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Abstract
Unlike conventional zero-shot learning (CZSL)
which only focuses on the recognition of un-
seen classes by using the classifier trained on
seen classes and semantic embeddings, general-
ized zero-shot learning (GZSL) aims at recognizing
both the seen and unseen classes, so it is more chal-
lenging due to the extreme training imbalance. Re-
cently, some feature generation methods introduce
metric learning to enhance the discriminability of
visual features. Although these methods achieve
good results, they focus only on metric learning
in the visual feature space to enhance features and
ignore the association between the feature space
and the semantic space. Since the GZSL method
uses semantics as prior knowledge to migrate vi-
sual knowledge to unseen classes, the consistency
between visual space and semantic space is crit-
ical. To this end, we propose relational metric
learning which can relate the metrics in the two
spaces and make the distribution of the two spaces
more consistent. Based on the generation method
and relational metric learning, we proposed a novel
GZSL method, termed VS-Boost, which can ef-
fectively boost the association between vision and
semantics. The experimental results demonstrate
that our method is effective and achieves signif-
icant gains on five benchmark datasets compared
with the state-of-the-art methods.

1 Introduction
Recently, zero-shot learning has made great progress and at-
tracted increasing attention. Conventional zero-shot learning
(CZSL) [Lampert et al., 2013] aims to only recognize ob-
jects of unseen classes through a classifier learned from seen
classes and semantic embeddings e.g. attributes and word
embeddings. Unlike CZSL with the strong assumption that
the query objects are only from unseen classes, generalized
zero-shot learning (GZSL) [Xian et al., 2018a] aims to rec-
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Figure 1: Traditional metric learning is performed in a single space
and simply pushes positive instances closer and pulls negative in-
stances farther. The proposed relational metric learning measures
the similarity between instances in two spaces and aligns the simi-
larity relationship between the two spaces.

ognize both seen and unseen classes, which is more challeng-
ing.

To better transfer knowledge from seen classes to unseen
classes, for each category, zero-shot learning introduces a
corresponding semantic embedding as prior knowledge e.g.
manual annotated attributes [Lampert et al., 2013], word em-
beddings extracted by language models [Reed et al., 2016],
etc. The current mainstream solutions for GZSL are semantic
embedding methods [Huynh and Elhamifar, 2020] [Xie et al.,
2019] and feature generation methods [Xian et al., 2018b] [Li
et al., 2019a] [Xian et al., 2019]. The semantic embedding
methods project features into the semantic space and perform
metric learning in the semantic space to learn a visual-to-
semantic inference, and finally perform classification in se-
mantic space using nearest neighbors. Due to the absence
of unseen classes, embedding methods are usually biased to-
wards seen classes and performance is inferior to generation
methods. The feature generation methods first train a gener-
ator to synthesize unseen features conditional on unseen se-
mantic embeddings and Gaussian noises, then the synthetic
features and real seen features are used to train a GZSL clas-
sifier in a supervised way. Recently, to enhance feature dis-
criminability, some methods [Han et al., 2020] [Han et al.,
2021] [Chen et al., 2021a] introduce metric learning into fea-
ture generation methods, which use triplet loss [Wen et al.,
2016] or contrastive loss [Hadsell et al., 2006] and their vari-
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ants to increase inter-class distance and decrease intra-class
distance. However, as illustrated in Figure 1, these feature-
refined methods and embedding methods only perform met-
ric learning in feature space alone or in semantic space alone,
ignoring the association between the feature space and the
semantic space. As is known to all, GZSL uses semantics
as prior knowledge to transfer visual knowledge from seen
classes to unseen classes and there is a gap between visual and
semantic information, thus the association between vision
and semantics becomes a crucial problem. To boost visual-
semantic association for GZSL, we propose a new feature
generation-based method termed VS-Boost and introduce a
novel relational metric learning which can bridge the metric
learning between two different spaces.

VS-Boost first uses a semantic embedding network to con-
strain the visual features, where the features extracted by
ResNet101 [He et al., 2016] (parameter freezing) are first
fine-tuned by the encoder and then projected into the seman-
tic space, and metric learning is performed in the semantic
space. The fine-tuned features will be more relevant to the
semantics and more discriminative through the constraint of
the semantic embedding network. After obtaining semantic-
relevant features, the proposed relational metric learning is
used to further enhance the consistency between the visual
and semantic spaces. Concretely, relational metric learning
measures the similarity between instances in the feature space
and the semantic space and aligns the similarity of the same
categories between the two spaces. We use binary cross-
entropy loss to align the similarity between the two spaces
and give proof of the validity of the loss function. It is well
known that the APY [Farhadi et al., 2009] dataset is the least
generalized dataset due to the huge difference between seen
and unseen classes, and VS-Boost greatly improves the SOTA
level on APY, which indicates that boosting the association
between vision and semantics is an effective way to solve the
GZSL problem.

In this paper, our contributions are as follows:

• We propose a novel relational metric learning, which can
relate the metric learning of two different spaces and
enhance the consistency of the distribution of the two
spaces.

• Based on the feature generation method and relational
metric learning, we propose a novel framework for
GZSL, termed VS-Boost, which effectively enhances
the association between visual space and semantic
space, thus greatly improving the generalization of the
model to unseen classes.

• We evaluated our method on five GZSL benchmark
datasets and experimentally find that ours achieves com-
petitive results with significant gains.

2 Related Work
2.1 Conventional Zero-Shot Learning
Early zero-shot learning methods focused on the conven-
tional zero-shot learning (CZSL) problem, where the test-
ing set only contains unseen classes. Semantic embedding
models [Frome et al., 2013] [Akata et al., 2015a] [Akata et

al., 2015b] [Romera-Paredes and Torr, 2015] [Kodirov et al.,
2017] [Xian et al., 2016] learn a mapping from an image fea-
ture space to a semantic space. The classic semantic embed-
ding methods DAP and IAP [Lampert et al., 2013] make use
of the semantic embeddings within a two-stage approach to
infer the label of an image that belongs to one of the un-
seen classes. In addition, other hybrid models [Zhang and
Saligrama, 2015] [Norouzi et al., 2013] [Changpinyo et al.,
2016] embed both images and semantic embeddings into an-
other intermediate space to perform classification. These em-
bedding methods have achieved good results on CZSL task.

2.2 Generalized Zero-Shot Learning
The concept of generalized zero-shot learning (GZSL) [Xian
et al., 2018a] has received significant attention since its pro-
posal. In GZSL, the testing set contains both seen and un-
seen classes, due to the overfitting of seen classes, the exist-
ing CZSL methods decline dramatically in performance and
suffer from a very serious strong-bias problem. In order to
solve the problem of shortage of unseen-class samples, the
generative adversarial networks (GAN) [Goodfellow et al.,
2014] [Mirza and Osindero, 2014] [Arjovsky et al., 2017]
and variational auto-encoding (VAE) [Kingma and Welling,
2013] were introduced for GZSL, where a generator was
trained to synthesize unseen-class visual features conditional
on corresponding semantic embeddings. Most of the current
feature generation methods [Xian et al., 2018b] [Felix et al.,
2018] [Li et al., 2019a] [Sariyildiz and Cinbis, 2019] [Xian
et al., 2019] [Narayan et al., 2020] attempt to learn an infer-
ence from semantic embeddings to visual features and some
methods [Verma et al., 2020] [Liu et al., 2021] introduce the
meta-learning strategy into the feature generation method to
improve the generalization of the model. The common space
methods [Ma and Hu, 2020] [Schonfeld et al., 2019] [Chen et
al., 2021b] propose to learn a common space into which both
visual features and semantic embeddings are projected for ef-
fective knowledge transfer. In addition to the feature gener-
ation methods, the prototype generation methods [Li et al.,
2019b] [Yu et al., 2020] [Liu et al., 2020] also achieved good
results in GZSL, where the semantics-to-prototype mapping
is trained and the synthetic prototypes are used as a classi-
fier for different classes. The attention-based methods [Xie
et al., 2019] [Huynh and Elhamifar, 2020] [Min et al., 2020]
[Chen et al., 2022] usually use attention mechanisms to ex-
tract visual features which fit better with the semantics and
design the new loss functions to balance the predictions be-
tween seen and unseen classes in GZSL task. There are also
some open-set classification methods [Yue et al., 2021] [Chou
et al., 2020] applied in zero-shot learning, which first separate
the unseen classes from the seen classes, and then classify
them separately.

Recently, in order to enhance the discriminability of fea-
tures, some methods [Han et al., 2020] [Han et al., 2021]
[Chen et al., 2021a] introduce metric learning e.g. triplet loss
[Wen et al., 2016] [Schroff et al., 2015] and contrastive loss
[Hadsell et al., 2006] to the generation method, but these
methods only perform metric learning in the feature space
without considering linking features to the semantic space,
which is not conducive to model generalization.
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Figure 2: The framework of our proposed VS-Boost. Visual feature x is extracted from ResNet-101 and the black dashed line indicates there
is no gradient back propagation. The feature generating network and metric learning module are trained on the fly. metric learning module
contains the semantic metric learning module and the relational metric learning module.

3 Method
3.1 Problem Definition
The zero-shot learning problem is defined as follows: a train-
ing (seen classes) dataset Dtr = {(xi, yi)|xi ∈ X , yi ∈ S},
where xi is the visual feature and yi is its corresponding label,
S is the label set of seen classes. In CZSL task, the testing
set is denoted as Dte = {(xj , yj)|xj ∈ X , yj ∈ U}, where U
is the label set of unseen classes and S ∩ U = ∅. While in
GZSL task, the testing set is denoted as Dte = {(xj , yj)|xj ∈
X , yj ∈ S ∪ U}. In zero-shot learning, each seen and un-
seen class has its own corresponding semantic embedding
ak ∈ A, ∀k ∈ S∪U . Given Dtr and A, the task of CZSL is to
learn the classifier fczsl : X → U , and the task of GZSL is to
learn the classifier fgzsl : X → S ∪U . Due to the strong-bias
to seen classes, GZSL task is more challenging than CZSL.

3.2 Method Overview
The architecture of VS-Boost is illustrated in Fig. 2, and it
contains two streamlines: the feature generating network and
the metric learning module. In the feature generating net-
work, we train a generator G to synthesize the visual features
from the semantic embeddings. And in the metric learning
module, a feature encoder E is trained for refining original
features. Different from the existing metric learning used in
GZSL which only focuses on metric learning in the seman-
tic space or feature space, our VS-Boost introduces a novel
relational metric learning to relate the measures of seman-
tic spaces and feature spaces. The metric learning module
contains the classical semantic embedding network and the
proposed relational metric learning. The visual features ex-
tracted by ResNet101 [He et al., 2016] are refined by encoder
E as h = E(x), and the h is mapped to the semantic space,
and semantic metric learning is completed by InfoNCE loss

[Van den Oord et al., 2018]. Moreover, we enforce the re-
lational metric learning to constrain encoder E. As illus-
trated in Figure 3, relational metric learning first calculates
the similarity between refined features by a learnable function
F and then measures the similarity of semantic embeddings.
Cross-entropy loss is employed to bridge the similarity be-
tween features and their corresponding semantic embeddings.
Through relational metric learning, the distribution of feature
space and semantic space becomes more consistent, which is
greatly conducive to the inference of visual tasks with seman-
tic embedding as a cue.

In classification, the trained feature generator G will be
used to synthesize features of unseen classes, then the syn-
thetic unseen features and real seen class features are refined
by the encoder E as the input to a classifier.

3.3 Feature Generating Network
The feature generating network [Xian et al., 2018b] intro-
duces GAN into GZSL for the first time and achieves out-
standing results than previous methods. GAN learns a fea-
ture generator G to synthesize the visual features x̃ = G(a, ϵ)
conditioned on a class-level semantic embedding a and Gaus-
sian noise ϵ ∈ N (0, 1). At the same time, the discriminator
of generator D is cross-iteratively trained with the generator
to discriminate between a real pair (x, a) and a synthetic pair
(x̃, a). The generator tries to generate a more realistic syn-
thetic feature x̃ with its corresponding semantic embedding
a. The generative model adopts the Wasserstein Generative
Adversarial Networks (WGAN) [Arjovsky et al., 2017] and
introduces the gradient penalty term [Gulrajani et al., 2017]
to train GF and D, the adversarial training loss of WGAN
can be formulated as:

LWGAN = E [D(x, a)]− E [D(x̃, a)]−
γE

[
(||∇x̂D(x̂, a)||2 − 1)2

]
,

(1)
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where E indicates expectation, x̃ = G(a, ϵ), x̂ = αx + (1 −
α)x̃ with α ∼ U(0, 1) and γ is the penalty coefficient. As
suggested in [Gulrajani et al., 2017], we fix γ = 10.

3.4 Semantic Metric Learning
The semantic embedding network [Frome et al., 2013] [Akata
et al., 2015a] [Akata et al., 2015b] [Romera-Paredes and Torr,
2015] [Kodirov et al., 2017] [Xian et al., 2016] was origi-
nally used in CZSL to learn a mapping function R that maps
a visual feature x into the semantic space denoted as R(x).
The commonly-used semantic embedding methods rely on a
structured loss function [Akata et al., 2015b][Frome et al.,
2013] formulated as below:

LSTR = Ex

[
max

(
0,∆− (a+)⊤R(x) +

(
a−

)⊤
R(x)

)]
,

(2)
where a+ is the semantic embedding corresponding to class
of x, a− ̸= a is a randomly-selected semantic embedding of
other classes, and δ > 0 is a margin. The structured loss is
of the same form as triplet loss [Wen et al., 2016] [Schroff et
al., 2015; Zhang et al., 2022], allowing the model to perform
metric learning in semantic space. Recently, semantic em-
bedding networks is used by many generation methods [Felix
et al., 2018] [Narayan et al., 2020] [Chen et al., 2021a] as
a reconstructor to give synthetic features a consistency con-
straint guaranteed that the features synthesized from semantic
embeddings can be reconstructed back to semantic embed-
dings. In this paper, to boost the associations between fea-
tures and semantics, we introduce the semantic embedding
network to impose a semantic measure constraint on original
features through training an encoder E to refine features. Un-
like some methods[Han et al., 2020] [Han et al., 2021] [Chen
et al., 2021a; Hu et al., 2021] that perform metric learning
directly in visual space, mapping the visual features to the
semantic space and performing metric learning makes the vi-
sual features more relevant to their semantics. Furthermore,
since semantics have excellent discriminability, using seman-
tic metric learning also makes the model learn to represent
more discriminative visual features. Concretely, as illustrated
in Fig. 2, the original features x are refined by encoder E,
and the refined features h are mapped to the semantic space
to obtain the mapped semantic embeddings ã = R(h). In or-
der to ensure the discriminability of ã in the semantic domain,
we employ the current popular infoNCE loss [Van den Oord
et al., 2018] instead of structure loss as the objective function
for semantic metric learning, which is formulated as:

LSM = −log
exp(ã⊤ · a+/τ)

exp(ã⊤ · a+/τ) +
∑N−1

i=1 exp(ã⊤ · a−i /τ)
,

(3)
where τ > 0 is the temperature parameter for infoNCE loss,
N is the total number of semantic embeddings. Although se-
mantic metric learning can make features and semantics more
correlated, it is still not enough, because it only performs met-
ric learning in a separate space without really bridging the
semantic space and the feature space together.

3.5 Relational Metric Learning
Recently, some methods [Han et al., 2020] [Han et al., 2021]
[Chen et al., 2021a] have proposed to refine visual features

FF

FF
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0.7

0.5

Weight sharing
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cos()
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Figure 3: Illustration of our proposed relational metric learning. F
indicates the learnable similarity function and cos() indicates cosine
similarity.

by triplet loss [Wen et al., 2016] or its variants, which ef-
fectively improve the performance of GZSL through feature
augmentation. However, these methods only perform metric
learning in the feature space, which can effectively improve
the discriminability of features but cannot enhance the asso-
ciation between features and semantics. In this subsection,
we introduce a novel relational metric learning for instance-
level constraint. Unlike conventional metric learning simply
pulls intra-class instances closer and inter-class instances far-
ther, relational metric learning effectively relates the metrics
in the semantic space with the metrics in the feature space,
thus making the distribution in the feature space more consis-
tent with the distribution in the semantic space. Specifically,
relational metric learning is based on the learnable similar-
ity function F (see Fig. 3), which learns to predict similarity
probability between two features. F is achieved through a
learnable inner product similarity and activated by a sigmoid
activation function σ, which is formulated as:

F (hi, hj) = σ(wF (hi ◦ hj)), (4)

where wF is a [2048, 1] fully connected layer, 2048 is the di-
mension of h and ◦ indicates element-wise multiplication. By
scoring the similarity of two instances, F can be modeled as
a probability prediction problem. We take the cosine similar-
ity between semantic embeddings as the ground truth and the
cross-entropy loss is as follows:

Lbce(hi, hj) = −[cos(ai, aj)logF (hi, hj)+

(1− cos(ai, aj))log(1− F (hi, hj))],
(5)

where hi, hj are the refined features of pair-wise instances
and ai, aj are their corresponding semantic embeddings.
cos(ai, aj) =

ai·aj

∥ai∥∥aj∥ indicates the cosine similarity.

Theorem. Since the semantic embedding space does not
make any changes, supposed that ζ = cos(ai, aj) ∈ [0, 1]
is a constant after the calculation and ξ = F (hi, hj) ∈ (0, 1)
is an independent variable, Equation (5) is expressed as
Lbce(ξ) = −ζlogξ−(1−ζ)log(1−ξ), and the partial deriva-
tion is formulated as follows:

∂Lbce(ξ)

∂ξ
= −ζ

ξ
+

1− ζ

1− ξ
=

ξ − ζ

ξ(1− ξ)
, (6)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1110



where Lbce(ξ) achieves a minimum value when and only
when ξ = ζ i.e. the distribution relation of feature space is
consistent with the distribution relation of semantic space.

Furthermore, imitating triplet loss [Schroff et al., 2015],
each instance h is compared with its positive sample h+ and
negative sample h− through F , where h+ and h− are sam-
pled at random. Based on Eq.(5), the relational metric loss is
as follows:

LRM = Eh

[
Lbce(h, h

+) + Lbce(h, h
−)

]
. (7)

Through relational metric learning, on the one hand, the dis-
criminability of visual features is improved by the inter-class
and intra-class metric learning, on the other hand, it enables a
more consistent distribution between semantics and features.
The distribution of the visual space is consistent with the fea-
ture space in favor of the classification of unseen classes be-
cause unseen class classification is guided by semantic cues.

3.6 Optimization
The full model of our VS-Boost optimizes G, D, E, R, and
F simultaneously with the following objective function:

min
G,R,E,F

max
D

LWGAN + LSM + LRM , (8)

where no hyper-parameters are needed to balance the differ-
ent losses to achieve the desired results.

3.7 Classification
After the proposed VS-Boost has been well trained, the seen
features extracted by ResNet-101 [He et al., 2016] and unseen
features synthesized by the generator are refined through en-
coder E as h = E(x). Suppose that the refined feature sets
of seen classes and synthetic unseen classes are Hs and H̃u,
which can be used to train a standard classifier through mini-
mizing the cross-entropy loss:

min
θ

Eh [−logP (y|h; θ)] , (9)

where θ is the parameter of the classifier, and P (y|h) is the
softmax prediction. We denote in CZSL, h ∈ H̃u,y ∈ U
while in GZSL h ∈ H̃u ∪Hs, y ∈ S ∪ U .

In the testing, the testing features xt are also refined as
ht = E(xt). The classification function is:

f(x) = argmax
y

P (y|ht; θ), (10)

where in CZSL, y ∈ U and in GZSL,y ∈ S ∪ U .

4 Experiments
Dataset. We evaluate our method on the five benchmark
datasets for zero-shot learning: Attribute Pascal and Yahoo
(APY [Farhadi et al., 2009]), Animals with Attributes (AWA
[Xian et al., 2018a]), Caltech-UCSD Birds-200-2011(CUB)
[Welinder et al., 2010], Oxford Flowers (FLO) [Nilsback
and Zisserman, 2008] and SUN Attribute (SUN) [Patterson
and Hays, 2012]. Among them, AWA, APY, and SUN use
class attributes as semantic embeddings, and CUB and FLO
use word embeddings extracted by CNN-RNN [Reed et al.,

Dataset *A #Dtr #Dte
s / #Dte

u #S / #U
APY 64 5,932 7,924 / 1,483 20 / 12
AWA 85 23,527 5,882 / 7,913 40 / 10
CUB 1,024 7,057 1,764 / 2,967 150 / 50
FLO 1,024 5,631 1,403 / 1,155 82 / 20
SUN 102 10,320 2,850 / 1,440 645 / 72

Table 1: The statistics of five benchmark datasets. * denotes dimen-
sion size, # denotes the number. A is the set of semantic embed-
dings, Dtr , Dte

s , and Dte
u are training set, testing seen classes set,

and testing unseen classes set, respectively. S and U are categories
of seen classes and unseen classes.

2016] as semantic embeddings. APY is annotated with 64-
dimensional attributes and combines datasets a-Pascal and
a-Yahoo, which has 30 and 12 classes respectively. AWA
is a coarse-grained animal dataset with manually annotated
85-dimensional attributes. While CUB and FLO are two
fine-grained datasets with 1,024-dimensional word embed-
dings. And SUN is a scenario dataset with annotated 102-
dimensional attributes. Table 1 shows the detailed statistics
of the five datasets. Similar to the state-of-the-art generation
methods, we extract the 2048-dimensional visual features for
five datasets with the backbone ResNet-101 [He et al., 2016]
pre-trained on ImageNet [Krizhevsky et al., 2012] without
finetuning. In addition, we adopt the Proposed Split(PS)
[Xian et al., 2018a] to divide all classes on each dataset into
seen and unseen classes.

Evaluation Protocols. Following the evaluation strategy in
[Xian et al., 2018a], we compute the average per-class Top-1
recognition accuracy (Acc) as the criteria. We evaluate Acc
of unseen classes (noted as U ) and seen classes (noted as S).
And the performance of GZSL is measured by their harmonic
mean: H = 2× S × U/(S + U).

Implementation Details. We implement our model by us-
ing PyTorch based on Python 3.7 platform. The the proposed
model is trained and evaluated on one GeForce RTX 3090
GPU. As a pre-processing step, we normalize the visual fea-
tures like [Li et al., 2019a]. Feature generator G, discrimi-
nator D, and semantic regressor R are multilayer perceptrons
that contain a 4,096-unit hidden layer with LeakyReLU acti-
vation. The feature encoder E is a [2048, 2048] Linear layer
with LeakyReLU activation. Finally, we use the task with N
way, K shot (N-K) random sampling for training, and use a
random mini-batch size of 8-64 for APY and AWA, 4-16 for
CUB, 1-32 for FLO and 64-2 for SUN in our method.

4.1 Compared with State-of-the-arts
To evaluate the performance of our method, we compare VS-
Boost with fourteen SOTA methods: GXE[Li et al., 2019b],
DVBE[Min et al., 2020], DAZLE[Huynh and Elhamifar,
2020], AREN[Xie et al., 2019], MSDN[Chen et al., 2022],
f-CLSWGAN[Xian et al., 2018b], LisGAN[Li et al., 2019a],
RFF-GZSL[Han et al., 2020], TF-VAEGAN[Narayan et al.,
2020], TGMZ[Liu et al., 2021], FREE[Chen et al., 2021a],
SDGZSL[Chen et al., 2021c], CE-GZSL[Han et al., 2021],
and ICCE[Kong et al., 2022]. From Table 2, it is ob-
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Method APY AWA CUB FLO SUN
U S H U S H U S H U S H U S H

†

2019 GXE 26.5 74.0 39.0 56.4 81.4 66.7 47.4 47.6 47.5 - - - 36.3 42.8 39.3
2020 DVBE 32.6 58.3 41.8 63.6 70.8 67.0 53.2 60.2 56.5 - - - 45.0 37.2 40.7
2020 DAZLE - - - 60.3 75.7 67.1 56.7 59.6 58.1 - - - 24.3 52.3 33.2
2020 AREN 30.0 47.9 36.9 54.7 79.1 64.7 63.2 69.0 66.0 - - - 40.3 32.3 35.9
2022 MSDN - - - 62.0 74.5 67.7 68.7 67.5 68.1 - - - 52.2 34.2 41.3

‡

2018 f-CLSWGAN - - - 56.1 65.5 60.4 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4
2019 LisGAN 34.3 68.2 45.7 - - - 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2
2020 RFF-GZSL - - - 59.8 75.1 66.5 52.6 56.6 54.6 65.2 78.2 71.1 45.7 38.6 41.9
2020 TF-VAEGAN - - - 59.8 75.1 66.6 52.8 64.7 58.1 62.5 84.1 71.7 45.6 40.7 43.0
2021 TGMZ 34.8 77.1 48.0 64.1 77.3 70.1 60.3 56.8 58.5 - - - - - -
2021 FREE - - - 60.4 75.4 67.1 55.7 59.9 57.7 67.4 84.5 75.0 47.4 37.2 41.7
2021 SDGZSL 38.0 57.4 45.7 64.6 73.6 68.8 59.9 66.4 63.0 62.2 79.3 69.8 - - -
2021 CE-GZSL - - - 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1
2022 ICCE 45.2 46.3 45.7 65.3 82.3 72.8 67.3 65.5 66.4 66.1 86.5 74.9 - - -

VS-Boost 49.8 69.6 58.1 67.9 81.6 74.1 68.0 68.7 68.4 69.1 84.0 75.8 49.2 37.4 42.5

Table 2: Comparisons with the SOTA GZSL methods. U and S are the Top-1 recognition accuracy of unseen and seen classes, respectively.
H is the harmonic mean of U and S. ‡ denotes feature generation methods and † denotes other methods. The best and second best results are
respectively marked in red and blue.

served that our VS-Boost achieves competitive results. In
the harmonic mean H , the main criteria of GZSL, VS-Boost
achieves the best results on APY, AWA, CUB, and FLO, and
the gains are 10.1%, 1.3%, 0.3%, and 0.8% against TGMZ
[Liu et al., 2021], ICCE [Kong et al., 2022], MSDN [Chen
et al., 2022] and FREE[Chen et al., 2021a] respectively. VS-
Boost makes significant gains on GZSL, especially on APY
which is recognized as a challenging dataset due to the huge
difference between seen and unseen domains. On SUN, the
result of the CE-GZSL[Han et al., 2021] is 0.6% higher than
ours and VS-Boost is inferior to CE-GZSL[Han et al., 2021]
and TF-VAEGAN[Narayan et al., 2020] in terms of S and
U . We speculate that the disadvantage is that SUN has 727
classes but only 102-dimensional semantic embeddings that
provide very limited information than visual features, which
degrades the performance of our VS-Boost. Furthermore,
in terms of unseen classes, VS-Boost achieves the best re-
sults on APY, AWA, and FLO and achieves second place on
other datasets. The gains for unseen classes are 4.6%, 2.7%,
and 0.1% on APY, AWA, and FLO, respectively. The per-
formance improvement achieved on GZSL fully validates the
effectiveness of our proposed VS-Boost. And the best results
on four datasets (especially on APY) indicate that the gener-
alization of our method is more excellent than other methods.

4.2 Conventional Zero-Shot Learning
In addition to the GZSL task, we implement our method
on the conventional zero-shot learning (CZSL) task, where
the test set contains only unseen classes. We compare VS-
Boost with nine CZSL methods: DAP&IAP [Lampert et al.,
2013], SSE [Zhang and Saligrama, 2015], LATEM [Xian
et al., 2016], DEVISE [Frome et al., 2013], SJE [Akata et
al., 2015b], ALE [Akata et al., 2015a], ESZSL [Romera-
Paredes and Torr, 2015], SYNC[Changpinyo et al., 2016],
and four resent GZSL methods: LisGAN [Li et al., 2019a],
TF-VAEGAN [Narayan et al., 2020], CE-GZSL [Han et al.,

Method APY AWA CUB FLO SUN

DAP 33.8 46.1 40.0 - 39.9
IAP 36.6 35.9 24.0 - 19.4
SSE 34.9 61.0 43.9 - 51.5
LATEM 35.2 55.8 49.3 40.4 55.3
DEVISE 39.8 59.7 52.0 45.9 56.5
SJE 32.9 61.9 53.9 53.4 53.7
ALE 39.7 62.5 54.9 48.5 58.1
ESZSL 38.3 58.6 53.9 51.0 54.5
SYNC 23.9 46.6 55.6 - 56.3

LisGAN 43.1 70.6 58.8 69.6 61.7
TF-VAEGAN - 72.2 64.9 70.8 66.0
CE-GZSL - 70.4 77.5 70.6 63.3
ICCE 49.5 72.7 78.4 71.6 -

VS-Boost 66.2 74.2 79.8 72.0 62.4

Table 3: Comparison results of CZSL. The first nine methods are
early CZSL methods and the following four methods are recently
proposed GZSL methods. The best and second best results are re-
spectively marked in red and blue.

2021], ICCE [Kong et al., 2022]. As documented in Table
3, our VS-Boost achieves significant gains on five bench-
mark datasets, whether compared with the CZSL methods
or the GZSL methods. In detail, VS-Boost made 16.7%,
1.5%, 1.4%, and 0.4% improvements on APY, AWA, CUB,
and FLO, respectively. Although the results of VS-Boost are
not as satisfactory as some GZSL methods on SUN, it is still
4.3% better than the best CZSL method. The competitive re-
sults achieved under CZSL verify the superior capabilities of
our VS-Boost.

4.3 Ablation Study
To provide further insight into VS-Boost, we conduct abla-
tion studies to evaluate the effects of semantic metric learn-
ing (SML) and relational metric learning (RML). Based on
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APY AWA CUB FLO SUN
a b c U S H U S H U S H U S H U S H

✓ ✗ ✗ 35.5 63.1 45.4 57.3 71.1 63.5 57.4 60.2 58.8 59.1 76.0 66.5 44.5 36.3 40.0
✓ ✓ ✗ 39.9 73.5 51.7 64.6 80.9 71.8 64.2 67.7 65.9 64.9 84.2 73.3 45.6 38.2 41.6
✓ ✗ ✓ 45.3 67.2 54.1 65.8 77.7 71.3 64.4 63.2 63.8 66.9 81.5 73.5 46.7 37.0 41.3
✓ ✓ ✓ 49.8 69.6 58.1 67.9 81.6 74.1 68.0 68.7 68.3 69.1 84.0 75.8 49.2 37.4 42.5

Table 4: Ablation study results in the GZSL task on five datasets. a indicates a plain feature generation method. b and c indicate the use of
semantic metric learning and relational metric learning, respectively. The best results are marked in boldface.

(a) (b) (c) (d)

Figure 4: Visualization of AWA dataset through t-distributed stochastic neighbor embedding (t-SNE), including original features and refined
features.

the feature generating network, we introduce SML and RML
independently and analyze the results. The results of the ab-
lation study are shown in Table 4, after using SML individ-
ually, the results (in terms of H) on the five datasets are im-
proved by 6.3%, 8.3%, 7.1%, 6.8%, and 1.6%, respectively.
While using RML individually, the results on the five datasets
are improved by 8.7%, 7.8%, 6.0%, 7.0%, and 1.3%, respec-
tively. The great improvements on five datasets fully verify
RML and RML both have a significant impact on the VS-
Boost. Concretely, after using SML, the recognition accuracy
of both seen and unseen classes is greatly improved, while,
RML has more significant enhancements for unseen classes.
We conjecture that it is because RML associates the seman-
tic space with the feature space, which is very beneficial for
the generalization of unseen classes. After using both SML
and RML, the results (in terms of H) are greatly improved
on the five datasets by 12.6%, 10.7%, 9.6%, 9.3%, and 2.5%,
respectively.

4.4 Quantitative Analysis
Figure 4(a) and 4(b) show the visualization results of the un-
seen features synthesized from the semantic embeddings and
the real unseen features, with different numbers representing
different category centers. It can be seen that after refinement
by VS-Boost, the gap between real features and synthetic fea-
tures becomes significantly smaller. We speculate that this is
due to the better connection between the feature space and the
semantic space after fine-tuning by VS-Boost, which allows
the generator to do the inference from semantic embeddings
to visual features more efficiently. Furthermore, as shown
in Figure 4(c) and 4(d), we visualize all seen and unseen

features, with different colors representing different classes.
After the VS-Boost refinement, it can be observed that the
refined features are vastly improved in both inter-class dis-
criminability and intra-class aggregation, which shows that
our proposed VS-Boost can effectively enhance the discrim-
inability of visual features while enhancing visual and seman-
tic consistency.

5 Conclusion
In this paper, we propose a novel GZSL method termed VS-
Boost, where a stronger association between visual features
and semantic embeddings can be built. VS-Boost first uses a
semantic embedding network to extract semantic-relevant vi-
sual features and then relates the visual feature space with the
semantic embedding space by the proposed relational met-
ric learning. The experimental results on five benchmark
datasets demonstrate that VS-Boost improves SOTA perfor-
mance on four datasets, in particular on APY with a 10%
improvement in the harmonic mean. The huge performance
improvement indicates that boosting the association between
vision and semantics is a very effective solution to the GZSL
problem.
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