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Abstract

Handling occlusions is still a challenging prob-
lem for image composition. It always requires the
source contents to be completely in front of the tar-
get contents or needs manual interventions to adjust
occlusions, which is very tedious. Though several
methods have suggested exploiting priors or learn-
ing techniques for promoting occlusion determina-
tion, their potentials are much limited. This paper
addresses the challenge by presenting a depth reg-
istration method for merging the source contents
seamlessly into the 3D space that the target im-
age represents. Thus, the occlusions between the
source contents and target contents can be conve-
niently handled through pixel-wise depth compar-
isons, allowing the user to more efficiently focus on
the designs for image composition. Experimental
results show that we can conveniently handle occlu-
sions in image composition and improve efficiency
by about 4 times compared to Photoshop.

1 Introduction
Image composition tries to merge selected contents from the
source image (source contents) into the target image to pro-
duce a plausible image [Pérez et al., 2003; Guo and Sim,
2009]. Till now, existing methods pay much attention to
color blending for a seamless composition [Pérez et al., 2003;
Zhan et al., 2020; Levin et al., 2007; Yu et al., 2021;
Bao et al., 2022], including a large quantity of matting meth-
ods [Levin et al., 2007; Tang et al., 2019; Huang et al.,
2019] and cloning-based methods [Farbman et al., 2011;
Pérez et al., 2003]. As for the correct occlusion relationships
required between the source contents and the contents in the
target image (target contents), corresponding studies are in-
sufficient [Niu et al., 2021]. Existing methods always require
the source contents to be completely in front of the target con-
tents. For compositing the source contents that are partially
occluded by the target contents, the user needs to remove the
occluded parts of the source contents with careful manual in-
terventions or use image editing software (e.g., Photoshop) to
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Figure 1: For the composition of placing a spoon into a cup, most ex-
isting methods cannot handle the occlusions here (c), as some parts
of the spoon are occluded by the outer wall of the cup (inside the
blue outlines) while some parts of the spoon occlude the inner wall
of the cup (inside the red outlines). For example, the learning-based
method compGAN [Azadi et al., 2020] cannot handle the occlusions
(d). When Photoshop was used for a plausible composition (e), it
took us 78 manual operations and 169 seconds. Using our proposed
method, the composition was fulfilled by only 4 manual operations
and 32 seconds (f).

separate the contents into different layers and manually iden-
tify the orders of the layers to obtain the correct occlusions
between the contents. These manual interventions are labori-
ous, preventing image composition from applications.

To promote image composition of partially occluded ob-
jects, Tan et al. [Tan et al., 2019] proposed using two pri-
ors to infer occlusions. The first prior is that when a source
content is completely inside the region of a target content,
the source content must be in front of the target content.
The second prior is that, when there is a common support
plane for the source content and its overlapped target con-
tents, the depth values of the sites for these contents to touch
the support plane can be used to deduce the occlusions be-
tween them. Unfortunately, these priors cannot be applied
in many cases; e.g., there is no common support plane for
the source contents and their overlapped target contents. In
particular, when the source content and the target content oc-
clude each other, this method cannot be used, as illustrated
in Fig. 1(c). In [Azadi et al., 2020], learning techniques
are exploited for handling complicated interactions between
different real-world objects for image composition, including
the occlusions between source contents and target contents.
Unfortunately, it can only learn occlusions from the training
data, and therefore its generalization potentials are much lim-
ited; e.g., it cannot deal with the example in Fig. 1(d).

This paper addresses the challenge of handling occlu-
sions efficiently by presenting a depth registration method for
seamlessly merging source contents into the 3D space repre-
sented by the target image. Thus, occlusions between source
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contents and target contents can be easily determined, reduc-
ing the amount of manual intervention for occlusion deter-
mination. This method benefits from the learning techniques
that perform well in segmenting objects in images and esti-
mating their depths, and from the observation in [Tan et al.,
2019] that image composition is always by mixing objects
in an image, by which we can handle objects instead of pix-
els for image composition. Clearly, the estimated depths of
objects in different images cannot be used directly for deter-
mining the occlusions between the objects in a composition
image. Fortunately, the human visual system is very sensi-
tive to the size of an object in the image with respect to its
distance from the viewpoint. Thus, we can adjust the size of
the source object to look as if it is standing at the same dis-
tance as a target object, by which the source object can be
registered into the target image. For high-quality depth regis-
tration, in Section 3 we develop novel measures to construct
a correspondence between the size of the source object and
the depths of its pixels in the target image, so that compli-
cated occlusions like those in Fig. 1 can be well handled with
much fewer manual interventions than existing methods. As
a result, without being distracted by occlusion determination
in image composition, the user can more efficiently focus on
design by adjusting the locations and sizes of source objects
in the target image to achieve satisfactory results, as shown in
experiments.

2 Related Work
Various methods have been proposed for image composi-
tion. Unfortunately, most of them are focused on color blend-
ing [Cong et al., 2021; Cong et al., 2022; Hang et al., 2022],
and pay little attention to occlusion determination between
the source contents and target contents, though correct occlu-
sions are important for a plausible composition.

Color blending methods can be classified into two cat-
egories: matting-based methods [Levin et al., 2007; Tang
et al., 2019; Huang et al., 2019] and cloning-based meth-
ods [Farbman et al., 2011; Pérez et al., 2003; Fu et al.,
2008]. Matting-based methods try to produce an alpha matte
to represent the source contents, whose alpha weights are
used for pixel-wise linear color interpolation between the
source and the target images. Cloning-based methods take
the outlined source image patch containing interested con-
tents as input and paste the input onto the target image
for a composition. The color discrepancies between the
source image and target image on the boundary of the in-
put patch are propagated over the entire cloned area for a
seamless color blending. In general, these methods require
the source contents to be completely in front of the target
contents in the composition. If some parts of the source
contents are occluded by the target contents in the compo-
sition, the occluded parts of the source contents should be
removed, and this generally requires substantial user inter-
ventions, such as drawing an excessive number of strokes
or trimaps to generate suitable mattes [Levin et al., 2007;
Tang et al., 2019] or laboriously drawing the boundary to ex-
clude the occluded parts from the patch for cloning [Farbman
et al., 2011]. Intensive manual interventions are very trouble-

some, preventing image composition from applications.
Though there are some learning based methods proposed

for image composition [Tang et al., 2019; Huang et al., 2019],
they still require the source contents over the target image,
which means that partially occluded source contents cannot
be composited into the target image.

For compositing partially occluded source contents, image
editing software (e.g. Photoshop) tries to separate the image
contents into different layers and identify the orders of the
layers for occlusion determination. However, such a proce-
dure is very time-consuming.

To our knowledge, two priors are used in [Tan et al., 2019]
to facilitate occlusion determination to promote the composi-
tion of partially occluded objects. As discussed in Section
1, however, these two priors are not suitable in many cases
and so this method is still prevented from compositing im-
ages with complicated occlusions. Learning techniques have
also been exploited to determine the occlusions between ob-
jects and promoting image composition [Azadi et al., 2020].
However, as the technique is dependent on the training data
for learning occlusions, its potentials are limited and its han-
dling is inconvenient, especially when handling complicated
occlusions, as illustrated in Fig. 1(d).

3 Depth Registration
The proposed depth registration method places the source
object into the 3D space represented by the target image.
To achieve this, we first perform semantic segmentation and
depth estimation in the source image and the target image to
obtain objects and their related depths, to which end many ex-
isting learning techniques can be used. As the source image
and the target image represent different 3D spaces, the esti-
mated depths for the source object cannot be used directly in
the target image. Fortunately, the depth differences between
pixels of the source object are concerned with the 3D exis-
tence of the source object, and so keeping unchanged in the
source image and target image. As a result, these depth differ-
ences can be exploited for depth registration. Our process of
depth registration consists of the following three operations:

• Registration initialization places the source object into
the 3D space of the target image (Subsection 3.1).

• Adaptive depth adjustment computes pixelwise depths to
determine occlusions between the source object and the tar-
get objects for a composition (Subsection 3.2).

• Registration refinement optimizes depths and object seg-
mentation to correct unsuitable occlusions (Subsection
3.3).

The pipeline for depth registration is illustrated in Fig. 2.
Here, we generate a structure called difference-template for
representing the 3D existence of the source object. The im-
age patch of the extracted source object in the source image
is called the source image patch in Fig. 2(a). Its difference-
template in Fig. 2(b) is constructed to record the depth dif-
ferences between the pixels of the source image patch and
an anchor point of the source object; e.g., the red point P
in Fig. 2(a), to be discussed in Subsection 3.1. Adaptive
depth adjustment is then performed according to the location
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Figure 2: Pipeline for depth registration. The steps here are explained in the second paragraph of Section 3.

of the source object for its composition in the target image in
Fig. 2(c) and Fig. 2(d), In Fig. 2(c), in order to compute the
depth for each pixel of the source image patch in the target
image, a use-template is formed from the difference-template
and the depth of the anchor point in the target image. By map-
ping the use-template to the target image, we can obtain the
depths for the pixels of the image patch of the source object
in the target image, called the target-source image patch, as
illustrated in Fig. 2(d).

As the estimated depths and object segmentation are not
very accurate, some occlusions by the registered depths are
not correct. To remedy this, we refine the registration. We
allow the user to manually correct unsuitable occlusions, so
that the difference-template has its depth differences refined
correspondingly. As a result, the subsequent depth registra-
tion for other designs of compositing the source object into
the target image will be facilitated as refined depths and seg-
mented objects would have fewer and fewer incorrect occlu-
sions generated.

3.1 Registration Initialization
We initialize depth registration by resizing the target-source
image patch of the source object against a target object in the
target image until the two objects look as if they are stand-
ing at the same distance from the viewpoint, as illustrated in
Fig. 3.

At this time, it is generally regarded that the lowest pix-
els of these two objects in the target image have the same
distance from the viewpoint, meaning the same depth value.
Thus, the lowest pixel of the target-source image patch for
the source object has its depth value in the target image; i.e.,
the depth of the lowest pixel of the target object, as illustrated
in Fig. 3(c). Clearly, this lowest pixel has a corresponding

Figure 3: Place a source object (a tan cow) near a target sheep
(marked in blue). Depth registration is initialized in (b), and the
anchor point (in red) is identified in (c).

point in the source image patch, called the anchor point. If
there are several pixels at the lowest sites in the target-source
image patch, any one of them can be selected as the anchor
point, without preventing image composition.

By depth interpolation of the neighboring pixels around the
anchor point in the source image patch, the anchor point has
its depth in the source image. Thus, the pixels of the source
image patch compute their depth differences from the anchor
point, forming the difference-template.

Clearly, having obtained the difference-template and the
depth of the anchor point in the target image, we can now
construct the use-template of the source object, and place it
into the 3D space of the target image.

3.2 Depth Determination for Composition
After initializing depth registration, the user designs the com-
position by progressively adjusting the location and size of
the source object until satisfactory results are produced. In
this procedure, the depths of the overlapped pixels for the tar-
get objects and the source object are compared to determine
the occlusion between them, where the pixels of the source
object have their depths determined adaptively by investigat-
ing the size variation of the target-source image patch.

As Fig. 4 shows, for a 3D object projected onto the image
plane, its two points P1 and P2 lie on a plane, which is parallel
to the image plane, and their projection points on the image
plane, P ′

1 and P ′
2, have the following equations,

h1/m1 = d/f. (1)

h2/m2 = d/f. (2)
(h1 − h2)× f = (m1 −m2)× d. (3)

where h1 and h2 are the heights of P1 and P2 in the 3D space,
m1 and m2 are the heights of P ′

1 and P ′
2 in the image plane,

f is the focal distance from the viewpoint to the image plane

Figure 4: The diagram for a 3D object projected onto the image
plane to generate an image with respect to the viewpoint.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1136



and d is the distance from the plane of P1 and P2 to the view-
point in the 3D space.

As we know, when the user places a source object into the
target image for image composition, the user may shrink, en-
large, or rotate the source object. With these operations, the
target-source image patch for the source object varies . Some
variations are caused by the changes in the distance from the
source object to the image plane, while some are not; e.g.,
making the 3D shape of the source object wider or shorter.
Thus, we should distinguish whether the user’s interventions
are intended to resize the 3D shape of the source object or
to change its depth. Fortunately, it seldom occurs that the
user simultaneously resizes the source object and changes its
depth. Thus, when the user’s intention is to resize the source
object, the user should add an intervention as an indication.
Then, the other cases of size variation in the target-source
image patch all stem from the user’s interventions to change
the depth of the source object. Under this assumption, the
proposed measure of depth computation is as follows.

Depth Computation
In image composition, no matter what happens to cause size
variations in the target-source image patch, we observe that
for two points P1 and P2 on a plane parallel to the image
plane, they still remain on a plane parallel to the image plane.
In addition, when the source object has its corresponding 3D
shape unchanged, (h2 − h1) remains unchanged for P1 and
P2, as shown in Fig. 4. As f is also fixed, we have

(m′
2 −m′

1)× d′ = (m2 −m1)× d = (h2 − h1)× f, (4)

when the source object is placed at another location with d′

for P1 and P2, and their m′
1 and m′

2 on the image plane. As
we know, (m′

2 −m′
1) and (m2 −m1) can be easily detected

on the target image, so that d′ for producing m′
2 and m′

1 can
be easily determined, assuming that (m2 −m1) is the result
for P1 and P2 in the initial registration.

As we know, a pixel is a rasterized point, which can be
approximated by a small rectangle parallel to the image plane.
For a pixel of the source image patch, its related rectangle
varies in size in the target image when the distance from the
source object to the image plane changes. Thus, according to
the size variations of the rectangle, we can compute the depth
of the pixel by Equation (4). On the other hand, with the
changes in distance, all rectangles of the pixels for the source
object vary in the same way, meaning these rectangles have
their heights changed by the same rate drate. Thus, we can
use the variations in the target-source image patch to compute
the depth of the pixels of the source object respectively, using
the following equations,

dp = dini × drate, (5)

drate = heightini/heightp, (6)
where dp is the depth of pixel p of the source object when the
source object is placed at a new location in the target image,
dini is the depth of pixel p when the source object is initially
depth registered into the target image, drate is the variation
rate, heightini is the height of the target-source image patch
in the initial depth registration, and heightp is the height of
the target-source image patch at the new location.

Note that when the 3D shape of the source object is not
changed in composition, the size variations in its target-
source image patch are caused only by distance changes.
Thus, the variation rate along any direction that is parallel to
the image plane for the target-source image patch is the same,
as it is only determined by f and d. Therefore, we compute
drate by the height variation here, without loss of generality.

When the source object has its 3D shape changed in the
composite, we compute drate by investigating the changes,
as discussed in the following ”Computation of drate”.

With drate determined, each pixel can have its depth com-
puted using Equation (5). As discussion in Subsection 3.1,
the difference-template represents the 3D existence of the
source object. Thus, after computing the depth for the an-
chor point for the source object at the new location, we can
obtain the depths of the pixels of the use-template from the
difference-template, where only one addition is required for
each pixel. This can save a lot of time compared with using
Equation (5) directly, which needs multiplications. As a re-
sult, we obtain the depths of the pixels of the target image
patch by mapping the use-template.

Computation of drate
In Equation (6), the variation rate drate is computed by the
variation in height of the target-source image patch. How-
ever, in adjusting the size of the target-source image patch
for composition using a series of manual interventions, the
variation rates along different directions may be different. To
solve this, we need to investigate the variation rates along all
directions and select the most suitable for depth computation.

Note that only depth change can cause size variations in
the target-source image along all directions and at the same
variation rate, whereas other changes have not such an effect;
e.g., widening the target-source image. Therefore, we inves-
tigate the variation rates of the target-source image along all
directions and select the one that is nearest to 1.0. In imple-
mentation, we investigate only the variation rates along the
horizontal direction and the vertical direction, as the user gen-
erally manipulates the target-source image patch along the
horizontal or the vertical.

3.3 Registration Refinement
In image composition, when the source objects are registered
into the target image, the occlusions between the source ob-
ject and the target objects can be determined by their pixel-
wise depths. Unfortunately, estimating pixelwise depths and
object segmentation by learning techniques is not very ac-
curate and may cause unsuitable occlusions, requiring the
user to perform manual corrections. Therefore, the pixelwise
depths and object segmentation are refined, which helps fa-
cilitate the subsequent composition attempts.

Considering that image composition actually combines
some meaningful parts of objects rather than entire objects,
we further segment the source objects and the target objects
into semantic parts respectively, where many methods can be
used for this purpose. We use the Watershed Algorithm [Ko-
rnilov and Safonov, 2018], and correct occlusions by parts in-
stead of pixels. In this way, interventions are easy and more
efficient. Fig. 5 shows the process of depth refinement for
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Figure 5: Depth refinement by semantic subdivision for occlusion
correction.

occlusion correction by subdividing an object into semantic
parts.The wall of the cup is subdivided into the inner and the
outer; therefore, the spoon can be compared with the subdi-
vided parts for refining occlusion determination. As a result,
when there is an incorrect occlusion, the user need only click
the corresponding parts for occlusion correction.

In our treatment, we first compute the overlapped regions
between the source object and the target objects by parts.
Thus, each overlapped region is related to only a part of
a target object, and in general only an occlusion relation-
ship is required in each overlapped region. The exceptional
case is when the parts are concave, in which case such parts
could be further decomposed into convex subparts for con-
venient implementation. Therefore, we expect all pixels in
each overlapped region to satisfy depthp(t) >= depthp(s)
or depthp(t) <= depthp(s), where depthp(t) and depthp(s)
refer to the depths of pixel p for the target object t and the
source object s respectively. Based on this, we correct un-
suitable occlusions and refine depths and object segmentation
correspondingly, as discussed below. The refinement result is
then transferred to the difference-template of the source ob-
ject for refining the representation of its 3D existence.

Refinement Measures
The refinement process updates the depths of the related ob-
jects or their segmentation. This is achieved by firstly refining
the source object, as we expect the target image to remain un-
changed if possible. When desired results cannot be obtained
by refining the source object, we will further refine the related
target objects that have unsuitable occlusions with the refined
source object. By refining the source object and the related
target objects iteratively, the desired results can be obtained
as the estimated depths and object segmentation using learn-
ing techniques provide a good base for our implementation.
In practical tests, refinement generally takes 1 or 2 iterations.

Using our method, overlapped regions are investigated
respectively. For each overlapped region, we first de-
duce its occlusion relationship by investigating the pairs
of (depthp(t), depthp(s)). If most pixels here have
depthp(t) >= depthp(s), it means the source object oc-
cludes the overlapped target object; otherwise, the source ob-
ject is occluded by the overlapped target object. For the un-
suitable occlusions, we allow the user to manually click the
corresponding regions. Thus, the expected occlusions in all
the overlapped regions are obtained, for which the refinement
process is as follows.

We first refine depths and then refine object segmentation.
For depth refinement to reduce depth conflicts in occlusion

determination, we deduce a depth offset β and a parameter
α ∈[0, 1] to flatten the object. In general, the occlusions in
the overlapped regions can be obtained correctly with depth
refinement, but some pixels in the overlapped regions may
still have unsuitable occlusions. For these pixels, we investi-
gate whether they are outliers of the object and exclude such
outliers for refining the object segmentation here. If there
are still some pixels with unsuitable occlusions after object
refinement, we resort to iterative refinement of the source ob-
ject and the related target objects alternatively.

In sum, the refinement process involves the following
steps:

1) Occlusions in overlapped regions are deduced respec-
tively.

2) The user interactively clicks the regions with unsuitable
occlusions.

3) The pixelwise depths and object segmentation are re-
fined iteratively by the following sequence of steps until ex-
pected occlusions in all the overlapped regions are achieved.

3.1) Refine depths for the source object;
3.2) Refine object segmentation for the source object;
3.3) Refine depths for the overlapped target objects;
3.4) Refine object segmentation for the overlapped target

objects.
Without loss of generality, we now discuss the measures

for depth refinement and object refinement.

• Depth refinement. Depth refinement is defined by the
following formula:

depth′
i = depthAcPoint+α×(depthi−depthAcPoint)+β,

(7)
where depth′

i is the refined depth for pixel i from its pre-
vious depth depthi, and depthAcPoint is the depth of the
anchor point. Clearly, β can be derived by investigating
the depth differences between depthp(t) and depthp(s)
for the pixels in the regions with wrong occlusions; e.g.,
β = max(|depthp(t) − depthp(s)|) if the source object
is expected to be occluded, and β = −max(|depthp(t) −
depthp(s)|) otherwise. As for α, it should be as close as
possible to 1.0 for retaining the originally estimated 3D
shape of the object. With all overlapped regions consid-
ered, α and β can be computed by dynamic programming.
Two examples are illustrated in Fig. 6 and Fig. 7.

• Object refinement. Refining object segmentation is com-
puted by finding and excluding the outliers of the object
in an overlapped region. First, we check the colors and
depths of the pixels of the object under investigation in
an overlapped region; e.g., (colorp, depthp) for pixel p.
In general, these pixels should be clustered very well by
their (colorp, depthp). The pixels that are on the bound-
ary of the object and have much different (colorp, depthp)
from their neighboring pixels in this overlapped region are
regarded as outliers. Here, for each pixel p, we com-
pute its maximum depth difference and color difference
with its neighboring pixels in the overlapped region; e.g.,
dep-diff(p) and clr-diff(p). We then obtain the aver-
age values for these depth differences and color differences;
e.g., average-dep-diff and average-clr-diff . For each
pixel p, if dep-diff(p) /∈ [average-dep-diff × (1.0 −
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Figure 6: Depth refinement by the depth offset β. With initial depth
registration, the spoon is not well placed into the cup (c). The user
clicks the region with a wrong occlusion, the purple part of the spoon
(d), and the pixels of the spoon have their depths refined by β to
obtain a composition with correct occlusions (e).

Figure 7: Depth refinement by flattening the source object via α. β is
adjusted to make the bird’s depth shift as a whole, but the left wing
of the bird is still wrongly occluded at this time (d). Subsequent
refinement by α achieves the final result (e).

λ), average-dep-diff × (1.0 + λ)], or clr-diff(p) /∈
[average-clr-diff×(1.0−µ), average-clr-diff×(1.0+
µ)], the pixel is regarded as an outlier. Many tests show that
setting λ=0.7 and µ=0.7 can always obtain good results.

4 Algorithm for Image Composition
Using the measures in Section 3, we present an image compo-
sition algorithm that can handle complicated occlusions con-
veniently and efficiently. The algorithm has the following
steps:

1) Semantic segmentation and depth estimation are exe-
cuted in the source image and the target image using learning
techniques.

2) The user selects an interested source object and places it
onto the target image to test designs. A satisfactory composite
is achieved by the following steps:

2.1) The source object is initially depth registered into the
3D space of the target image.

2.2) The user tries a design by placing the source object
with a suitable size onto the target image for a composition.
Here, occlusions are determined by pixelwise depths, and
color blending methods are then used for the visible pixels
of the source object.

2.3) When there are incorrect occlusions in the composite
obtained in 2.2), the user manually clicks the related regions
for occlusion correction.

2.4) Step 2.2) and 2.3) are repeated until a satisfactory
composite is obtained.

4.1 Implementation
In implementing our method, we use the following techniques
for semantic segmentation, depth estimation, and color blend-
ing.

Semantic segmentation uses primarily the popular method
DeepLabV3+ [Chen et al., 2018]. We also use GrabCut
[Rother et al., 2004] to further optimize the extracted objects.

Depth estimation uses NeWCRFs [Yuan et al., 2022] to ob-
tain a high-resolution depth map given a single RGB image.

Color blending uses the enhanced matting method of
[Wang et al., 2016], which computes the color at pixel i by
the following formulae,

fi = (1−wi)×ti+wi×gi+wi×
N∑
j=1

WjS(i, j)(tj−gj), (8)

where fi, ti, and gi are the colors of the pixel i in the com-
posited image, the target image, and the source image respec-
tively, and N is the set of pixels in the source object. The
weight wi is set to 0.8 for the pixels on the boundary of the
source object, and 0.9 for the pixels inside the source object,
which has always produced very good composites in our tests,
as detailed in Section 5. W is the normalized weight for
distinguishing smoothing effects in different regions, com-
puted as Wj = (1 − wj)/

∑N
k=1(1 − wk) for pixel j, and

S(i, j) = exp(−||pi − pj ||2) for pixels i and j, where pk
denotes the pixel position.

5 Results and Discussion
The proposed method was implemented in Python 3.8.9. For
comparison, we implemented the method in [Tan et al., 2019]
in Visual C++ and downloaded the learned network (Comp-
GAN) of [Azadi et al., 2020]. Comparisons with Adobe Pho-
toshop 2020 were also performed. Experimental results were
collected on a personal computer installed with an Intel(R)
Core(TM) i7-6700 CPU, 16GB RAM, and Windows 10. Due
to limit of the paper length, we list only a few results here for
discussion. More results are provided in the supplementary
materials.

Quality. As shown in Fig. 8, it is clear that our method and
Photoshop can well handle complicated occlusions to pro-
duce plausible composition images. However, the results pro-
duced by the [Tan et al., 2019] and compGAN[Azadi et al.,
2020] methods are implausible as they cannot handle many
occlusions, like the occlusions with off-ground objects in the
3rd row in Fig. 8 and the cyclic occlusions in the 6th row.
This is attested by the quantitative results in Table 1, where
accuracy refers to the percentage of pixels with correct oc-
clusion labels in the source image patch, and the Photoshop
compositions are used as the ground truth as they are man-
ually produced. Though Photoshop can produce results as
plausible as ours, it is inefficient and very troublesome to use.

Efficiency. In Table 2, we list the required interventions and
times for composing the results shown in Fig. 8, comparing
our method with Photoshop. These statistics show that we can
considerably reduce the interventions and time costs, achiev-
ing an acceleration of 145.6/36.3=4.01 times over Photoshop
on average.

Applications. In general, the user needs to try many de-
signs to achieve a satisfactory composition result. As our
method inserts the source object into the 3D space repre-
sented by the target image, the refined results for depths and
object segmentation can be used repeatedly for facilitating oc-
clusion determination. Thus, when the user tries designs, the
required interventions for occlusion correction are reduced
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Figure 8: Compositions compared.

and image composition is more efficient. In comparison, Pho-
toshop needs respective interventions to determine occlusions
for each composition, which is inefficient. The example in
Fig. 9 shows that the user needs four interventions to obtain
a satisfactory composition using our method, whereas many
more are required by Photoshop (Fig. 10).

Limitation. Our method relies on the experiences of human
stereoscopy in the real 3D world. If the user lacks such ex-
periences, a good result would not be produced. Fortunately,
the user is always familiar with the objects selected for im-
age composition in applications. Thus, our method can help
promote corresponding applications.

Accuracy
compGAN Tan’s ours our*

Row1 0.2100 0.7001 0.9826 -
Row2 0.0000 0.7951 0.9896 -
Row3 0.1674 0.8163 0.9799 -
Row4 0.4322 0.6304 0.7846 0.9995
Row5 0.4503 0.7913 0.9687 -
Row6 0.5222 0.5786 0.9731 -
Row7 0.0000 0.9178 0.9218 0.9887
Row8 0.1998 0.8357 0.9809 -
Average 0.2477 0.7582 0.9477 0.9941

Note: “our*” refers to the results with some required re-
finements; “-” means no refinement required.

Table 1: Quantitative comparisons for the composition results in
Fig. 8.

Figure 9: Four interventions achieve a satisfactory composition us-
ing our method.

Figure 10: Interventions compared for the results in Fig. 9.

6 Summary

This paper has presented a novel method for depth registra-
tion of the source object into the 3D space that is represented
by the target image. Thus, the occlusions between the source
object and the target objects can be easily handled. As a re-
sult, we can handle the occlusion problem in image compo-
sition more conveniently compared to existing methods. Ex-
perimental results show that we can conveniently composite
images with complicated occlusions and considerably reduce
manual interventions, making efficiency improved by about 4
times compared to Photoshop.

Photoshop Ours
Time Interventions Time Interventions

Row1 142.0s 71 33.0s 4
Row2 158.0s 84 34.0s 5
Row3 139.0s 87 32.0s 4
Row4 160.0s 93 44.0s 5
Row5 144.0s 77 45.0s 5
Row6 137.0s 75 33.0s 4
Row7 133.0s 82 35.0s 4
Row8 152.0s 73 34.0s 4

Average 145.6s 80.3 36.3s 4.4

Table 2: Time costs and interventions for the results in Fig. 8
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