
Locate, Refine and Restore: A Progressive Enhancement Network for
Camouflaged Object Detection

Xiaofei Li1 , Jiaxin Yang1 , Shuohao Li1 , Jun Lei1 , Jun Zhang1∗ and Dong Chen2

1Laboratory for Big Data and Decision, National University of Defense Technology, China
2Science and Technology on Information Systems Engineering Laboratory, National University of

Defense Technology, China
{xf, lishuohao, leijun1987, zhangjun1975, dongchen}@nudt.edu.cn, yangjiaxin0313@163.com

Abstract
Camouflaged Object Detection (COD) aims to seg-
ment objects that blend in with their surround-
ings. Most existing methods mainly tackle this is-
sue by a single-stage framework, which tends to de-
grade performance in the face of small objects, low-
contrast objects and objects with diverse appear-
ances. In this paper, we propose a novel Progres-
sive Enhancement Network (PENet) for COD by
imitating the human visual detection system, which
follows a three-stage detection process: locate ob-
jects, refine textures and restore boundary. Specif-
ically, our PENet contains three key modules, i.e.,
the object location module (OLM), the group atten-
tion module (GAM) and the context feature restora-
tion module (CFRM). The OLM is designed to po-
sition the object globally, the GAM is developed to
refine both high-level semantic and low-level tex-
ture feature representation, and the CFRM is lever-
aged to effectively aggregate multi-level features
for progressively restoring the clear boundary. Ex-
tensive results demonstrate that our PENet signif-
icantly outperforms 32 state-of-the-art methods on
four widely used benchmark datasets.

1 Introduction
Camouflage is a widespread biological phenomenon in na-
ture that helps certain organisms hide in the surroundings to
protect themselves from predators [Cuthill et al., 2005]. In
practice, camouflaged objects usually conceal themselves by
imitating the appearance, colors, or patterns of the environ-
ment and the disruptive coloration [Price et al., 2019], mak-
ing them difficult to be found. Based on this strategy, hu-
man beings began to study bionic disguise things according
to their own ideas for the purpose of camouflage. For exam-
ple, in military combat soldiers achieve stealth by wearing
camouflage clothing made of special materials, hunters use
disguised sounds in the forest to trap animals farmers build
scarecrows in the fields to repel birds. Recently, camouflaged
object detection (COD) has attracted an increasing research
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Figure 1: Illustration of our proposed progressive enhancement net-
work (PENet). Inspired by the behavior of humans when observing
vague images, our PENet is designed with three steps (i.e., locate
objects, refine textures and restore boundary) to progressively im-
prove the performance of COD.

interest from the computer vision community, and a lot of po-
tential applications have been developed in different fields,
such as medical diagnosis (e.g., polyp segmentation, lung in-
fection segmentation), agriculture (e.g., locust detection to
prevent invasion), industry (surface defect detection), security
and surveillance (e.g., search and rescue work), animal con-
servation (e.g., species discovery), and art (e.g., recreational
art).

However, COD is an extremely challenging task due to the
camouflaged objects making themselves “perfectly” assimi-
late into their surroundings by means of the materials, col-
oration or illumination. As shown in Fig.1, due to low con-
trast and the appearance of expressive diversity, the texture of
the object is similar to the surroundings, it is very challeng-
ing to discover it. To address this problem, early traditional
camouflaged object detectors attempt to extract discrimina-
tive hand-crafted low-level features rely on the manual vi-
sual feature, such as color, 3D convexity and appearance tex-
ture. In recent years, numerous algorithms for COD based
on deep neural networks have been proposed, which can si-
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multaneously extract low-level texture features and high-level
semantic information. Despite good performance achieve-
ments, there is still a large place for improvement. First, the
idea of most existing approaches is to use ASPP [Chen et al.,
2017] modules in a single-stage manner to extract the context
and then decode the segmentation results using some simple
fusion methods. This method does not take into account the
localization of the camouflaged object, so there is often inac-
curacy in segmenting the object. Second, although there are
some two-stage approaches, they usually consider only the
predicted camouflaged objects from coarse to fine, without
considering also the object positioning, texture enhancement
and boundary restoration.

Previous biological studies [Hall et al., 2013] have shown
that the human eye will first locate the general position of
an object when viewing it, then focus on the main area of
the object to find details, and then further fuse and refine
the boundary until the object is completely detected from the
background. Inspired by this human behavior and consider-
ing the shortcomings of these methods, we aim to address the
COD issue: How to accurately locate the object and refine
the textures to restore clear boundary under complex scenes?

To this end, we develop a novel bio-inspired framework,
termed progressive enhancement network (PENet), which
significantly improves the existing camouflaged object seg-
mentation performance. Our PENet consists of three key
modules, i.e., the object location module (OLM), the group
attention module (GAM) and the context feature restoration
module (CFRM), to accurately locate the camouflaged ob-
ject, refine the textures and restore the boundary in a progres-
sively enhanced manner, respectively. Specifically, the OLM
consists of a global attention component and a local attention
component to mimic the human detection process by first lo-
cating the target globally. The GAM is designed as a group
attention module that contains channel attention and spatial
attention to focus on detailed features at different scales. The
CFRM uses attention-guided fusion of texture features be-
tween different layers to achieve the boundary-reduction.

In summary, the main contributions of this paper can be
summarized as follows:

• We present a new bio-inspired framework called pro-
gressive enhancement network (PENet) for COD, which
greatly improves the performance of COD in a progres-
sively enhanced manner to locate objects, enhance tex-
ture features and restore boundary.

• We propose an object location module (OLM) to infer
the initial position of the camouflaged objects, which can
effectively extract global information and local features
so that the location of the camouflaged object can be ac-
curately determined. We also design a group attention
module (GAM) to refine textures, and a context feature
restoration module (CFRM) to restore clear boundary.

• Extensive experiments on four benchmark datasets
demonstrate that our PENet achieves the state-of-the-art
performance of COD. Qualitative and quantitative re-
sults demonstrate the effectiveness of our method.

2 Related Work
2.1 Camouflaged Object Detection
Different from salient object detection that aims to detect and
segments the most compelling objects in the image, the pur-
pose of camouflaged object detection is to find objects that
closely resemble their surroundings. [Le et al., 2019] pro-
posed an anabranch network, which leverages both classifi-
cation and segmentation tasks. [Fan et al., 2020a] proposed
a Search Identification Network to address this challenge by
first roughly searching for camouflaged objects, and then seg-
menting the objects by a recognition module. [Sun et al.,
2021] proposed C2F-Net for COD, which considers global
contextual information to integrate multi-level features. [Jia
et al., 2022] proposed an iterative refinement framework,
coined SegMaR, which integrates Segment, Magnify and Re-
iterate in a multi-stage detection fashion.

2.2 Object Location
Accurate object localization is important for computer vision
tasks, and it often affects the performance of these tasks. In
order to solve the co-localization problem, [Gokberk Cinbis
et al., 2014] proposed a multiplicative multi-instance learn-
ing procedure to iteratively train the detector, which prevents
training from prematurely locking onto erroneous object loca-
tions. [Bazzani et al., 2016] proposed a self-taught object lo-
calization method that localizes objects by identifying the re-
gions causing the maximal activations. [Zhang et al., 2018a]
proposed an Adversarial Complementary Learning approach
for discovering entire objects of interest by two adversarial
classifiers.

2.3 Multi-Scale Feature Refinement
As the CNNs become deeper, the detailed features may be
diluted. To make more efficient use of texture features, one
solution is to aggregate multi-scale information. [Chen et al.,
2017] proposed a spatial pyramid pooling to robustly segment
objects at multiple scales by an incoming convolutional fea-
ture layer with filters at multiple sampling rates and effective
fields-of-view. [Pang et al., 2020] presented a multi-scale in-
teractive network for salient object detection, which embeds
a self-interaction module in each decoder unit in order to ob-
tain more effective multi-scale features from the integrated
features. [Zhu et al., 2021] proposed an interactive guidance
framework to interactively refine multi-level features of cam-
ouflaged object detection and texture detection.

2.4 Context-Aware Feature Learning
The contextual information plays a crucial role in enhancing
feature representation for many computer vision tasks. [Hu
et al., 2018] proposed a network for shadow detection by an-
alyzing spatial context in a direction-aware manner. [Chen
et al., 2020] used some progressive context-aware Feature In-
terweaved Aggregation (FIA) modules to integrate low-level
appearance features, high-level semantic features and global
contextual features. [Mei et al., 2020] explored abundant
contextual cues with a large-field contextual feature integra-
tion (LCFI) module for robust glass detection. [Dai et al.,
2021] proposed a multi-scale channel attention module to
fuse features given at different scales.
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Figure 2: The overview of our proposed progressive enhancement network (PENet),which consists of three key modules, i.e., object location
module (OLM), group attention module (GAM) and context feature restoration module (CFRM). See Sec. 3 for details.

3 Proposed Method
3.1 Overall Architecture
The overall framework of our PENet is shown in Fig.2.
Specifically, for an input RGB image I with size H × W ,
we adopt Res2Net-50 [Gao et al., 2019] as the backbone to
extract its multi-level features from the input image, denoted
as fi(i = 1, 2, ..., 5). Then, we use three object location
modules (OLMs) to locate the potential camouflaged objects.
Next, we feed these features with their initial position to three
convolutional blocks and group attention modules (GAMs) to
refine the details. Finally, we leverage three context feature
restoration modules (CFRMs) to restore clear and complete
objects.

3.2 Initial Object Location
In the locating stage, we design an object location module
(OLM) to initially locate the potential location of the cam-
ouflaged object. As shown in Fig.3, it consists of a global
block and a local block. The global block is implemented in
a non-local way to capture long-range dependencies for en-
hancing the contextual semantic representation from a global
perspective. In contrast, the local block is designed to extract
the local information by using several convolutional layers.
These two blocks explore potential object regions in a com-
plementary way.

Specifically, we first leverage the receptive fields block
(RFB) [Liu et al., 2018] structure to enlarge the receptive
field, obtain four feature maps B, C, D and E through four
1×1 convolutional layers, where {B,C,D,E} ∈ RC×H×W ,
then we reshape them separately for RC×N . Next, we mul-
tiply the transpose of B by the C matrix, and perform a
softmax layer to calculate the global spatial attention maps
gsa∈ RN×N . Consequently, we use matrix multiplication
operation to get the semantic-enhanced global feature fg ∈
RC×H×W . The process can be depicted as follows:

gsaij =
exp(Bi · Cj)∑N
i=1 exp(Bi · Cj)

(1)

f ig = η
N∑
j=1

(gsaij ·Dj) + fi (2)

where gaij denotes the jth position’s impact on the ith posi-
tion. η is initialized as 0 and gradually learns more weight.

In the local block, we adopt a set of 1 × 1 convolutional
layers, BatchNorm2d and ReLU to obtain the local features
fl ∈ RC×H×W . Then, we perform the element-wise addition
operation on global feature fg and local features fl to obtain
the aggregated features fa. This process can be described as
follows:
fl = ReLU(Conv1×1(ReLU(BN(Conv1×1(E))))) (3)
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Figure 3: Detailed structure of the object location module (OLM).

fa = ReLU(Conv3×3(fg + fl)) (4)

where Conv1×1 indicates 1 × 1 convolutional layers, BN
means the BatchNorm2d and Conv3×3 indicates 3 × 3 con-
volutional layers.

3.3 Texture Detail Refinement
Since the obtained initial prediction in the localization stage
is coarse and contains irrelevant noise, we need to further re-
fine the texture features. In the refinement stage, we develop
a group attention pyramid network to refine the details for
more effective feature representation. It contains three con-
volutional blocks and three group attention modules (GAM).

Specifically, as shown in Fig.2, we first use a holistic at-
tention (HA) module [Wu et al., 2019a] to merge the coarse
prediction and feature maps to highlight the whole object re-
gion. Then, we use three convolutional blocks (i.e., f ′3, f

′
4

and f ′5) to get the the bottom-up features, and then construct
a pyramid network from them and the features of f2. In each
level of the top-down pathway of the pyramid network, we
design a group attention module (GAM) to mining multi-
scale features. As shown in Fig 4, we first use the RFB struc-
ture to enlarge the receptive field, then the global features
fg ∈ RC×H×W and the attention features fa ∈ RC×H×W
are splited into M fixed groups along the channel dimension.
After that, the splited features {fg}Mm=1 ∈ RC/M×H×W and
{fa}Mm=1 ∈ RC/M×H×W are obtained. Consequently, we
can get the regrouped features f ∈ RC×H×W by a concate-
nation operation:

f = Concat(f1g , f
1
a , ..., f

m
g , f

m
a , ..., f

M
g , fMa ) (5)

where Concat() denotes the concatenation operation.
To enhance the texture features, we apply spatial attention

and channel attention to the regrouped features separately.
For the spatial attention, we use a deconvolution layer with
one output channel and a 3 × 3 kernel size to extract spatial
information, and then we use a sigmoid function to normal-
ize it to the range of (0,1). The process can be expressed as
follows:

SA = σ(Deconv(f)) (6)

where σ represents the sigmoid function. Deconv refers to
the 3 × 3 deconvolution layer. SA represents the spatial at-
tention feature.
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Figure 4: Detailed structure of the group attention module (GAM).

In the channel attention, we use a global average pooling
(GAP) and two 1 × 1 convolutional layers to reduce dimen-
sion. Then a ReLU and a sigmoid function is applied to
gained the channel attention:

CA = σ(Conv1×1(ReLU(Conv1×1(GAP (f))))) (7)

whereGAP represents the global average pooling. Conv1×1
indicates 1×1 convolutional layers. σ represents the sigmoid
function. CA is the channel attention feature. Finally, we
perform the addition operation on the spatial attention feature
and the channel attention feature, then we can get the weight
feature f ′, which serves as the input attention map for the
next GAM:

f ′ = Up(f · (SA+ CA)) (8)
where Up represents the up-sample operation.

3.4 Context Boundary Restoration
As we all know, the context features contain rich semantic in-
formation, the fusion of context features is critical for restor-
ing complete camouflaged objects. Therefore, we propose a
context feature restoration module (CFRM) to aggregate the
rich context features for improving the performance of COD.

Specifically, as shown in Fig.5, the CFRM consists of three
branches (i.e., low-level features, global features and high-
level features). First, we add a 3 × 3 convolutional layer to
each of them. Then, the global features are used to guide
the high-level features and the low-level features respectively
through a concatenation operation. Next, global average
pooling is used for the low-level features and the high-level
features to get the pooled features fGAPlow and fGAPhigh . Sub-
sequently, the concatenation operation and a convolutional
layer are adopted to gain the next global features f ′g .

fGAPlow = GAP (Concat(Conv3×3(flow), Up(Conv3×3(fg)))
(9)

fGAPhigh = GAP (Concat(Conv3×3(fhigh), Conv3×3(fg))
(10)

f ′g = Conv3×3(Concat(f
GAP
low , fGAPhigh )) (11)

Simultaneously, in the low-level features and the high-level
features, we leverage the element-wise addition operation
to augment the missing context features. Then, another set
of 3 × 3 convolutional layers are added to each of the two
branches for obtaining the enhanced features f ′low and f ′high.
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Figure 5: Detailed structure of the context feature restoration mod-
ule (CFRM).

Finally, a concatenation operation and a 3 × 3 convolutional
layer are applied to fuse these context features. This process
can be formulated as:

f ′low = Conv3×3(f
GAP
low + Conv3×3(flow)) (12)

f ′high = Conv3×3(f
GAP
high + Conv3×3(fhigh)) (13)

f ′ = Conv3×3(Concat(f
′
low, f

′
g, f
′
high)) (14)

In addition, high-level segmentation features contain rich se-
mantic information and low-level texture features have a lot
of boundary details. In order to obtain clear and whole ob-
ject boundary, we introduce edge supervision. In particular,
we fuse the high-level features with the low-level features
and supervise them using edge maps. Specifically, we per-
form a residual channel attention block (RCAB) [Zhang et
al., 2018b] in the high-level features (i.e., f ′5) as the guiding
information, and perform an element-wise multiplication op-
eration with the low-level features (i.e., f ′2), followed by two
3×3 convolutional layers, a normalization layers and a ReLU
layers to obtain the fused edge map fedge. This process can
be formulated as:

fedge = CBR(CBR(RCAB(f ′5) + f ′2)) (15)

where CBR denotes a 3 × 3 convolutional layer, Batch-
Norm2d and ReLU.

3.5 Loss Function
The binary cross entropy (BCE) loss and the intersection-
over-union (IoU) loss are widely used in various image seg-
mentation tasks. However, these losses treat each pixel
equally and cannot distinguish the differences between pix-
els. In this paper, we use the weighted binary cross-entropy
loss (wBCE) and IoU loss (wIoU), which can calculate the
difference between the center pixel and its surrounding envi-
ronment, and pay more attention on hard pixels to enhance the
model generalization. In particular, we use the Consistency-
Enhanced Loss (CEL) as an assistant, which consider the
inter-pixel relationships and highlight the entire camouflaged
region. To sum up, the loss function of our model is defined
as follows:

L = LWBCE + LWIoU + λLCEL (16)

where λ is a hyperparameter, it is set to 1 for balancing the
contributions of the three losses.

In addition, we use the dice loss (Ldice) [Xie et al., 2020]
to address the strong imbalance between positive and negative
samples. At last, the total loss can be formulated as:

Ltotal = L(Ploc, G) + L(Pres, G) + Ldice(Pedge, E) (17)

where Ploc is the predicted location map, Pres is the predicted
restoration map, G is the ground-truth map and E is the edge
map.

4 Experiments
4.1 Datasets
We employ four widely-used COD benchmark datasets to
evaluate our method, including: CHAMELEON [Skurowski
et al., 2018], CAMO [Le et al., 2019], COD10K [Fan et al.,
2020a] and NC4K [Lv et al., 2021]. Following the previous
work [Fan et al., 2021a], we use the combination of the train
sets from CAMO and COD10K (4,040 images) as the training
set, and evaluate on the rest ones.

4.2 Evaluation Metrics
Conventionally, we adopt four popular and standard metrics
to evaluate the performance of our method: structure-measure
(Sα) [Fan et al., 2017], E-measure (Eφ) [Fan et al., 2021b],
weighted F-measure (Fωβ ) [Margolin et al., 2014] and mean
absolute error (M ) [Perazzi et al., 2012].

4.3 Implementation Details
We implement our model with PyTorch and adopt Res2Net-
50 [Gao et al., 2019] pre-trained on ImageNet as our back-
bone. We resize all the input images and ground-truths to
352 × 352 for both training and testing. During training, we
set the batch size to 36 and use Adam algorithm to optimize
the network parameters with a learning rate of 1e − 4, and
decay it by 0.1 every 30 epochs. We apply random horizon-
tal fliping, random cropping and random rotating to augment
the training data. The training and testing processes are con-
ducted on an NVIDIA Tesla V100 GPU (with 32GB memory)
and Intel(R) Xeon(R) Gold 6,240, 2.60 GHz CPU device.

4.4 Comparison with State-of-the-Art Methods
We compare our PENet with 32 state-of-the-art COD meth-
ods, including CPD [Wu et al., 2019a], PoolNet [Liu et
al., 2019], EGNet [Zhao et al., 2019], SCRN [Wu et al.,
2019b], F3Net [Wei et al., 2020], CSNet [Gao et al., 2020],
SSAL [Zhang et al., 2020b], UCNet [Zhang et al., 2020a],
MINet [Pang et al., 2020], ITSD [Zhou et al., 2020],
PraNet [Fan et al., 2020b], VST [Liu et al., 2021], RCSB [Ke
and Tsubono, 2022], SINet [Fan et al., 2020a], R-MGL [Zhai
et al., 2021], TINet [Zhu et al., 2021], UGTR [Yang et
al., 2021], PFNet [Mei et al., 2021], SLSR [Lv et al.,
2021], UJSC [Li et al., 2021], D2C-Net [Wang et al., 2021],
SINet-V2 [Fan et al., 2021a], C2F-Net [Sun et al., 2021],
BgNet [Chen et al., 2022b], SegMaR-1 [Jia et al., 2022],
BSA-Net [Zhu et al., 2022], BGNet [Sun et al., 2022], ER-
RNet [Ji et al., 2022], CubeNet [Zhuge et al., 2022], Zoom-
Net [Pang et al., 2022], C2F-Net-V2 [Chen et al., 2022a] and
FBNet [Lin et al., 2023]. For a fair comparison, we obtain the
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CAMO-Test CHAMELEON COD10K-Test NC4KMehtod Year
Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑

Salient Object Detection / Medical Image Segmentation
CPD 2019 .716 .556 .113 .796 .857 .731 .048 .923 .750 .531 .053 .853 .787 .645 .072 .866
PoolNet 2019 .730 .575 .105 .819 .845 .690 .054 .933 .740 .506 .056 .844 .785 .635 .073 .865
EGNet 2019 .732 .604 .109 .820 .797 .649 .065 .065 .736 .517 .061 .854 .777 .639 .075 .864
SCRN 2019 .779 .643 .090 .850 .876 .741 .042 .939 .789 .575 .047 .880 .830 .698 .059 .897
F3Net 2020 .711 .564 .109 .779 .848 .744 .047 .917 .739 .544 .051 .815 .780 .656 .070 .834
CSNet 2020 .771 .641 .092 .849 .856 .718 .047 .928 .778 .569 .047 .871 .750 .603 .088 .793
SSAL 2020 .644 .493 .126 .780 .757 .639 .071 .856 .668 .454 .066 .789 .699 .561 .093 .812
UCNet 2020 .739 .640 .094 .787 .880 .817 .036 .941 .776 .633 .042 .867 .811 .729 .055 .886
MINet 2020 .748 .637 .090 .838 .855 .771 .036 .937 .770 .608 .042 .859 .812 .720 .056 .887
ITSD 2020 .750 .610 .102 .830 .814 .662 .057 .901 .767 .557 .051 .861 .811 .679 .064 .883
PraNet 2020 .769 .663 .094 .837 .860 .763 .044 .935 .789 .629 .045 .879 .822 .724 .059 .888
VST 2021 .788 .734 .075 .840 .869 .786 .041 .891 .785 .654 .042 .836 .834 .772 .050 .878
RCSB 2022 .710 .581 .104 .737 .809 .701 .045 .860 .753 .590 .043 .802 .802 .705 .055 .841

Camouflaged Object Detection
SINet 2020 .751 .606 .100 .771 .869 .740 .044 .891 .771 .551 .051 .806 .808 .723 .058 .872
R-MGL 2021 .775 .673 .088 .847 .893 .813 .030 .923 .814 .666 .035 .865 .833 .739 .053 .893
TINet 2021 .781 .678 .087 .847 .874 .783 .038 .916 .793 .635 .043 .848 - - - -
UGTR 2021 .784 .684 .086 .851 .888 .794 .031 .940 .817 .666 .036 .890 .839 .746 .052 .899
PFNet 2021 .782 .695 .085 .852 .882 .810 .033 .942 .800 .660 .036 .868 .829 .745 .053 .898
SLSR 2021 .787 .696 .080 .854 .890 .822 .030 .948 .804 .673 .037 .892 .840 .766 .048 .907
UJSC 2021 .800 .728 .073 .873 .891 .833 .030 .955 .809 .684 .035 .891 .842 .771 .047 .907
D2C-Net 2021 .744 .735 .087 .818 .889 .848 .030 .939 .807 .720 .037 .876 - - - -
SINet-V2 2021 .820 .743 .070 .882 .888 .816 .030 .942 .815 .680 .037 .887 - - - -
C2F-Net 2021 .796 .719 .080 .854 .888 .828 .032 .935 .813 .686 .036 .890 - - - -
BgNet 2021 .804 .719 .075 .859 .885 .815 .032 .942 .804 .663 .039 .881 .843 .764 .048 .901
SegMaR-1 2022 .805 .724 .072 .864 .892 .823 .028 .937 .813 .682 .035 .880 - - - -
BSA-Net 2022 .796 .717 .079 .851 .895 .841 .027 .946 .818 .699 .034 .891 - - - -
BGNet 2022 .812 .749 .073 .870 - - - - .831 .722 .033 .901 .851 .788 .044 .907
ERRNet 2022 .761 .660 .088 .817 .877 .805 .036 .927 .780 .629 .044 .867 - - - -
CubeNet 2022 .788 .682 .085 .838 .873 .787 .037 .928 .795 .644 .041 .864 - - - -
ZoomNet 2022 .820 .752 .066 .877 .902 .845 .023 .943 .838 .729 .029 .888 .853 .784 .043 .896
C2F-Net-V2 2022 .800 .730 .077 .869 .893 .845 .028 .947 .811 .691 .036 .891 - - - -
FBNet 2023 .783 .702 .081 .839 .888 .828 .032 .939 .809 .684 .035 .889 - - - -
PENet(Ours) 2023 .828 .771 .063 .890 .902 .851 .024 .960 .831 .723 .031 .908 .855 .795 .042 .912

Table 1: Quantitative comparison of our PENet and state-of-the-art methods for COD on four datasets, ↑ (or ↓) indicates that the higher (or
the lower) the better. Best results are marked in bold fonts. SegMaR-1 is the 1-st iterative stage for fair comparison . “—”: Not available.

results of these methods from the authors, ZoomNet [Pang et
al., 2022], or obtained by running the publicly available codes
with well-trained models.

Quantitative Evaluation
Table 1 reports the detailed comparison results of PENet
against other 32 state-of-the-art methods on four benchmark
datasets. It can be seen that our proposed method consistently
and significantly surpasses all the previous methods with a
large margin on all four standard metrics. For example, com-
pared with the simultaneously localize, segment and rank net-
work SLSR [Lv et al., 2021], our PENet improves the Fωβ
by 7.6%, 4.0%, 7.3% and 5.3% on the four dataset, respec-
tively. It is worth mentioning that the results of our method is
competitive with the C2F-Net [Sun et al., 2021] that uses the
strategy of context-aware cross-level fusion, which boosts the
Sα by 3.1%, 2.0% and 2.8% on the CAMO, CHAMELEON
and COD10K dataset, respectively. In addition, our method
surpasses UJSC [Li et al., 2021] which even introduces extra
SOD data for training.

Qualitative Evaluation
We provide several typical examples in Figure 6 , which vi-
sually shows the qualitative results of our PENet with other

cutting-edge methods. It can be seen that most compared
methods tend to detect some irrelevant surroundings or ne-
glect some regions of camouflaged objects (e.g., the 2-nd and
3-rd rows). By contrast, the detection results of our PENet are
more accurate and closest to the ground-truth annotations, in-
cluding large camouflaged objects (e.g., the 5-th row), small
camouflaged objects (e.g., the 4-th row) and low-contrast
camouflaged objects (e.g., the 1-st row). These results vi-
sually demonstrate the superior performance of our method.

4.5 Ablation Study
In order to validate the effectiveness of each key module, we
design a series of controlled experiments and present the re-
sults in Table 2.

Effectiveness of OLM. In Table 2, compared with the ba-
sic model (a), we can see that (b) outperforms (a) by 6.0%,
6.5%, 9.2% and 7.3% in terms of Fωβ on the four dataset, re-
spectively. This demonstrates that the OLM is effective for
object localization and plays a key role in achieving high per-
formance for COD tasks.

Effectiveness of GAM. From (b) and (c) in Table 2, we
can see that our proposed GAM further improves the metric
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Figure 6: Qualitative comparisons of our PENet with state-of-the-art methods.

CAMO-Test CHAMELEON COD10K-Test NC4KVer. Method
Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑ Sα↑ Fωβ ↑ M↓ Eφ↑

(a) B .790 .687 .083 .848 .862 .757 .040 .924 .780 .604 .045 .863 .818 .706 .057 .883
(b) B+OLM .818 .747 .070 .880 .888 .822 .028 .945 .821 .696 .034 .897 .850 .779 .045 .906
(c) B+OLM+GAM .820 .754 069 .879 .895 .838 .026 .954 .827 .714 .032 .902 .854 .791 .043 .911
(d) B+OLM+GAM+CFRM w/o R .825 .766 .066 .886 .898 .843 .025 .950 .830 .720 .031 .906 .856 .795 .042 .911
(e) B+OLM+GAM+CFRM w/o E 822 .762 .067 .883 .896 .845 .025 .955 .829 .721 .031 .906 .855 .794 .042 .912
(f) B+OLM+GAM+CFRM (Ours) .828 .771 .063 .890 .902 .851 .024 .960 .831 .723 .031 .908 .855 .795 .042 .912

Table 2: Ablation analyses on the four datasets. Ver. = Version. “B” denotes removing all OLMs, GAMs and CFRMs, which just use the
pre-trained models by a simple concatenation. “w/o R” means without RCAB. “w/o E” means without edge supervision.

results. Specifically, compared with (b) and (c), 0.7%, 1.6%,
1.8% and 1.2% performance improvement in terms of Fωβ on
the four dataset, respectively. This demonstrates that group
attention module is beneficial for refining the multi-scale fea-
tures and boosting the COD performance.

Effectiveness of CFRM. From Table 2, we observe that the
results of model (d) outperforms (c). In particular, compared
with the model (c), (d) increased the Fωβ by 1.2%, 0.5%, 0.6%
and 0.4% on the four dataset, respectively. This indicates
that using CFRM to fuse contextual features can enhance the
COD performance.

Effectiveness of RCAB. To verify the effectiveness of
RCAB, we remove the RCAB in (d) and compare the results
of (f) and (d). When RCAB is removed, the Eφ of (d) de-
creases by 0.4%, 1.0%, 0.2% and 0.1% on the four datasets,
respectively. This implies that the RCAB module can lever-
age the global features of the image to guide the low-level
features.

Effectiveness of edge supervision. To further validate the
effectiveness of the edge supervision of our PENet, we com-
pare the performance with and without the edge supervision.
Specifically, compared with (f) and (e), we can find that with
the edge supervision, the Fωβ increases by 0.9%, 0.6%, 0.2%
and 0.1% on the four dataset, respectively. This shows that

edge supervision can guide the prediction to produce clear
boundary.

5 Conclusion
In this paper, we are committed to addressing the challenges
of accurate COD. We develop a “locate-refine-restore” strat-
egy to gradually restore clear and complete camouflaged ob-
jects, which helps to improve the understanding and judg-
ment of camouflaged objects. Specifically, we first propose
an object location module (OLM) to initially locate the cam-
ouflaged region. Then, we design a group attention module
(GAM) to enhance the texture feature representation. Finally,
we introduce a context feature restoration module (CFRM) to
restore the clear boundary by fusing the context features. We
conduct extensive experiments on four benchmark datasets
using four widely used evaluation metrics, which illustrates
that our method can achieve state-of-the-art performance.
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