement is relatively
small. For example, the penetration depth of our methods are
0.36mm and 0.60mm while those of Our (GT) and Our w/o
PAP (GT) are 0.40mm and 0.56mm. The comparison indi-
cates the generated maps in the first stage are of high quality.

The examples in Figure 8 also show that the generated con-
tacts convey meaningful information for grasping. We can
observe that the generated contact map is reasonable, corre-
sponding to the grasp pose. Although there are some failure
examples (including unstable grasps and serious penetration),
the hand pose is substantially natural as human behavior.

Semantic Analysis of Latent Contact Map Space. Using
the generated object contacts to formulate the hand grasp is
one of the contributions and here we show whether our Con-
tactCVAE model can learn the latent distribution for contact
well. In point generation work [Achlioptas et al., 2018], it
demonstrates the quality of the generation model by showing
that the learned representation is amenable to intuitive and
semantically rich operations. Inspired by the work, we con-
duct the semantic analysis of the latent space learned from

Figure 8: The visualization of generated contact maps and grasps
for objects from the Obman test set and ContactPose test set. For
each example, we present both the predicted grasp pose (left) and the
corresponding contact map (right), which is presented in the form of
the heat map.

our ContactCVAE model. The detail of the procedure can be
found in the supplementary material (Section D).

Figure 1 exemplifies the contact maps and grasping poses
generated by interpolating the latent z of the contact maps
for TypeA and TypeB. Notice that the grasps change gradu-
ally in alignment with the contact maps between Type A and
Type B. For example, in Figure 1 (bottom), the yellow arrow
and circle on the mouse, denote small differences between
the contact maps and the grasp poses. As the contact region
gradually appears, the middle finger moves to the correspond-
ing position smoothly. Similar interesting observation can be
found for manipulating the phone in Figure 1 (top) where the
hand poses change from holding to pressing gradually.

5 Conclusion
In this paper, we propose a novel framework for human grasps
generation, which holds the potential for different deep ar-
chitectures. The highlight of this work is exploiting the ob-
ject affordance represented by the contact map, to formu-
late a functionality-oriented grasp pose and using penetration-
aware partial optimization to refine partial-penetrated poses
without hurting good-quality ones. The proposed method is
extensively validated on two public datasets. In terms of di-
versity and stability, both quantitative and qualitative evalua-
tions support that, our method has clear advantages over other
strong competitors in generating high-quality human grasps.

Although our method achieves great performance over all
the metrics, limitations still exist. In some cases, the gener-
ated contact maps are ambiguous, resulting in more than one
plausible grasping pose. Therefore, our assumption of the
grasp is fully constrained by the contact map does not hold.
Contact maps with more detailed hand-part segmentation can
provide stronger constraints and help to reduce ambiguity.
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