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Abstract
Pre-training has marked numerous state of the arts
in high-level computer vision, while few attempts
have ever been made to investigate how pre-training
acts in image processing systems. In this paper,
we tailor transformer-based pre-training regimes
that boost various low-level tasks. To compre-
hensively diagnose the influence of pre-training,
we design a whole set of principled evaluation
tools that uncover its effects on internal represen-
tations. The observations demonstrate that pre-
training plays strikingly different roles in low-level
tasks. For example, pre-training introduces more
local information to intermediate layers in super-
resolution (SR), yielding significant performance
gains, while pre-training hardly affects internal fea-
ture representations in denoising, resulting in lim-
ited gains. Further, we explore different methods of
pre-training, revealing that multi-related-task pre-
training is more effective and data-efficient than
other alternatives. Finally, we extend our study to
varying data scales and model sizes, as well as com-
parisons between transformers and CNNs. Based
on the study, we successfully develop state-of-the-
art models for multiple low-level tasks.

1 Introduction
Image pre-training has received great attention in computer
vision, especially prevalent in object detection and segmenta-
tion [Girshick et al., 2014; Girshick, 2015; Chen et al., 2017].
When task-specific data is limited, pre-training helps mod-
els see large-scale data, thus vastly enhancing their capabil-
ities. In the field of high-level vision, previous work [Ko-
rnblith et al., 2019; Sun et al., 2017; Mahajan et al., 2018;
Kolesnikov et al., 2020] has shown that ConvNets pre-trained
on ImageNet [Deng et al., 2009] classification yield signifi-
cant improvements on a wide spectrum of downstream tasks.
As for image processing tasks, e.g., super-resolution (SR)
and deraining, the widely used datasets typically contain only
a few thousand images, pointing out the potential of pre-
training. However, its crucial role in low-level vision is com-
∗Equal contribution

monly omitted. To the best of our knowledge, the sole pio-
neer exploring this point is IPT [Chen et al., 2021]. Hence,
there still lacks principled analysis on understanding how pre-
training acts and how to perform effective pre-training.

Previous image processing systems majorly leverage con-
volutional neural networks (CNNs) [LeCun et al., 1989].
More recently, transformer architectures [Dosovitskiy et al.,
2020; Liu et al., 2021; Wang et al., 2021a], initially pro-
posed in NLP [Vaswani et al., 2017], have achieved promis-
ing results in vision tasks, demonstrating the potential of us-
ing transformers as a primary backbone for vision applica-
tions. Moreover, the stronger modeling capability of trans-
formers allows for large-scale and sophisticated pre-training,
which has shown great success in both NLP and computer
vision [Radford et al., 2018; Radford et al., 2019; Brown et
al., 2020; Devlin et al., 2018; He et al., 2021; Liu et al., 2022;
Zamir et al., 2022; Chen et al., 2022]. However, it remains in-
feasible to directly exploit structure designs and data utiliza-
tion on the full-attention transformers for low-level vision.
For example, due to the massive amount of parameters (e.g.,
116M for IPT [Chen et al., 2021]) and huge computational
cost, it is prohibitively hard to explore various pre-training
design choices based on IPT and further apply them in prac-
tice. Instead of following the full-attention pipeline, we ex-
plore the other window-based variants [Liang et al., 2021;
Wang et al., 2021b], which are more computationally ef-
ficient while leading to impressive performance. Along
this line, we develop an encoder-decoder-based transformer
(EDT) that is powerful yet efficient in data exploitation and
computation. We mainly adopt EDT as a representative for
efficient computation, since our observations generalize well
to other frameworks, as shown in Sec. 3.4.

In this paper, we systematically explore and evaluate how
image pre-training performs in window-based transformers.
Using centered kernel alignment [Kornblith et al., 2019;
Cortes et al., 2012] as a network “diagnosing” measure, we
have designed a set of pre-training strategies, and thoroughly
tested them with different image processing tasks. As a re-
sult, we uncover their respective effects on internal network
representations, and draw useful guidelines for applying pre-
training to low-level vision. The key findings and contribu-
tions of this study can be summarized as follows,

• Internal representations of transformers. We find
striking differences in low-level tasks, e.g., SR and de-
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Figure 1: The proposed encoder-decoder-based transformer (EDT). It processes high-resolution (e.g., in denoising) and low-resolution (e.g.,
in SR, s is the scale) inputs using different paths, modeling long-range interactions at a low resolution, for efficient computation.

raining models show clear stages, containing more local
information in early layers while more global informa-
tion in higher layers. The denoising model presents a
relatively uniform structure filled with local information.

• Effects of pre-training. We find that pre-training im-
proves the model performance by introducing different
degrees of local information, treated as a kind of induc-
tive bias, to the intermediate layers.

• Pre-training guidelines. Examining different pre-
training strategies, we suggest a favorable multi-related-
task setup that brings more improvements and could be
applied to multiple downstream tasks. Also, we find this
performing strategy is more data-efficient than purely in-
creasing the data scale. Besides, a larger model capacity
usually gets more out of pre-training.

• Transformers v.s. CNNs. We observe that both
transformers and CNNs benefit from pre-training, while
transformers obtain greater improvements.

• SOTA models. Based on the comprehensive study of
pre-training, we provide a series of pre-trained models
with state-of-the-art performance for multiple tasks, in-
cluding super-resolution, denoising and deraining.

2 Encoder-Decoder-Based Transformer
Several transformers [Chen et al., 2021; Liang et al., 2021;
Wang et al., 2021b] are tailored to low-level tasks, among
which window-based architectures [Liang et al., 2021; Wang
et al., 2021b] show competitive performance under con-
strained parameters and computational complexity. Built
upon the existing work, we make several modifications
and present an efficient encoder-decoder-based transformer
(EDT) in Fig. 1. It achieves state-of-the-art results on mul-
tiple low-level tasks (see Sec. 4), especially for those with
heavy degradation. For example, EDT yields 0.49dB im-
provement in ×4 SR on the Urban100 [Huang et al., 2015]

benchmark compared to IPT, while our ×4 SR model size
(11.6M) is only 10.0% of IPT (115.6M) and only requires
200K images (15.6% of IPT) for pre-training. Also, our
denoising model obtains superior performance in level-50
Gaussian denoising, with 38 GFLOPs for 192 × 192 inputs,
far less than SwinIR [Liang et al., 2021] (451 GFLOPs), ac-
counting for only 8.4%. And the inference speed of EDT
(51.9ms) is much faster than SwinIR (271.9ms). It should be
pointed out that designing a novel framework is not our main
purpose. Noticing similar pre-training effects on transformers
in Sec. 3.4, we adopt EDT for fast pre-training in this paper.

2.1 Overall Architecture
As shown in Fig. 1, our EDT is composed of a lightweight
convolutional encoder and decoder as well as a transformer-
based body, for modeling long-range interactions.

To improve the encoding efficiency, images are first down-
sampled to 1/4 size with strided convolutions for tasks with
high-resolution inputs (e.g., denoising or deraining), while
being processed under the original size for those with low-
resolution inputs (e.g., SR). The stack of early convolutions
is also proven useful for stabling the optimization [Xiao et
al., 2021]. Then, there follow multiple stages of transformer
blocks, achieving a large receptive field at a low computa-
tional cost. It is noted that we improve the structure of trans-
former blocks through a series of ablations and provide more
details in the supplementary file. During the decoding phase,
we upsample the feature back to the input size using trans-
posed convolutions for denoising or deraining while main-
taining the size for SR. Besides, skip connections are intro-
duced to enable fast convergence during training. In particu-
lar, there is an additional convolutional upsampler before the
output for super-resolution.

2.2 Architecture Variants
We develop four variants of EDT with different model sizes,
rendering our framework easily applied in various scenarios.
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Models EDT-T EDT-S EDT-B EDT-L
#Channels 60 120 180 240

#Stages 4 5 6 12
#Heads 6 6 6 8

#Param. (×106, M) 0.9 4.2 11.5 40.2
FLOPs (×109, G) 2.8 12.4 37.6 136.4

Table 1: Configurations of four variants of EDT. The parameter
numbers and FLOPs are counted in denoising at 192× 192 size.

As shown in Table 1, apart from the base model (EDT-B),
we also provide EDT-T (Tiny), EDT-S (Small) and EDT-L
(Large). The main differences lie in the channel number,
stage number and head number in the transformer body. We
uniformly set the block number in each transformer stage to
6, the expansion ratio of the feed-forward network (FFN) to
2 and the window size to (6, 24).

3 Study of Image Pre-training
3.1 Pre-training on ImageNet
Following [Chen et al., 2021], we adopt the ImageNet [Deng
et al., 2009] dataset in the pre-training stage. Unless spec-
ified otherwise, we only use 200K images for fast pre-
training. We choose three representative low-level tasks in-
cluding super-resolution (SR), denoising and deraining. Re-
ferring to [Chen et al., 2021; Agustsson and Timofte, 2017;
Gu et al., 2017], we simulate the degradation procedure to
synthesize low quality images. In terms of SR, we utilize
bicubic interpolation to obtain low-resolution images. As for
denoising and deraining, Gaussian noises (on RGB space)
and rain streaks are directly added to the clean images. In this
work, we explore ×2/×3/×4 settings in SR, 15/25/50 noise
levels in denoising and light/heavy rain streaks in deraining.

We explore three pre-training strategies: on a single task,
on unrelated tasks and on related tasks. (1) Single-task pre-
training refers to training a single model on a specific task
(e.g., ×2 SR). (2) The second is to train a single model on
multiple yet unrelated tasks (e.g.,×2 SR, level-15 denoising),
while (3) the last contains highly related tasks (e.g., ×2, ×3
SR). Following [Chen et al., 2021], we adopt a multi-encoder,
multi-decoder, shared-body architecture for the latter two se-
tups. The fine-tuning is performed on a single task, where the
model is initialized with the pre-trained task-specific encoder
and decoder as well as the shared transformer body. Training
details are provided in the supplementary file.

3.2 Centered Kernel Alignment
We introduce centered kernel alignment (CKA)[Kornblith et
al., 2019; Cortes et al., 2012; Raghu et al., 2021] to study
representation similarity of network hidden layers, support-
ing quantitative comparisons within and across networks. In
detail, given m data points, we calculate the activations of
two layers X ∈ Rm×p1 and Y ∈ Rm×p2 , having p1 and p2
neurons respectively. We use the Gram matrices K = XX>

and L = YY> to compute CKA:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (1)

where HSIC is the Hilbert-Schmidt independence crite-
rion [Gretton et al., 2007]. Given the centering matrix H =

In − 1
n11

>, K
′
= HKH and L

′
= HLH are centered

Gram matrices, then we have HSIC(K,L) = vec(K
′
) ·

vec(L
′
)/(m− 1)2. Thanks to the properties of CKA, invari-

ant to orthogonal transformation and isotropic scaling, we are
able to conduct a meaningful analysis of neural network rep-
resentations. However, naive computation of CKA requires
maintaining the activations across the entire dataset in mem-
ory, causing much memory consumption. To avoid this, we
use minibatch estimators of CKA[Nguyen et al., 2020], with
a minibatch of 300 by iterating over the test dataset 10 times.

3.3 Representation Structure of EDT
We begin our investigation by studying the internal repre-
sentation structure of our models. How are representations
propagated within models in different low-level tasks? To an-
swer this intriguing question, we compute CKA similarities
between every pair of layers within a model. Apart from the
convolutional head and tail, we include outputs of attention
and FFN after residual connections in the transformer body.

We observe a block-diagonal structure in the CKA similar-
ity maps in Fig. 2. As for the SR and deraining models in
Fig. 2 (a)-(b), we find there are roughly four groups, among
which a range of transformer layers are of high similarity.
The first and last group structures (from left to right) corre-
spond to the model head and tail, while the second and third
group structures account for the transformer body. As for the
denoising task (Fig. 2 (c)), there are only three obvious group
structures, where the second one (transformer body) is domi-
nated. Finally, from the cross-model comparison in Fig. 2 (d)
and (h), we find higher similarity scores between denoising
body layers and the second group SR layers, while showing
significant differences compared to the third group SR layers.

We also explore the impact of single-task pre-training on
the internal representations. As for SR and deraining in Fig. 2
(e)-(f), the representations of the model head and tail remain
basically unchanged. Meanwhile, we observe obvious repre-
sentation changes in the transition regions between the sec-
ond and third groups. In terms of denoising in Fig. 2 (g), the
internal representations do not change too much, consistent
with the finding in Table 4 that denoising tasks obtain fewer
improvements, compared to SR and deraining tasks.

Key Findings: (1) SR and deraining models show clear
stages in the internal representations of the transformer body,
while the denoising model presents a relatively uniform struc-
ture; (2) the denoising model layers show more similarity to
the lower layers of SR models, containing more local infor-
mation, as verified in Sec. 3.4; (3) single-task pre-training
mainly affects the intermediate layers of SR and deraining
models but has limited impact on the denoising model.

3.4 Single- and Multi-Task Pre-training
In the previous section, we observe that the transformer body
of SR models is clearly composed of two group structures
and pre-training mainly changes the representations of higher
layers. What is the difference between these two partitions?
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Figure 2: Sub-figures (a)-(c) show CKA similarities between all pairs of layers in ×2 SR, light streak deraining and level-15 denoising
EDT-B models with single-task pre-training, and the corresponding similarities between with and without pre-training are shown in (e)-(g).
Sub-figure (d) shows the cross-model comparison between SR and denoising models and (h) shows the ratios of layer similarity larger than
0.6 for input images, where “s” means the similarity between the current layer in SR and any layer in denoising.
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Figure 3: PSNR improvements of single-task, multi-unrelated-task
and multi-related-task pre-training for EDT-B in ×2 SR.

How does the pre-training, especially multi-task pre-training,
affect the behaviors of models?

We conjecture that one possible reason causing the parti-
tion lies with the difference of ability to incorporate local or
global information between different layers. We start by an-
alyzing self-attention layers for their mechanism of dynam-
ically aggregating information from other spatial locations,
which is quite different from the fixed receptive field of the
FFN layer. To represent the range of attentive fields, we aver-
age pixel distances between the queries and keys using atten-
tion weights for each head over 170,000 data points, where
a larger distance usually refers to using more global infor-
mation. We do not record attention distances of shifted local
windows, because the shift operation narrows down boundary
windows and hence can not reflect real distances.

As shown in Fig. 4 (e)-(h), for the second group structure

(counted from the head, same as Sec. 3.3), the standard devi-
ation of attention distances (shown as the blue area) is large
and the mean value is small, indicating the attention mod-
ules in this group structure area have a mix of local heads
(relatively small distances) and global heads (relatively large
distances). On the contrary, the third group structure only
contains global heads, showing more global information are
aggregated in this stage.

Compared to single-task pre-training (×2 SR, Fig. 4 (b)
and (f)), multi-unrelated-task setup (×2, ×3 SR, g15 denois-
ing, in Fig. 4 (c) and (g)) converts more global representa-
tions (in red box) of the third group to local ones, increasing
the scope of the second group. In consequence, as shown in
Fig. 3, we observe obvious PSNR improvements on all bench-
marks. When replacing the g15 denoising with highly related
×4 SR (×2, ×3, ×4 SR, in Fig. 4 (d) and (h)), we observe
more changes in global representations, along with further
improvements in Fig. 3. The inferiority of multi-unrelated-
task setup is mainly due to the representation mismatch of un-
related tasks, as shown in Sec. 3.3. We also provide detailed
quantitative comparisons for all tasks and different batch size
settings in the supplementary material.

Key Findings: (1) the representations of SR models contain
more local information in early layers while more global in-
formation in higher layers; (2) all three pre-training methods
can greatly improve the performance by introducing different
degrees of local information, treated as a kind of inductive
bias, to the intermediate layers of the model, among which
multi-related-task pre-training performs best.
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Figure 4: Sub-figures (a)-(d) show CKA similarities of×2 SR models, without pre-training as well as with pre-training on a single task (×2),
unrelated tasks (×2, ×3 SR, g15 denoising) and highly related tasks (×2, ×3, ×4 SR). Sub-figures (e)-(h) show the corresponding attention
head mean distances of transformer blocks. We do not plot shifted local windows in (e)-(h) so that the last blue dotted line (“---”) has no
matching point. The red boxes indicate the same attention modules.

Average: 5.33 Average: 5.10

Figure 5: Attention head mean distances of transformer blocks in
SwinIR with and without pre-training.

To validate whether the finding that pre-training brings
more local information to the model also fit other window-
based frameworks, we show the attention head distances of
SwinIR [Liang et al., 2021] in Fig. 5. Without pre-training,
the first few blocks (1-15) tend to be local while the last ones
(16-18) are more global. And pre-training brings more local
representations, matching our observation before.

3.5 Effect of Data Scale on Pre-training
In this section, we investigate how pre-training data scale af-
fects the super-resolution performance. As shown in Table 2,

Model Data Set5 Set14 Urban100 Manga109
EDT-B 0 38.45 34.57 33.80 39.93
EDT-B† 50K 38.53 34.66 33.86 40.14
EDT-B† 100K 38.55 34.68 33.90 40.18
EDT-B† 200K 38.56 34.71 33.95 40.25
EDT-B† 400K 38.61 34.75 34.05 40.37
EDT-B? 200K 38.63 34.80 34.27 40.37

Table 2: PSNR(dB) results of different pre-training data scales in×2
SR. “EDT-B†” refers to the base model with single-task (×2 SR)
pre-training and “EDT-B?” represents the base model with multi-
related-task (×2, ×3, ×4 SR) pre-training.

with regard to the EDT-B model, we obviously observe incre-
mental PSNR improvements on multiple SR benchmarks by
increasing the data scale from 50K to 400K during single-task
pre-training. It is noted that we double the pre-training itera-
tions for the data scale of 400K so that the data can be fully
functional. However, a longer pre-training period largely in-
creases the training burden.

On the contrary, as shown in Table 2, multi-related-task
pre-training (with much fewer training iterations) success-
fully breaks through the limit. Our EDT-B model with multi-
related-task pre-training on 200K images achieves new state
of the arts on all benchmarks, though a smaller data scale is
adopted, revealing that simply increasing the data scale may
not be the optimal option. Thus, we suggest multi-related-
task pre-training is more effective and data-efficient.
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Figure 7: CKA similarities between all pairs of layers in EDT-S,
EDT-B and EDT-L models using single-task pre-training in ×2 SR.

3.6 Effect of Model Size on Pre-training
We conduct experiments to compare the performance of
single-task pre-training for four model variants in the ×2 SR
task. As shown in Fig. 6, we visualize PSNR improvements
of models with pre-training over counterparts trained from
scratch. It is observed that models with larger capacities gen-
erally obtain more improvements. Especially, we find pre-
training can still improve a lot upon already strong EDT-L
models, showing the potential of pre-training. The quantita-
tive results are provided in the supplementary file.

Here we visualize the CKA maps of the EDT-S, EDT-B
and EDT-L models in Fig 7. As illustrated in Sec. 3.3, we
already know there are roughly four group structures in the
CKA maps of SR models, among which the second and third
group structures account for the transformer body. The pro-
portion of the third part is positively correlated with the model
size. Especially, compared to the other two, the third group
structure of EDT-L account for the vast majority and show
high similarities, which reflects the redundancy of the model.

3.7 EDT v.s. ConvNets with Pre-training
We further explore the pre-training performance of EDT
and CNNs-based models (RRDB [Wang et al., 2018] and
RCAN [Zhang et al., 2018b]). Fig. 8 demonstrates that our
EDT-B obtains greater or comparable improvements from
pre-training, giving higher baselines with fewer parame-
ters. From the representation comparisons between EDT and
CNNs-based models exhibited in the supplementary material,
we argue that the superiority of transformers may come from
the utilization of global information.
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Figure 8: Quantitative comparison between ConvNets (RRDB and
RCAN) and our EDT-B without (“W/o”) and with (“W/”) single-
task pre-training in ×2 SR.

4 Experiments
Following the pre-training guidelines, we conduct experi-
ments in super-resolution (SR), denoising and detraining.
As aforementioned, we observe that multi-related-task pre-
training is highly effective and data-efficient. Thus, we adopt
this pre-training strategy in all the tests. The involved pre-
training tasks of SR include ×2, ×3 and ×4, those of denois-
ing include g15, g25 and g50, and those of deraining include
light and heavy rain streaks. More experimental settings and
visual comparisons are given in the supplementary file.

4.1 Super-Resolution Results
For the super-resolution (SR) task, we test our models on two
settings, classical and lightweight SR, where the latter gen-
erally refers to models with < 1M parameters. The results
of ×3 classical SR and lightweight SR are provided in the
supplementary material due to the space limit.

We compare our EDT with state-of-the-art CNNs-based
methods as well as transformer-based methods. As shown in
Table 3, while the proposed EDT-B serves as a strong base-
line, achieving nearly 0.1dB gains on multiple datasets over
SwinIR [Liang et al., 2021], pre-training still brings signifi-
cant improvements on ×2 and ×4 scales. For example, we
observe up to 0.46dB and 0.45dB improvements on high-
resolution benchmark Urban100 and Manga109, manifesting
the effectiveness of our pre-training strategy.

4.2 Denoising Results
In Table 4, we present our three models: (1) EDT-B without
pre-training; (2) EDT-B with pre-training; (3) EDT-B without
downsampling and pre-training.

It is worthwhile to note that, unlike SR models that ben-
efit a lot from pre-training, denoising models only achieve
0.02-0.11dB gains. One possible reason is that we use a large
training dataset in denoising tasks, which already provides
sufficient data to make the capacity of our models into full
play. On the other hand, pre-training hardly affects the in-
ternal feature representation of models, discussed in Sec. 3.3.
Therefore, we suggest that the Gaussian denoising task may
not need a large amount of training data.

Besides, we find our framework is well performed on high
noise levels (e.g., σ = 50), while yielding slightly inferior
performance on low noise levels (e.g., σ = 15). This could
be caused by the downsampling operation in EDT. To ver-
ify this assumption, we train another EDT-B model without
downsampling. As shown in Table 4, it does obtain better
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Scale Method #Param. Set5 Set14 BSDS100 Urban100 Manga109
(×106) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2

RCAN [Zhang et al., 2018b] 15.4 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [Dai et al., 2019] 15.7 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
NLSA [Mei et al., 2021] 31.9 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
IPT† [Chen et al., 2021] 115.5 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [Liang et al., 2021] 11.8 38.42 0.9622 34.48 0.9252 32.50 0.9038 33.70 0.9418 39.81 0.9796
SwinIR‡ [Liang et al., 2021] 11.8 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
EDT-B(Ours) 11.5 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800
EDT-B†(Ours) 11.5 38.63 0.9632 34.80 0.9273 32.62 0.9052 34.27 0.9456 40.37 0.9811

×4

RCAN [Zhang et al., 2018b] 15.6 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [Dai et al., 2019] 15.9 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
NLSA [Mei et al., 2021] 44.2 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
IPT† [Chen et al., 2021] 115.6 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [Liang et al., 2021] 11.9 32.74 0.9020 29.06 0.7939 27.89 0.7479 27.37 0.8233 31.93 0.9246
SwinIR‡ [Liang et al., 2021] 11.9 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT-B(Ours) 11.6 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.05 0.9254
EDT-B†(Ours) 11.6 33.06 0.9055 29.23 0.7971 27.99 0.7510 27.75 0.8317 32.39 0.9283

Table 3: Quantitative comparison for classical SR on PSNR(dB)/SSIM on the Y channel from the YCbCr space. “‡” means the ×4 model of
SwinIR are pre-trained on the ×2 setup and training patch size is 64× 64 (ours is 48× 48). “†” indicates methods with a pre-training. Best
and second best results are in red and blue colors.

Dataset σ
BM3D DnCNN FFDNet BRDNet IPT† DRUNet SwinIR‡ EDT-B EDT-B† EDT-B∗

[Dabov et al., 2007] [Zhang et al., 2017] [Zhang et al., 2018a] [Tian et al., 2020] [Chen et al., 2021] [Zhang et al., 2021] [Liang et al., 2021] (Ours) (Ours) (Ours)

CBSD68
15 33.52 33.90 33.87 34.10 - 34.30 34.42 34.33 34.38 34.39
25 30.71 31.24 31.21 31.43 - 31.69 31.78 31.73 31.76 31.76
50 27.38 27.95 27.96 28.16 28.39 28.51 28.56 28.55 28.57 28.56

Kodak24
15 34.28 34.60 34.63 34.88 - 35.31 35.34 35.25 35.31 35.37
25 32.15 32.14 32.13 32.41 - 32.89 32.89 32.84 32.89 32.94
50 28.46 28.95 28.98 29.22 29.64 29.86 29.79 29.81 29.83 29.87

McMaster
15 34.06 33.45 34.66 35.08 - 35.40 35.61 35.43 35.51 35.61
25 31.66 31.52 32.35 32.75 - 33.14 33.20 33.20 33.26 33.34
50 28.51 28.62 29.18 29.52 29.98 30.08 30.22 30.21 30.25 30.25

Urban100
15 33.93 32.98 33.83 34.42 - 34.81 35.13 34.93 35.04 35.22
25 31.36 30.81 31.40 31.99 - 32.60 32.90 32.78 32.86 33.07
50 27.93 27.59 28.05 28.56 29.71 29.61 29.82 29.93 29.98 30.16

Table 4: Quantitative comparison for color image denoising on PSNR(dB) on RGB channels. “‡” means the σ = 25/50 models of SwinIR
are pre-trained on the σ = 15 level. “†” indicates methods with pre-training. “∗” means our model without pre-training and downsampling.

performance on the low level noises. Nonetheless, we sug-
gest that the proposed EDT model is still a good choice for
denoising tasks since it strikes a sweet point between per-
formance and computational complexity. For example, the
FLOPs of EDT-B (38G) is only 8.4% of SwinIR (451G).

4.3 Deraining Results
We evaluate the performance of our EDT on Rain100L [Yang
et al., 2019] and Rain100H [Yang et al., 2019] two datasets,
accounting for light and heavy rain streaks. As shown in Ta-
ble 5, though the model size of our EDT-B (11.5M) for de-
raining is far smaller than IPT (116M), it still outperforms
IPT by 0.52dB on the light rain setting. Meanwhile, our
model reaches significantly superior results by 2.66dB gain
on the heavy rain setting, compared to the second-best RCD-
Net [Wang et al., 2020], supporting that EDT performs well
for restoration tasks with heavy degradation.

5 Conclusion
Based on the proposed framework, we perform an in-depth
analysis of transformer-based image pre-training in low-level
vision. We find pre-training plays the central role of de-
veloping stronger intermediate representations by incorporat-
ing more local information. Also, we find the effect of pre-

Method RAIN100L RAIN100H
PSRN SSIM PSNR SSIM

DSC [Luo et al., 2015] 27.34 0.8494 13.77 0.3199
GMM [Li et al., 2016] 29.05 0.8717 15.23 0.4498
JCAS [Gu et al., 2017] 28.54 0.8524 14.62 0.4510
Clear [Fu et al., 2017a] 30.24 0.9344 15.33 0.7421
DDN [Fu et al., 2017b] 32.38 0.9258 22.85 0.7250

RESCAN [Li et al., 2018] 38.52 0.9812 29.62 0.8720
PReNet [Ren et al., 2019] 37.45 0.9790 30.11 0.9053

SPANet [Wang et al., 2019] 35.33 0.9694 25.11 0.8332
JORDER E [Yang et al., 2019] 38.59 0.9834 30.50 0.8967

SSIR [Wei et al., 2019] 32.37 0.9258 22.47 0.7164
RCDNet [Wang et al., 2020] 40.00 0.9860 31.28 0.9093

IPT† [Chen et al., 2021] 41.62 0.9880 - -
EDT-B†(Ours) 42.14 0.9903 34.02 0.9406

Table 5: PSNR(dB)/SSIM results for image deraining on the Y chan-
nel. “†” indicates methods with pre-training.

training is task-specific, leading to significant improvements
on SR and deraining while limited gains on denoising. Then,
we suggest multi-related-task pre-training exhibits great po-
tential in digging image priors, far more efficient than using
larger pre-training datasets. Finally, we show how data scale
and model size affect the performance of pre-training and
present comparisons between transformers and ConvNets.
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