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Abstract

Recently, many researchers have made remarkable
achievements in the field of artistic font synthe-
sis, with impressive glyph style and effect style
in the results. However, due to less exploration
in style disentanglement, it is difficult for existing
methods to envision a kind of unseen style (glyph-
effect) compositions of artistic font, and they can
only learn the seen style compositions. To solve
this problem, we propose a novel compositional
zero-shot artistic font synthesis gan (CAFS-GAN),
which allows the synthesis of unseen style compo-
sitions by exploring the visual independence and
joint compatibility of encoding semantics between
glyph and effect. Specifically, we propose two
contrast-based style encoders to achieve style dis-
entanglement due to glyph and effect intertwin-
ing in the image. Meanwhile, to preserve more
glyph and effect detail, we propose a generator
based on hierarchical dual styles AdaIN to reor-
ganize content-styles representations from struc-
ture to texture gradually. Extensive experiments
demonstrate the superiority of our model in gen-
erating high-quality artistic font images with un-
seen style compositions against other state-of-the-
art methods. The source code and data is available
at moonlight03.github.io/CAFS-GAN/.

1 Introduction
Artistic fonts are frequently employed in signboards, posters,
magazines, and web pages, playing an integral role in cap-
tivating and sustaining the audience’s attention. The com-
pelling nature of these fonts lies in the fact that designers
meticulously craft visually appealing and harmonious glyph
and effect styles that suit the occasion and theme. In the
course of design, the designers draw upon design theory and
aesthetic factors to conceive various style elements, often re-
quiring only a momentary mental picture. It is worth noting
that if we can provide a deep learning model with enough
glyph styles and effect styles as prior knowledge, whether the
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Figure 1: We aim to build an artistic font synthesis model for syn-
thesizing unseen style compositions (e.g., Arial-Cookie) by training
with some seen concepts, such as Century-Cookie, Century-Metal,
and Arial-Metal.

model can also design a kind of artistic font with unseen in-
tegrated style like humans.

In order to achieve the automatic synthesis of artistic font
based on deep learning, some conventional methods [Azadi
et al., 2018; Gao et al., 2019; Li et al., 2020a] focus on the
integrated style (glyph-effect) transfer and generate an artis-
tic font library with the existing style. These works treat the
style of artistic fonts as a whole and generalize the learned
integrated style to any character content. However, they
ignore the independence and decoupling of styles, making
these methods ineffective in scenarios where glyph and effect
styles must be controlled separately. Therefore, the conven-
tional methods cannot synthesize artistic fonts with unseen
style (glyph-effect) compositions. There are also some recent
works [Ge et al., 2021; Li et al., 2022b] that propose learning
disentangled style representations and synthesizing content-
glyph-effect controllable artistic font images. Unfortunately,
these methods focus on the seen style compositions and must
require a large amount of data paired with the three attributes
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of content, glyph, and effect. Due to pixel-level supervision
information, these methods inevitably focus on pixel-level re-
lationship instead of creating the new style compositions, re-
sulting in the generated images with a messy structure and
unclear texture.

In this paper, we propose a novel and practical task, called
compositional zero-shot artistic font synthesis (CAFS), which
focuses on unseen style composition synthesis, see Figure 1.
It aims to learn the compositionality of glyphs and effects
from the training set and is tasked with generalizing to un-
seen style (glyph-effect) compositions on any character. To
realize this task, we propose a new model, CAFS-GAN, from
the perspective of style disentanglement and content-styles
representations reorganization.

For the style disentanglement, we propose two contrast-
based style encoders, glyph encoder and effect encoder,
which implement glyph and effect disentanglement and pre-
cise style feature extraction. The key idea is that we intro-
duce glyph style contrastive loss and effect style contrastive
loss to learn the style commonalities and differences. For
the content-styles representations reorganization, we propose
an artistic font generator based on hierarchical dual styles
AdaIN, which progressively feeds glyph and effect informa-
tion to preserve more image details. The key idea is that the
hierarchical dual styles AdaIN completes the composition of
glyph and content in the high-dimensional AdaIN layer, and
the composition of effect and content in the low-dimensional
AdaIN layer. Moreover, to enable the model to synthe-
size artistic font images with controllable style attributes,
we adopt the well-known GAN [Goodfellow et al., 2014;
Li et al., 2021] framework and introduce two multi-task dis-
criminators, glyph discriminator and effect discriminator that
constrain the style of the generated glyphs and effects, respec-
tively. Finally, to comprehensively evaluate the generated re-
sults, we propose two evaluation metrics: glyph outline mis-
alignment (GOLM) and effect perception error (EPE).

In summary, our contributions are as follows:

• We propose a novel compositional zero-shot artistic font
synthesis gan (CAFS-GAN) to synthesize unseen style
compositions for artistic font images. Meanwhile, our
model supports the control of artistic font synthesis from
three aspects (i.e., glyph, effect, and content).

• We propose two new evaluation metrics, called glyph
outline misalignment (GOLM) and effect perception er-
ror (EPE), which enrich the evaluation methods from the
unique attribute of the artistic font.

• Extensive experiments demonstrate the effectiveness
and superiority of our model in synthesizing unseen
style compositions in Chinese standard, creative, hand-
writing, calligraphy artistic fonts and English artistic
fonts.

2 Related Work
2.1 Artistic Font Generation
Early artistic font generation approaches are based on the
high regularity of the spatial distribution for effects. T-Effects
[Yang et al., 2016] and DynTypo [Men et al., 2019] focus on

texture and special effects for synthesizing complex and re-
alistic artistic font images. TET-GAN [Yang et al., 2019a]
and ShapeMatching-GAN [Yang et al., 2019b] establish the
mapping between the original shape and the effect, using the
CNN (Convolutional Neural Network) to realize the text ef-
fect transfer. Then, AGIS-Net [Gao et al., 2019] and FET-
GAN [Li et al., 2020a] attempt the synchronous style transfer
of glyphs and effects of arbitrary characters or symbols. Re-
cently, DSE-Net [Li et al., 2022b] and GZS-Net [Ge et al.,
2021] have conducted separate studies on the glyph struc-
ture [Chen et al., 2021] and effects of artistic fonts. Al-
though these methods separately encodes artistic font glyph
and effects, they still have a significant data dependency on
paired data. These models learn to synthesize artistic fonts
by training on paired seen style combinations. Therefore, the
optimization process for the model parameters is based on
the pixel-level error between the generated and real images,
which causes the model to focus excessively on pixel-level
mapping relationships. This makes it difficult for the models
to create new style combinations.

2.2 Disentangled Representation Learning
Disentangled representation learning aims to infer latent fac-
tors for a given object in the real world, where each la-
tent factor is responsible for generating a semantic feature
[Han et al., 2021; Yang et al., 2021; Saini et al., 2022;
Dong et al., 2022a]. Following VAE, [Higgins et al., 2017]
introduces β-VAE to discover interpretable latent factor rep-
resentations in a completely unsupervised manner. [Chen et
al., 2018] improved β-VAE, and further proposed a princi-
pled classifier-free measure of disentanglement. Recently, a
large amount of works [Zhang et al., 2018; Li et al., 2020b;
Luo et al., 2022] have made great contributions to disentan-
gled shape and texture, unfortunately, they are unable to gen-
erate novel combinations not witnessed during training.

2.3 Compositional Zero-Shot Learning
Compositional zero-shot learning stands at the intersection of
compositionality and zero-shot learning and focuses on state
and object relations. Compositionality [Naeem et al., 2021]
can loosely be defined as the ability to decompose an observa-
tion into its primitives. Zero-shot learning [Gao et al., 2018;
Hong et al., 2022; Feng et al., 2022; Lin et al., 2022] aims
at recognizing or generating novel classes that are not ob-
served during training. Recently, [Yang et al., 2022] present
a novel decomposable causal view that characterizes how
compositional concepts are formed. [Karthik et al., 2022;
Mancini et al., 2021] propose to address the problem of open-
world compositional zero-shot learning. [Li et al., 2022c]
propose a novel siamese contrastive embedding network to
excavate discriminative prototypes of state and object.

In this paper, we propose a compositional zero-shot artis-
tic font synthesis, and use the artistic font’s glyph and effect
style as attribute primitives. More importantly, our method is
the first to estimate the unseen style compositions, and uses
the joint compatibility and differences between the two styles
to synthesize and optimize the detailed characteristics of the
image styles.
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Figure 2: The overview of proposed CAFS-GAN. The encoding process of CAFS-GAN has three input channels (1) effect sample sxi with
effect attribute xi, (2) glyph sample syi with glyph attribute yj , and (3) content sample szk with content attribute zk. For the style encoders,
we additionally input positive samples s+xi

and s+yj of style reference images. SSA integrates the style features of style samples and their
positive samples from style encoders. The generator utilizes the hierarchical dual styles AdaIN architecture to reorganize the input content,
effects, and glyph signals. The discriminator outputs a one-shot vector. The outputs of the discriminators in different channels indicate
whether the generated image comes from the domain corresponding to this channel.

3 Method
3.1 Problem Define
Compositional zero-shot artistic font synthesis (CAFS) aims
to predict an unseen style composition, namely to synthesize
glyph-effect compositions that do not exist in the training set
and map it to any character to obtain a complete artistic font
library. Let us denote with X = {xi}Nx

i=1 the set of effect at-
tributes, with Y = {yj}

Ny

j=1 the set of glyph attributes, with
Z = {zk}Nz

k=1 the set of characters, and with C = X × Y
the set of all their possible compositions. T = {Zt, Ct} is
a training set where Zt is a character set seen during train-
ing (Zt ⊆ Z) and Ct is a style compositions set seen during
training (Ct ⊆ C). When the glyph and effect elements in Ct
covers all elements in X and Y , T can be used to train the
model f : {Zt, Ct} → {Zt, Cu} synthesizing the artistic
font images with unseen style combinations where Cu ⊂ C
denote the unseen style compositions and Ct ∪ Cu = C.

The difficulty of the CAFS task varies depending on the
proportion of the Ct. If the style compositions in Ct covers
all compositions and Cu ≡ ∅, the task definition is the same
as the conventional artistic font generation task, where the
model only needs to predict the seen style combination on ar-
bitrary character content. In the case of Ct ⊂ C, since the
model only learns jointly compatibility of encoding seman-
tics between glyph and effect in seen style compositions, it
is very challenging to predict unseen style combinations. It

is worth noting that as the Ct shrinks, the training data can
provide the model with fewer data on the joint compatibility
relationship of glyph and effect. In this case, the shrink of
composition information hinders the recognizability of glyph
and effect, making it difficult for the model to predict unseen
style combinations. Regarding this hypothesis, we verified it
in Experiment 5.5.

3.2 Overview of CAFS-GAN
The CAFS-GAN consists of the following modules: two style
encoders Ex and Ey , two style similarity attention mod-
ules, a content encoder Ez , an artistic font generator G,
and two style discriminators Dx and Dy [Lin et al., 2020;
Dong et al., 2022b], as shown in Figure 2. First, Ex and
Ey represent effect style encoder and glyph style encoder, re-
spectively, which are used to disentangle and extract glyph
and effect style features. At the end of the two style en-
coders, we add a style similarity attention (SSA) module,
which uses the similarity of style attributes to enhance the
model’s perception of various glyphs or effects. The struc-
ture details of Ex and Ey are similar to VGG11 [Simonyan
and Zisserman, 2014]. Unlike Ex and Ey , our Ez adds sev-
eral padding layers to increase the sampling times for the font
strokes at the image’s edge. This operation protects the in-
tegrity of the character structure. In addition, since the con-
tent information of characters belongs to high-dimensional
semantic information, we add resblocks at the end of the con-
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tent encoder to retain more content information. Lastly, our
Dx and Dy are two multi-task discriminators consisting of
FRN (Filter Response Normalization) [Singh and Krishnan,
2020] and convolutional layer, which consists of multiple out-
put branches. Each branch learns a binary classification de-
termining whether an artistic font has real glyph style or real
effect style.

In the next sections, we will look at the two aspects: style
(glyph-effect) disentanglement (in sections3.3 and 3.4) and
content-styles representations reorganization (in section 3.5).

3.3 Contrast-Based Style Encoders
In the process of achieving the CAFS task, the style encoders
need to provide the generator with disentangled glyph fea-
tures and effect features. However, the actual situation is that
the visual elements of effect, glyph, and content are entan-
gled, and the commonly used data enhancement methods can-
not eliminate or highlight a certain visual element. Therefore,
we introduce a contrastive learning [He et al., 2020; Li et al.,
2022a] strategy to encourage encoders to identify deep sim-
ilarities and differences between the two style attributes, in
Figure 4. Taking the pipeline of effect extraction as an ex-
ample, we define s+xi

and S−xi
= {s−1,xi

, s−2,xi
, ..., s−Nx−1,xi

}
as the positive sample and negative sample set of the orig-
inal input sxi

, respectively. Nx denotes the number of all
kinds of effect styles, one of which is the effect of positive
samples, and Nx − 1 is the number of all kinds of negative
effects. The positive pair (sxi

, s+xi
) only shares the same ef-

fect, and the negative pair (sxi
, s−r,xi

) have different effects
(1 ≤ r ≤ Nx − 1). At this time, we utilize the effect style
contrastive loss to enhance the effect similarity between pos-
itive pairs and the dissimilarity between negative pairs:

LEx
sty = −log

exp(fxi
· f+

xi
/τ)∑Nx−1

r=1 exp(fxi
· f−

r,xi
/τ)

, (1)

where fxi
, f+

xi
, f−

r,xi
are effect features obtained by

sx, s
+
x , s

−
r,xi

through Ex. Similarly, we also impose the

glyph style contrastive loss LEy

sty to improve the glyph
encoder. Furthermore, the total style contrastive loss can be
defined as:

Lsty = LEx
sty + LEy

sty. (2)

3.4 Style Similarity Attention
To make full use of the style similarity between positive sam-
ples and original samples as auxiliary information for syn-
thesizing disentangled style features, we introduce a style
similarity attention module at the end of the style encoders.
Specifically, we use the style features of positive samples as
K and V, and use the style features of original images as Q.
Style similarity attention can be expressed as:

SSA(Q,K, V ) = softmax(
f · f+T

σ
)f+, (3)

where f, f+ are style features from the original image and
positive sample, and σ factor follows Attention Mechanism
[Vaswani et al., 2017; Guo et al., 2020] to prevent the magni-
tude of the dot product from growing extreme.

Overall, our proposed contrast-based style encoders en-
courage the encoders to have more robust style disentangle-
ment ability. The SSA enhances the prominent glyph-effect
characteristics by amplifying the specific style signal strength
to obtain a pure glyph or effect representation.

3.5 Hierarchical Dual Styles AdaIN
Since neural networks are easier to retain abstract informa-
tion in high-dimensional layers and easier to retain color in-
formation in low-dimensional layers [Gatys et al., 2016], we
propose an artistic font generator based on hierarchical dual
styles AdaIN. Specifically, we pass the disentangled glyph
features and effect features through a fully connected layer
(FC) to obtain high- and low-dimensional glyph style sig-
nals, respectively. Here, we input the glyph signal into the
AdaIN layer [Huang and Belongie, 2017] of the generator
and fuse the content information through high-dimensional
connections, so that the generator can determine the overall
outline and structural pattern [Wu et al., 2020] in the early
stage of generation. Furthermore, the effect signal is input
to the generator through low-dimensional connections to ren-
der the color and texture details of the artistic font based on
the established glyph. Formally, we use the style encoders
and SSA to extract the effect feature fxi

and glyph features
fyj

, and input them to the fully connected layer. The fully
connected layer aims to align fxi

and fyj
with the channel

means and variances of the content inputs fzk , and to use fxi

and fyj as the adaptive affine parameters of the AdaIN layer
(i.e., w and b). Ultimately, we achieve a progressive reorgani-
zation of the content with glyph and effect using hierarchical
dual styles AdaIN:

f l+1
zk

=

 wyj
(
f l
zk

−µ

σ ) + byj , l ≤ h

wxi
(
f l
zk

−µ

σ ) + bxi
, l > h

(4)

where l denotes the current layer number and h denotes the
threshold for dividing the high-dimensional AdaIN layers and
the low-dimensional AdaIN layers.
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Methods Disentangled Style Training L1 loss ↓ FID ↓ SSIM ↑ GOLM ↓ EPE ↓
AGIS-Net [Gao et al., 2019] × paired 0.2277 107.01 0.4313 81.025 4.3981
FET-GAN [Li et al., 2020a] × paired 0.2005 100.56 0.4474 68.820 7.5113
StarGANv2 [Choi et al., 2020] × unpaired 0.2997 72.24 0.3647 82.934 3.7708
GZS-Net [Ge et al., 2021] ✓ paired 0.2460 140.35 0.3648 87.328 7.2335
DSE-Net [Li et al., 2022b] ✓ paired 0.1754 72.19 0.4428 83.345 3.7332
Ours ✓ unpaired 0.1271 64.79 0.5883 73.225 3.0734

Table 1: Quantitative comparison of the CAFS-GAN and the existing state-of-the-art methods.

3.6 Full Objective
Our full objective functions can be summarized as follows:

min
G,E

max
D

λstyLsty + λadvLx
adv + λadvLx

adv, (5)

where λsty and λadv are hyperparameters. The Lx
adv and

Ly
adv denote two adversarial loss terms for the effect discrim-

inator and glyph discriminator:

Lx
adv = E[logDxi

(sxi
) + log(1−Dxi

(sxi,yj ,zk))], (6)

Ly
adv = E[logDyj

(syj
) + log(1−Dyj

(sxi,yj ,zk))], (7)

where Dxi(·) and Dyj (·) denote the logits from the domain-
specific (xi) effect discriminator and domain-specific (yj)
glyph discriminator. sxi,yj ,zk denote the generated artistic
font image with three specific attributes.

4 Metrics
In order to better evaluate the generated glyphs and effects,
we propose two kinds of new quantitative measures, GOLM
for glyph and EPE for effect. Meanwhile, we also use three
classic quantitative measures, such as L1, SSIM, and FID.

Glyph outline misalignment (GOLM). GOLM is used to
evaluate whether the edge information of the generated artis-
tic font is correct and complete. Firstly, we convert the images
I to its grayscale Igray , and calculate horizontal and vertical
directions gradients using the Sobel operator. By summing
the root mean square of the gradients in the two directions,
we can get the final gradient of each pixel. The formula for
GOLM is as follows:

GOLM =
∣∣Iedge − I ′edge

∣∣ , (8)

Iedge =
√

(A · Igray)2 + (B · Igray)2, (9)

where Iedge and I ′edge denote the edge image of the real image
and generated image. A and B denote horizontal and vertical
Sobel matrixs.

Effect perception error (EPE). The visual communication
of effect is often presented in the form of texture in artis-
tic font images. EPE is used to evaluate whether the tex-
ture information of the generated image is accurate. First, we
use the VGG19 [Simonyan and Zisserman, 2014] network to
calculate the feature maps of the image in the deep layers,
and then obtain the texture gram matrix [Gatys et al., 2016]

through the inner product operation to represent the texture
features. Then, EPE can be formulated as follows:

EPE =
1

n

n∑
i=1

(Gi − G′
i)

2, (10)

where n denotes the number of network layers involved in
the calculation of feature maps, Gi and G′

i denote the gram
matrixs calculated in the i-layer network of the real image
and the generated image.

5 Experiments
5.1 Datasets
SSAF Dataset. SSAF [Li et al., 2022b] contains a large
number of high-quality Chinese and English artistic images,
with annotations for their glyphs, effects, and content.
Fonts Dataset. Fonts [Ge et al., 2021] is a computer gener-
ated RGB font image dataset. It consists of 52 English letters
with 5 independent attributes: letter identity, font size, font
color, background color, and glyph.

5.2 Implementation Details
In our experiments, all images are resized to 128×128 pixels.
The hyperparameters are set as: λadv = 1.0 and λsty = 0.1.
In training, we set the batch size as 8 and train 105 iterations
for Chinese artistic font generation and 2× 104 iterations for
English. The learning rate is set to 0.0001, using Adam op-
timizer. Regarding the division of all possible style composi-
tions, we set the proportion of the number of style composi-
tions in Cu to Ct to be 1: 8. In each category of artistic font,
775 Chinese characters and 22 uppercase English letters are
used for training. 197 Chinese characters and 4 uppercase
English letters are used for testing.

5.3 Comparison with SOTA Methods
Quantitative comparison. We compare three non-zero-
shot methods, such as AGIS-Net [Gao et al., 2019], FET-
GAN [Li et al., 2020a], and StarGANv2 [Choi et al., 2020].
The style (glyph-effect) compositions of the target artistic
fonts synthesized by them are seen in the training. Mean-
while, we also compare two zero-shot methods, such as GZS-
Net [Ge et al., 2021] and DSE-Net [Li et al., 2022b]. The
style compositions they synthesized are unseen during train-
ing. In Table 1, the CAFS-GAN proposed by us has achieved
apparent advantages in synthesizing unseen style composi-
tions. Moreover, the synthesized results by CAFS-GAN are
also ahead of the conventional artistic font synthesis methods
in five metrics.
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Figure 4: Comparison with state-of-the-art methods. Manual results by human are shown in the last column as ground truth. Six rows of
experimental results correspond to (1) Chinese artistic font with normal glyph. (2) Creative glyph. (3) Handwriting glyph. (4) Calligraphy
glyph. (5) English artistic font with simple effect. (6) English artistic font with delicate effect.
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Figure 5: Ablation study of CAFS-GAN. The Baseline includes three encoders and a generator without two style contrastive losses and SSA,
and it receives two style vectors that have been spliced in the basic AdaIN layer. The setup of 5 groups of experiments: (A) adding LEx

sty to
the Baseline, (B) incrementally adding LEy

sty , (C) incrementally adding SSA, (D) replacing AdaIN with a reverse version of hierarchical dual
styles AdaIN based on (C). (E) incrementally adding hierarchical dual styles AdaIN based on (C). The setup of experiment (E) denotes the
full of CAFS-GAN.

Qualitative comparison. In Figure 4, our method has gen-
erated photo-realistic glyph and effect style and is superior
to other methods. We can easily observe that some meth-
ods work well in the normal glyph, but their performance in
creative, handwriting, and calligraphy drops sharply. For En-
glish, some methods are difficult to generate the correct glyph
and effect (e.g., DSE-Net), and the othes are difficult to gen-
erate the correct character content (e.g., GZS-Net).

5.4 Ablation Study
We conducted ablation study to validate the effectiveness of
the components and loss functions of the model. The experi-
mental results are depicted in Figure 5 and Table 2.

Style contrastive losses. The purpose of style contrastive
losses is to disentangle the glyph and effect and improve the
encoder’s ability to extract pure glyph and effect features. In
Figure 5(A), after we add LEx

sty , the dark red effect disappears

obviously and the correct metal texture effect appears. After
we simultaneously add LEx

sty and LEy

sty , the glyph structure of
(B) becomes more accurate than (A).

Style similarity attention. The SSA makes use of the style
similarity between the positive and original samples to en-
hance the feature signal of the glyph and effect. We add SSA
to the setup of experiment (B). In Figure 5(C), the stroke on
the left side of this character has been significantly improved.

Hierarchical dual styles AdaIN. This structure helps the
model to synthesize artistic fonts from structure to texture
through hierarchically input to improve image details. The
reverse version of this structure treats the glyph as low-
dimensional information and the effect as high-dimensional
information. We add the reverse version of hierarchical dual
styles AdaIN to the setup of experiment (C). Figure 5 (C)(D)
shows that the reverse version will lose a lot of effects and
glyph details. Then, we add the right version of hierarchical
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L1 loss ↓ FID ↓ SSIM ↑ GOLM ↓ EPE ↓
Baseline 0.2750 261.08 0.3039 189.29 2.6751
(A) 0.2852 257.73 0.2653 187.51 3.9582
(B) 0.2336 201.66 0.3345 183.83 2.0330
(C) 0.2290 178.07 0.3333 182.81 1.2076
(D) 0.2452 262.31 0.3099 185.10 1.6954
(E) 0.2251 179.61 0.3520 179.25 1.0767

Table 2: Quantitative evaluation of ablation study.

Figure 6: Influence of the proportion of seen style compositions.
The x-coordinate represents the proportion of Ct to C, and the y-
coordinate represents the value of each metric.

dual styles AdaIN to the setup of experiment (C). Figure 5
(C)(E) shows the optimization of image details.

5.5 Proportion of the Seen Style Compositions
We also discussed the influence of the proportion of seen style
composition Ct to all possible style compositions C on the ex-
perimental results. We use six different training sets to train
CAFS-GAN, each containing the same three effects and three
glyphs, but their number of compositions is different. The
ratios of style combinations of Ct to C are set to 4/9, 5/9,
6/9, 7/9, 8/9, and 9/9. As shown in Figure 6, with the pro-
portion increase, the model’s performance presents an over-
all improved state. Therefore, we concluded that sufficient
glyph-effect joint compatibility relationship will improve the
model’s ability to understand the artistic font’s attributes and
help the model synthesize unseen style compositions.

5.6 Visualization
In order to further demonstrate the style disentanglement ca-
pability of the Ex and Ey and the ability to recombine content
and styles of the generator, we visualize the attention maps
generated by style encoders and feature maps generated by
the generator. In Figure 7(a)(b), we feed three different ef-
fects of the artistic font images to Ex and Ey . The texture part
of these images got a lot of attention from the effect encoder.
The glyph encoder tends to focus on local areas of artistic
fonts, which are the unique characteristics of the glyphs, such
as curves and corners. In Figure 7(c), the structure of fea-
ture maps of fonts are changed firstly (e.g., the lines become
clear, and the corners become apparent). Then, there is more
pixel filling inside the feature maps of the font. After that, the
texture is rendered.

(a) (b)

(c) 

Glyph transformation Effect transformation
Content Results

Figure 7: The visualization of the style attention maps and generated
feature maps. (a) The effect encoder’s attention to effect. (b) The
glyph encoder’s attention to glyph. (c) shows how the generator
adjusts the structure and then renders the effect.

Glyph-A Glyph-B Glyph-C

Effect-A Effect-B Effect-C

Figure 8: Glyph style interpolation and effect style interpolation.

5.7 Style Interpolation
We further demonstrate the flexibility of CAFS-GAN through
glyph style interpolation and effect style interpolation. In
CAFS-GAN, we can explicitly control the weighting between
different glyph or effect representations and decode the inte-
grated representation back to the image space, obtaining the
new mixed attributes, see Figure 8. This is meaningful to the
diversification of artistic fonts.

5.8 Conclusion
In this paper, we propose a new task called compositional
zero-shot artistic font synthesis (CAFS), which allows syn-
thesizing arbitrary character’s artistic font image with un-
seen style compositions. To achieve this task, we propose
the CAFS-GAN model, focusing on style disentanglement of
glyph and effect, and hierarchical reorganization of content
and styles representations. We also propose two evaluation
metrics for a more comprehensive evaluation of artistic font
images: glyph outline misalignment and effect perception
error. Extensive experiments demonstrate the effectiveness
of our model’s multi-attributes control and the superiority of
generation quality over existing methods.
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